Commit aa5859e4 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into wavelet_model

parents 9bd6cc0e 5ee30459
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using ADataType = INT8;
using BDataType = INT8;
using CDataType = INT8;
using AccDataType = INT32;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using ReferenceCGemmInstance = ck::tensor_operation::host::
ReferenceCGemm<ADataType, BDataType, CDataType, PassThrough, PassThrough, PassThrough>;
// clang-format off
using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_CShuffle
<ALayout, // typename ALayout
BLayout, // typename BLayout
CLayout, // typename CLayout
ADataType, // typename ADataType
BDataType, // typename BDataType
CDataType, // typename CDataType
AccDataType, // typename GemmAccDataType
CDataType, // typename CShuffleDataType
PassThrough, // typename AElementwiseOperation
PassThrough, // typename BElementwiseOperation
PassThrough, // typename CElementwiseOperation
GemmDefault, // GemmSpecialization GemmSpec
1, // index_t NumGemmKPrefetchStage
256, // index_t BlockSize
256, // index_t MPerBlock
128, // index_t NPerBlock
64, // index_t KPerBlock
16, // index_t AK1
16, // index_t BK1
32, // index_t MPerXDL
32, // index_t NPerXDL
4, // index_t MXdlPerWave
2, // index_t NXdlPerWave
S<4, 64, 1>, // typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S<1, 0, 2>, // typename ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename ABlockTransferSrcAccessOrder
2, // index_t ABlockTransferSrcVectorDim
16, // index_t ABlockTransferSrcScalarPerVector
16, // index_t ABlockTransferDstScalarPerVector_AK1
1, // index_t ABlockLdsExtraM
S<4, 64, 1>, // typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S<1, 0, 2>, // typename BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // typename BBlockTransferSrcAccessOrder
2, // index_t BBlockTransferSrcVectorDim
8, // index_t BBlockTransferSrcScalarPerVector
8, // index_t BBlockTransferDstScalarPerVector_BK1
1, // index_t BBlockLdsExtraN
1, // index_t CShuffleMXdlPerWavePerShuffle
1, // index_t CShuffleNXdlPerWavePerShuffle
S<1, 64, 1, 4>, // typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
16>; // index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// CGEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 10)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
}
else
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: run kernel # of times (>1)\n"
<< "arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n"
<< std::endl;
exit(0);
}
return run_cgemm_xdl<ADataType,
BDataType,
CDataType,
ALayout,
BLayout,
CLayout,
PassThrough,
PassThrough,
PassThrough,
DeviceCGemmInstance,
ReferenceCGemmInstance>(
M, N, K, StrideA, StrideB, StrideC, do_verification, init_method, time_kernel);
}
...@@ -13,8 +13,8 @@ ...@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp" #include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp" #include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp" #include "ck/library/utility/device_memory.hpp"
#include "ck/library/host_tensor/host_common_util.hpp" #include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp" #include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using namespace ck; using namespace ck;
...@@ -150,6 +150,9 @@ int main(int argc, char* argv[]) ...@@ -150,6 +150,9 @@ int main(int argc, char* argv[])
AccDataType alpha = args.scales[0]; AccDataType alpha = args.scales[0];
AccDataType beta = args.scales[1]; AccDataType beta = args.scales[1];
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out.mDesc << std::endl;
std::size_t num_thread = 1; std::size_t num_thread = 1;
if(args.do_verification) if(args.do_verification)
...@@ -174,7 +177,7 @@ int main(int argc, char* argv[]) ...@@ -174,7 +177,7 @@ int main(int argc, char* argv[])
} }
if(beta != 0.0f) if(beta != 0.0f)
for(size_t i = 0; i < out_ref.mDesc.GetElementSpace(); i++) for(size_t i = 0; i < out_ref.mDesc.GetElementSpaceSize(); i++)
out.mData[i] = out_ref.mData[i]; out.mData[i] = out_ref.mData[i];
}; };
// std::cout << "beta = " << beta << std::endl; // std::cout << "beta = " << beta << std::endl;
...@@ -182,8 +185,8 @@ int main(int argc, char* argv[]) ...@@ -182,8 +185,8 @@ int main(int argc, char* argv[])
// LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "tensor prior out: " , out.mData, ",") << std::endl;
// these buffers are usually provided by the user application // these buffers are usually provided by the user application
DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpace()); DeviceMem in_dev(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpace()); DeviceMem out_dev(sizeof(OutDataType) * out.mDesc.GetElementSpaceSize());
in_dev.ToDevice(in.mData.data()); in_dev.ToDevice(in.mData.data());
...@@ -195,7 +198,7 @@ int main(int argc, char* argv[]) ...@@ -195,7 +198,7 @@ int main(int argc, char* argv[])
using ReferenceInstance = using ReferenceInstance =
tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>; tensor_operation::host::ReferenceSoftmax<InDataType, OutDataType, AccDataType>;
ReferenceInstance ref; ReferenceInstance ref;
auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, Rank, reduceDims); auto ref_arg = ref.MakeArgument(in, out_ref, alpha, beta, reduceDims);
auto invoker = ref.MakeInvoker(); auto invoker = ref.MakeInvoker();
invoker.Run(ref_arg); invoker.Run(ref_arg);
// LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl; // LogRangeAsType<float>(std::cout << "tensor out_ref: ", out_ref.mData, ",") << std::endl;
...@@ -209,11 +212,13 @@ int main(int argc, char* argv[]) ...@@ -209,11 +212,13 @@ int main(int argc, char* argv[])
auto device_instance = DeviceInstance{}; auto device_instance = DeviceInstance{};
std::cout << i_inLengths.size() << ", " << i_inStrides.size() << std::endl;
auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths, auto argument_ptr = device_instance.MakeArgumentPointer(i_inLengths,
i_inStrides, i_inStrides,
reduceDims, reduceDims,
alpha, &alpha,
beta, &beta,
in_dev.GetDeviceBuffer(), in_dev.GetDeviceBuffer(),
out_dev.GetDeviceBuffer()); out_dev.GetDeviceBuffer());
......
add_example_executable(example_batched_gemm_e_permute_xdl_fp16 batched_gemm_e_permute_xdl_fp16.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_e_permute_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceBatchedGemmEPermuteXdl
// clang-format off
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
using ReferenceBatchedGemmInstance = ck::tensor_operation::host::ReferenceBatchedGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
const int M = 256;
const int N = 128;
const int K = 64;
const int stride_A = K;
const int stride_B = K;
const int batch_stride_A = M * K;
const int batch_stride_B = K * N;
const int G0 = 16;
const int G1 = 8;
const int batch_count = G0 * G1;
// output layout - [G0, M, G1, N]
const int stride_G0 = M * G1 * N;
const int stride_G1 = N;
const int stride_M = G1 * N;
const int stride_N = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
exit(0);
}
// GEMM shape
ck::tensor_operation::device::BatchedGemmEPermuteDesc batched_gemm_e_permute_desc{
G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N};
auto f_host_tensor_descriptor = [](std::size_t batch_count_,
std::size_t row,
std::size_t col,
std::size_t stride,
std::size_t batch_stride,
auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({batch_stride, stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({batch_count_, row, col}),
std::vector<std::size_t>({batch_stride, 1, stride}));
}
};
Tensor<ADataType> a_g_m_k(
f_host_tensor_descriptor(batch_count, M, K, stride_A, batch_stride_A, ALayout{}));
Tensor<BDataType> b_g_k_n(
f_host_tensor_descriptor(batch_count, K, N, stride_B, batch_stride_B, BLayout{}));
auto f_host_e_tensor_descriptor = [](std::size_t G0_,
std::size_t G1_,
std::size_t M_,
std::size_t N_,
std::size_t stride_G0_,
std::size_t stride_G1_,
std::size_t stride_M_,
std::size_t stride_N_) {
return HostTensorDescriptor(
std::vector<std::size_t>({G0_, G1_, M_, N_}),
std::vector<std::size_t>({stride_G0_, stride_G1_, stride_M_, stride_N_}));
};
Tensor<EDataType> e_g0_g1_m_n_host_result(
f_host_e_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
Tensor<EDataType> e_g0_g1_m_n_device_result(
f_host_e_tensor_descriptor(G0, G1, M, N, stride_G0, stride_G1, stride_M, stride_N));
std::cout << "a_g_m_k: " << a_g_m_k.mDesc << std::endl;
std::cout << "b_g_k_n: " << b_g_k_n.mDesc << std::endl;
std::cout << "e_g0_g1_m_n: " << e_g0_g1_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_g_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_g_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_g_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_g_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_g_m_k.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_g_k_n.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_g0_g1_m_n_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_g_m_k.mData.data());
b_device_buf.ToDevice(b_g_k_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
// do GEM
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_device_buf.GetDeviceBuffer()),
static_cast<EDataType*>(e_device_buf.GetDeviceBuffer()),
M,
N,
K,
stride_A,
stride_B,
batch_stride_A,
batch_stride_B,
batched_gemm_e_permute_desc,
batch_count,
a_element_op,
b_element_op,
cde_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * batch_count * M * N * K;
std::size_t num_btype = sizeof(ADataType) * batch_count * M * K +
sizeof(BDataType) * batch_count * K * N +
sizeof(EDataType) * batch_count * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
e_device_buf.FromDevice(e_g0_g1_m_n_device_result.mData.data());
auto ref_batched_gemm = ReferenceBatchedGemmInstance{};
auto ref_invoker = ref_batched_gemm.MakeInvoker();
Tensor<EDataType> c_g_m_n_host_result = HostTensorDescriptor(
std::vector<std::size_t>({batch_count, M, N}), std::vector<std::size_t>({M * N, N, 1}));
auto ref_argument = ref_batched_gemm.MakeArgument(
a_g_m_k, b_g_k_n, c_g_m_n_host_result, a_element_op, b_element_op, cde_element_op);
ref_invoker.Run(ref_argument);
for(int g0 = 0; g0 < G0; g0++)
{
for(int g1 = 0; g1 < G1; g1++)
{
for(int m = 0; m < M; m++)
{
for(int n = 0; n < N; n++)
{
int g = g0 * G1 + g1;
e_g0_g1_m_n_host_result(g0, g1, m, n) = c_g_m_n_host_result(g, m, n);
}
}
}
}
pass = ck::utils::check_err(e_g0_g1_m_n_host_result.mData,
e_g0_g1_m_n_device_result.mData,
"Error: Incorrect results c");
}
return pass ? 0 : 1;
}
add_example_executable(example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp)
add_example_executable(example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimG = 1;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 3;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, F16, F16, F32, F16, DsDataType, F16, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 1 && NumDimM == 2 && NumDimN == 3 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G1_M2_N3_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G1_M2_N3_K1::Argument;
float Run(const Argument& arg)
{
auto f_gs_ms_ns = [&](auto g0, auto m0, auto m1, auto n0, auto n1, auto n2) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, m0, m1, k0)));
arg.b_element_op_(
v_b,
ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, n0, n1, n2, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, m0, m1, n0, n1, n2) = v_c;
};
make_ParallelTensorFunctor(f_gs_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M3_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::index_t G0 = 1;
ck::index_t M0 = 4;
ck::index_t M1 = 256;
ck::index_t N0 = 4;
ck::index_t N1 = 16;
ck::index_t N2 = 32;
ck::index_t K0 = 256;
// A[M0, M1, M2, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{M0 * M1 * K0, M1 * K0, K0, 1};
// B[N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, N0, N1, N2, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{N0 * N1 * N2 * K0, N1 * N2 * K0, N2 * K0, K0, 1};
// D[N0, M0, N1, M1, N2]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, M0, M1, N0, N1, N2};
std::vector<ck::index_t> d_gs_ms_ns_strides{N0 * N1 * N2, 0, 0, N1 * N2, N2, 1};
// E[N0, M0, N1, M1, N2]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, M0, M1, N0, N1, N2};
std::vector<ck::index_t> e_gs_ms_ns_strides{
M0 * M1 * N0 * N1 * N2, N1 * M1 * N2, N2, M0 * N1 * M1 * N2, M1 * N2, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()),
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end()));
Tensor<BDataType> b_gs_ns_ks(
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()),
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G1_M2_N3_K1<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_gs_ms_ks,
b_gs_ns_ks,
c_gs_ms_ns_host_result,
a_element_op,
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t g0 = 0; g0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[0]; ++g0)
{
for(size_t m0 = 0; m0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[1]; ++m0)
{
for(size_t m1 = 0; m1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[2]; ++m1)
{
for(size_t n0 = 0; n0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[3]; ++n0)
{
for(size_t n1 = 0; n1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[4]; ++n1)
{
for(size_t n2 = 0; n2 < e_gs_ms_ns_host_result.mDesc.GetLengths()[5];
++n2)
{
cde_element_op(e_gs_ms_ns_host_result(g0, m0, m1, n0, n1, n2),
c_gs_ms_ns_host_result(g0, m0, m1, n0, n1, n2),
d_gs_ms_ns(g0, m0, m1, n0, n1, n2));
}
}
}
}
}
}
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData)
? 0
: 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimG = 1;
static constexpr ck::index_t NumDimM = 3;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, F16, F16, F32, F16, DsDataType, F16, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
template <ck::index_t NumDimG,
ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 1 && NumDimM == 3 && NumDimN == 2 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G1_M3_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G1_M3_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_gs_ms_ns = [&](auto g0, auto m0, auto m1, auto m2, auto n0, auto n1) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[4];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a,
ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, m0, m1, m2, k0)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, m0, m1, m2, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_gs_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_G1_M3_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::index_t G0 = 1;
ck::index_t M0 = 4;
ck::index_t M1 = 8;
ck::index_t M2 = 256;
ck::index_t N0 = 32;
ck::index_t N1 = 128;
ck::index_t K0 = 1024;
// A[M0, M1, M2, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, M0, M1, M2, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{M0 * M1 * M2 * K0, M1 * M2 * K0, M2 * K0, K0, 1};
// B[N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{N0 * N1 * K0, N1 * K0, K0, 1};
// D[M0, N0, M1, N1, M2]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, M0, M1, M2, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{N0 * N1, 0, 0, 0, N1, 1};
// E[M1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, M0, M1, M2, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
M0 * M1 * M2 * N1 * N0, N0 * M1 * N1, N1, M0 * N0 * M1 * N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()),
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end()));
Tensor<BDataType> b_gs_ns_ks(
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()),
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G1_M3_N2_K1<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_gs_ms_ks,
b_gs_ns_ks,
c_gs_ms_ns_host_result,
a_element_op,
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t g0 = 0; g0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[0]; ++g0)
{
for(size_t m0 = 0; m0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[1]; ++m0)
{
for(size_t m1 = 0; m1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[2]; ++m1)
{
for(size_t m2 = 0; m2 < e_gs_ms_ns_host_result.mDesc.GetLengths()[3]; ++m2)
{
for(size_t n0 = 0; n0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[4]; ++n0)
{
for(size_t n1 = 0; n1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[5];
++n1)
{
cde_element_op(e_gs_ms_ns_host_result(g0, m0, m1, m2, n0, n1),
c_gs_ms_ns_host_result(g0, m0, m1, m2, n0, n1),
d_gs_ms_ns(g0, m0, m1, m2, n0, n1));
}
}
}
}
}
}
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData)
? 0
: 1;
}
return 0;
}
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
# Instructions for ```example_contraction_bilinear_xdl_fp32```
## Run
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
./bin/example_contraction_bilinear_xdl_fp32 1 1 1
```
Result (MI100 @ dynammic freq, 46TFlops peak FP32)
```
a_ms_ks: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
b_ks_ns: dim 4, lengths {32, 64, 32, 64}, strides {128, 1, 524288, 4096}
c_ms_ns: dim 4, lengths {30, 128, 32, 64}, strides {524288, 4096, 128, 1}
launch_and_time_kernel: grid_dim {240, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 0.843286 ms, 38.1985 TFlops, 94.5014 GB/s, DeviceContractionMultipleD_Xdl_CShuffle<256, 256, 128, 16, 4, 4>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DDataType = F32;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Bilinear;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceKNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMNNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// D[M0, M1, N0, N1]
std::vector<ck::index_t> d_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> d_ms_ns_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float alpha = 1.f;
float beta = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 28)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
d_ms_ns_lengths = {M0, M1, N0, N1};
d_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[22]), std::stoi(argv[23]), std::stoi(argv[24]), std::stoi(argv[25])};
alpha = std::stof(argv[26]);
beta = std::stof(argv[27]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 7: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_D_M0, Stride_D_M1, Stride_D_N0, Stride_D_N1\n");
printf("arg22 to 25: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg26 to 27: alpha, beta\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
Tensor<BDataType> b_ns_ks(
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> d_ms_ns(
std::vector<std::size_t>(d_ms_ns_lengths.begin(), d_ms_ns_lengths.end()),
std::vector<std::size_t>(d_ms_ns_strides.begin(), d_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "d_ms_ns: " << d_ms_ns.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
d_device_buf.ToDevice(d_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{alpha, beta};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(DDataType) * M * N + sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1),
d_ms_ns(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F32;
using BDataType = F32;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F32;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 2;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Scale;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// clang-format off
using DeviceOpInstanceKKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 4, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceKNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 4, 1, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMKN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 4, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, 1, 1, S<1, 16, 1, 16>, 4>;
using DeviceOpInstanceMNN = ck::tensor_operation::device::
//#####################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F32, F32, F32, F32, DsDataType, F32, AElementOp, BElementOp, CDEElementOp, GemmSpec, 1, 256, 256, 128, 16, 1, 1, 32, 32, 4, 2, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 1, 0, 1, 1, S<1, 16, 1, 16>, 4>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 2 && NumDimN == 2 && NumDimK == 2, bool> = false>
struct ReferenceContraction_M2_N2_K2 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M2_N2_K2::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[2];
const int K1 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
for(int k1 = 0; k1 < K1; ++k1)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, k0, k1)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0, k1)));
v_acc += v_a * v_b;
}
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M2_N2_K2"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// A[M0, M1, K0, K1]
std::vector<ck::index_t> a_ms_ks_lengths{30, 128, 32, 64};
std::vector<ck::index_t> a_ms_ks_strides{524288, 4096, 128, 1};
// B[N0, N1, K0, K1]
std::vector<ck::index_t> b_ns_ks_lengths{32, 64, 32, 64};
std::vector<ck::index_t> b_ns_ks_strides{524288, 4096, 128, 1};
// E[M0, M1, N0, N1]
std::vector<ck::index_t> e_ms_ns_lengths{30, 128, 32, 64};
std::vector<ck::index_t> e_ms_ns_strides{524288, 4096, 128, 1};
float scale = 1.f;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 23)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
const ck::index_t M0 = std::stoi(argv[4]);
const ck::index_t M1 = std::stoi(argv[5]);
const ck::index_t N0 = std::stoi(argv[6]);
const ck::index_t N1 = std::stoi(argv[7]);
const ck::index_t K0 = std::stoi(argv[8]);
const ck::index_t K1 = std::stoi(argv[9]);
a_ms_ks_lengths = {M0, M1, K0, K1};
a_ms_ks_strides = {
std::stoi(argv[10]), std::stoi(argv[11]), std::stoi(argv[12]), std::stoi(argv[13])};
b_ns_ks_lengths = {N0, N1, K0, K1};
b_ns_ks_strides = {
std::stoi(argv[14]), std::stoi(argv[15]), std::stoi(argv[16]), std::stoi(argv[17])};
e_ms_ns_lengths = {M0, M1, N0, N1};
e_ms_ns_strides = {
std::stoi(argv[18]), std::stoi(argv[19]), std::stoi(argv[20]), std::stoi(argv[21])};
scale = std::stof(argv[22]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M0, M1, N0, N1, K0, K1\n");
printf("arg10 to 13: Stride_A_M0, Stride_A_M1, Stride_A_K0, Stride_A_K1\n");
printf("arg14 to 17: Stride_B_N0, Stride_B_N1, Stride_B_K0, Stride_B_K1\n");
printf("arg18 to 21: Stride_E_M0, Stride_E_M1, Stride_E_N0, Stride_E_N1\n");
printf("arg22: scale\n");
exit(0);
}
Tensor<ADataType> a_ms_ks(
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
Tensor<BDataType> b_ns_ks(
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
std::cout << "a_ms_ks: " << a_ms_ks.mDesc << std::endl;
std::cout << "b_ns_ks: " << b_ns_ks.mDesc << std::endl;
std::cout << "e_ms_ns: " << e_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) * e_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_ms_ks.mData.data());
b_device_buf.ToDevice(b_ns_ks.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{scale};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 0>{},
e_device_buf.GetDeviceBuffer(),
a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
std::array<std::vector<ck::index_t>, 0>{},
std::array<std::vector<ck::index_t>, 0>{},
e_ms_ns_lengths,
e_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t M = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype =
sizeof(ADataType) * M * K + sizeof(BDataType) * K * N + +sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_M2_N2_K2<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_ms_ks, b_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, n0, n1),
c_ms_ns_host_result(m0, m1, n0, n1));
}
}
}
}
return ck::utils::check_err(e_ms_ns_device_result.mData, e_ms_ns_host_result.mData) ? 0 : 1;
}
return 0;
}
add_example_executable(example_layernorm_blockwise layernorm_blockwise.cpp)
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include "ck/ck.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "ck/tensor_operation/gpu/device/device_layernorm_impl.hpp"
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp"
using XDataType = ck::half_t;
using GammaDataType = ck::half_t;
using BetaDataType = ck::half_t;
using YDataType = ck::half_t;
using AccDataType = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
constexpr int Rank = 2;
constexpr int NumReduceDim = 1;
using DeviceInstance = ck::tensor_operation::device::DeviceLayernormImpl<XDataType,
GammaDataType,
BetaDataType,
AccDataType,
YDataType,
PassThrough,
Rank,
NumReduceDim,
256, // BlockSize
8, // ClusterM
32, // ClusterK
1, // SliceM
8, // SliceK
1, // SrcVecDim (0=M, 1=K)
8, // SrcScalarPerVector
8, // GammaScalarPerVector
8, // BetaScalarPerVector
8>; // OutScalarPerVector
int main()
{
bool time_kernel = false;
ck::index_t M = 1024;
ck::index_t N = 1024;
ck::index_t Stride = N;
auto f_host_tensor_descriptor1d = [](std::size_t len, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({len}),
std::vector<std::size_t>({stride}));
};
auto f_host_tensor_descriptor2d = [](std::size_t row, std::size_t col, std::size_t stride) {
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
};
Tensor<XDataType> x(f_host_tensor_descriptor2d(M, N, Stride));
Tensor<GammaDataType> gamma(f_host_tensor_descriptor1d(N, 1));
Tensor<BetaDataType> beta(f_host_tensor_descriptor1d(N, 1));
Tensor<YDataType> y(f_host_tensor_descriptor2d(M, N, Stride));
x.GenerateTensorValue(GeneratorTensor_3<XDataType>{0.0, 1.0});
gamma.GenerateTensorValue(GeneratorTensor_3<GammaDataType>{0.0, 1.0});
beta.GenerateTensorValue(GeneratorTensor_3<BetaDataType>{0.0, 1.0});
DeviceMem x_dev(sizeof(XDataType) * x.mDesc.GetElementSpaceSize());
DeviceMem gamma_dev(sizeof(GammaDataType) * gamma.mDesc.GetElementSpaceSize());
DeviceMem beta_dev(sizeof(BetaDataType) * beta.mDesc.GetElementSpaceSize());
DeviceMem y_dev(sizeof(YDataType) * y.mDesc.GetElementSpaceSize());
x_dev.ToDevice(x.mData.data());
gamma_dev.ToDevice(gamma.mData.data());
beta_dev.ToDevice(beta.mData.data());
auto device_instance = DeviceInstance{};
auto argument_ptr = device_instance.MakeArgumentPointer(
{M, N},
std::vector<ck::index_t>{x.mDesc.GetStrides().begin(), x.mDesc.GetStrides().end()},
std::vector<ck::index_t>{gamma.mDesc.GetStrides().begin(), gamma.mDesc.GetStrides().end()},
std::vector<ck::index_t>{beta.mDesc.GetStrides().begin(), beta.mDesc.GetStrides().end()},
std::vector<ck::index_t>{y.mDesc.GetStrides().begin(), y.mDesc.GetStrides().end()},
{1},
1e-4,
x_dev.GetDeviceBuffer(),
gamma_dev.GetDeviceBuffer(),
beta_dev.GetDeviceBuffer(),
y_dev.GetDeviceBuffer(),
PassThrough{});
if(!device_instance.IsSupportedArgument(argument_ptr.get()))
{
std::cout << "The runtime parameters are not supported" << std::endl;
return 1;
};
auto invoker_ptr = device_instance.MakeInvokerPointer();
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
bool pass = true;
{
Tensor<YDataType> host_y(f_host_tensor_descriptor2d(M, N, Stride));
using ReferenceInstance = ck::tensor_operation::host::ReferenceLayernorm<XDataType,
GammaDataType,
BetaDataType,
YDataType,
AccDataType,
PassThrough,
Rank,
NumReduceDim>;
ReferenceInstance ref;
auto ref_argument =
ref.MakeArgument(x, gamma, beta, host_y, PassThrough{}, {M, N}, {1}, 1e-4);
auto ref_invoker = ref.MakeInvoker();
ref_invoker.Run(ref_argument);
y_dev.FromDevice(y.mData.data());
pass &=
ck::utils::check_err(y.mData, host_y.mData, "Error: Incorrect results d1", 1e-3, 1e-3);
}
return (pass ? 0 : 1);
}
add_example_executable(example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimM = 3;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Packed;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedContractionMultipleD_Xdl_CShuffle< NumDimM, NumDimN, NumDimK, F16, F16, F32, F16, DsDataType, F16, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>;
// clang-format on
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimM == 3 && NumDimN == 2 && NumDimK == 1, bool> = false>
struct ReferenceContraction_M3_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_ms_ks_{a_ms_ks},
b_ns_ks_{b_ns_ks},
e_ms_ns_{e_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_ms_ks_;
const Tensor<BDataType>& b_ns_ks_;
Tensor<EDataType>& e_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_M3_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto m0, auto m1, auto m2, auto n0, auto n1) {
const int K0 = arg.a_ms_ks_.mDesc.GetLengths()[3];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a, ck::type_convert<const AccDataType>(arg.a_ms_ks_(m0, m1, m2, k0)));
arg.b_element_op_(
v_b, ck::type_convert<const AccDataType>(arg.b_ns_ks_(n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_ms_ns_(m0, m1, m2, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_ms_ns_.mDesc.GetLengths()[0],
arg.e_ms_ns_.mDesc.GetLengths()[1],
arg.e_ms_ns_.mDesc.GetLengths()[2],
arg.e_ms_ns_.mDesc.GetLengths()[3],
arg.e_ms_ns_.mDesc.GetLengths()[4])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_ms_ks,
const Tensor<BDataType>& b_ns_ks,
Tensor<EDataType>& e_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{a_ms_ks, b_ns_ks, e_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_M3_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
exit(0);
}
std::size_t group_count = rand() % 16 + 1;
// GEMM shape
std::vector<ck::tensor_operation::device::ContractionDesc<1>> contraction_descs;
std::vector<const void*> p_a, p_b;
std::vector<std::array<const void*, 1>> p_ds;
std::vector<void*> p_c;
contraction_descs.reserve(group_count);
for(std::size_t i = 0; i < group_count; i++)
{
int M0 = 4 * (rand() % 4 + 1);
int M1 = 4 * (rand() % 4 + 1);
int M2 = 256;
int N0 = 4 * (rand() % 4 + 1);
int N1 = 128;
int K0 = 64 * (rand() % 4 + 1);
// A[M0, M1, M2, K0]
std::vector<ck::index_t> a_ms_ks_lengths{M0, M1, M2, K0};
std::vector<ck::index_t> a_ms_ks_strides{M1 * M2 * K0, M2 * K0, K0, 1};
// B[N0, N1, K0]
std::vector<ck::index_t> b_ns_ks_lengths{N0, N1, K0};
std::vector<ck::index_t> b_ns_ks_strides{N1 * K0, K0, 1};
#if 0
// D[M0, N0, M1, N1, M2]
std::vector<ck::index_t> d_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> d_ms_ns_strides{0, 0, 0, N1, 1};
// E[M0, N0, M1, N1, M2]
std::vector<ck::index_t> e_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> e_ms_ns_strides{N0 * M1 * N1 * M2, N1 * M2, 1, M1 * N1 * M2, M2};
#else
// D[M0, N0, M1, N1, M2]
std::vector<ck::index_t> d_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> d_ms_ns_strides{0, 0, 0, N1, 1};
// E[M0, N0, M1, N1, M2]
std::vector<ck::index_t> e_ms_ns_lengths{M0, M1, M2, N0, N1};
std::vector<ck::index_t> e_ms_ns_strides{M1 * M2 * N0 * N1, M2 * N0 * N1, N0 * N1, N1, 1};
#endif
contraction_descs.push_back(
ck::tensor_operation::device::ContractionDesc<1>{a_ms_ks_lengths,
a_ms_ks_strides,
b_ns_ks_lengths,
b_ns_ks_strides,
{d_ms_ns_lengths},
{d_ms_ns_strides},
e_ms_ns_lengths,
e_ms_ns_strides});
}
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<DDataType>> d_tensors;
std::vector<Tensor<EDataType>> e_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
d_tensors.reserve(group_count);
e_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, d_tensors_device,
e_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
d_tensors_device.reserve(group_count);
e_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(std::size_t i = 0; i < contraction_descs.size(); i++)
{
const auto a_ms_ks_lengths = contraction_descs[i].a_ms_ks_lengths;
const auto a_ms_ks_strides = contraction_descs[i].a_ms_ks_strides;
const auto b_ns_ks_lengths = contraction_descs[i].b_ns_ks_lengths;
const auto b_ns_ks_strides = contraction_descs[i].b_ns_ks_strides;
const auto d_ms_ns_lengths = contraction_descs[i].ds_ms_ns_lengths[0];
const auto d_ms_ns_strides = contraction_descs[i].ds_ms_ns_strides[0];
const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths;
const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides;
Tensor<ADataType> a_ms_ks(
std::vector<std::size_t>(a_ms_ks_lengths.begin(), a_ms_ks_lengths.end()),
std::vector<std::size_t>(a_ms_ks_strides.begin(), a_ms_ks_strides.end()));
Tensor<BDataType> b_ns_ks(
std::vector<std::size_t>(b_ns_ks_lengths.begin(), b_ns_ks_lengths.end()),
std::vector<std::size_t>(b_ns_ks_strides.begin(), b_ns_ks_strides.end()));
Tensor<DDataType> d_ms_ns(
std::vector<std::size_t>(d_ms_ns_lengths.begin(), d_ms_ns_lengths.end()),
std::vector<std::size_t>(d_ms_ns_strides.begin(), d_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_device_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
ck::index_t M_ = std::accumulate(e_ms_ns_lengths.begin(),
e_ms_ns_lengths.begin() + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N_ = std::accumulate(e_ms_ns_lengths.begin() + NumDimM,
e_ms_ns_lengths.begin() + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K_ = std::accumulate(a_ms_ks_lengths.begin() + NumDimM,
a_ms_ks_lengths.begin() + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
a_tensors.push_back(a_ms_ks);
b_tensors.push_back(b_ns_ks);
d_tensors.push_back(d_ms_ns);
// e_host_tensors.push_back(e_ms_ns_host_result);
e_device_tensors.push_back(e_ms_ns_device_result);
flop += std::size_t(2) * M_ * K_ * N_;
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * e_device_tensors[i].mDesc.GetElementSize();
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_n_k: " << b_tensors[i].mDesc << " c_m_n: " << e_device_tensors[i].mDesc
<< std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_tensors[i].GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_tensors[i].GenerateTensorValue(GeneratorTensor_3<DDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_1<ADataType>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_1<BDataType>{});
d_tensors[i].GenerateTensorValue(GeneratorTensor_1<DDataType>{});
}
}
for(std::size_t i = 0; i < contraction_descs.size(); i++)
{
a_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(ADataType) * a_tensors[i].mDesc.GetElementSpaceSize()));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSpaceSize()));
d_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(DDataType) * d_tensors[i].mDesc.GetElementSpaceSize()));
e_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(EDataType) * e_device_tensors[i].mDesc.GetElementSpaceSize()));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data());
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data());
d_tensors_device[i]->ToDevice(d_tensors[i].mData.data());
p_a.push_back(a_tensors_device[i]->GetDeviceBuffer());
p_b.push_back(b_tensors_device[i]->GetDeviceBuffer());
p_ds.push_back({d_tensors_device[i]->GetDeviceBuffer()});
p_c.push_back(e_tensors_device[i]->GetDeviceBuffer());
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
auto gemm = DeviceOpInstanceKKNN{};
auto invoker = gemm.MakeInvoker();
// do GEMM
auto argument = gemm.MakeArgument(
p_a, p_b, p_ds, p_c, contraction_descs, a_element_op, b_element_op, cde_element_op);
DeviceMem contraction_desc_workspace(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, contraction_desc_workspace.GetDeviceBuffer());
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< gemm.GetTypeString() << std::endl;
bool pass = true;
if(do_verification)
{
for(std::size_t i = 0; i < group_count; i++)
{
const auto e_ms_ns_lengths = contraction_descs[i].e_ms_ns_lengths;
const auto e_ms_ns_strides = contraction_descs[i].e_ms_ns_strides;
Tensor<EDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
Tensor<EDataType> e_ms_ns_host_result(
std::vector<std::size_t>(e_ms_ns_lengths.begin(), e_ms_ns_lengths.end()),
std::vector<std::size_t>(e_ms_ns_strides.begin(), e_ms_ns_strides.end()));
e_tensors_device[i]->FromDevice(e_device_tensors[i].mData.data());
using ReferenceOpInstance = ReferenceContraction_M3_N2_K1<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
c_ms_ns_host_result,
a_element_op,
b_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t m0 = 0; m0 < e_ms_ns_host_result.mDesc.GetLengths()[0]; ++m0)
{
for(size_t m1 = 0; m1 < e_ms_ns_host_result.mDesc.GetLengths()[1]; ++m1)
{
for(size_t m2 = 0; m2 < e_ms_ns_host_result.mDesc.GetLengths()[2]; ++m2)
{
for(size_t n0 = 0; n0 < e_ms_ns_host_result.mDesc.GetLengths()[3]; ++n0)
{
for(size_t n1 = 0; n1 < e_ms_ns_host_result.mDesc.GetLengths()[4]; ++n1)
{
cde_element_op(e_ms_ns_host_result(m0, m1, m2, n0, n1),
c_ms_ns_host_result(m0, m1, m2, n0, n1),
d_tensors[i](m0, m1, m2, n0, n1));
}
}
}
}
}
pass &= ck::utils::check_err(e_device_tensors[i].mData, e_ms_ns_host_result.mData);
}
}
return pass ? 0 : 1;
}
add_example_executable(example_batched_gemm_bias_e_permute_xdl_fp16 batched_gemm_bias_e_permute_xdl_fp16.cpp)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Add = ck::tensor_operation::element_wise::Add;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 2;
static constexpr ck::index_t NumDimN = 2;
static constexpr ck::index_t NumDimK = 1;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CDEElementOp = ck::tensor_operation::element_wise::Add;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto ABSpec = ck::tensor_operation::device::TensorSpecialization::Packed;
static constexpr auto DESpec = ck::tensor_operation::device::TensorSpecialization::Default;
// clang-format off
using DeviceOpInstanceKKNN = ck::tensor_operation::device::
//############################################| NumDimG| NumDimM| NumDimN| NumDimK| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| Gemm| A| B| DE| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//############################################| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Spacialization| Spacialization| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//############################################| | | | | | | | | | | Operation| Operation| Operation| | | | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceBatchedContractionMultipleD_Xdl_CShuffle< NumDimG, NumDimM, NumDimN, NumDimK, F16, F16, F32, F16, DsDataType, F16, AElementOp, BElementOp, CDEElementOp, GemmSpec, ABSpec, ABSpec, DESpec, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>;
// clang-format on
using DeviceOpInstance = DeviceOpInstanceKKNN;
// hardcoded for NumDimM == NumDimN == NumDimK == 2
template <ck::index_t NumDimG,
ck::index_t NumDimM,
ck::index_t NumDimN,
ck::index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
ck::enable_if_t<NumDimG == 2 && NumDimM == 2 && NumDimN == 2 && NumDimK == 1, bool> =
false>
struct ReferenceContraction_G2_M2_N2_K1 : public ck::tensor_operation::device::BaseOperator
{
// Argument
struct Argument : public ck::tensor_operation::device::BaseArgument
{
Argument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_gs_ms_ks_{a_gs_ms_ks},
b_gs_ns_ks_{b_gs_ns_ks},
e_gs_ms_ns_{e_gs_ms_ns},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
}
const Tensor<ADataType>& a_gs_ms_ks_;
const Tensor<BDataType>& b_gs_ns_ks_;
Tensor<EDataType>& e_gs_ms_ns_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public ck::tensor_operation::device::BaseInvoker
{
using Argument = ReferenceContraction_G2_M2_N2_K1::Argument;
float Run(const Argument& arg)
{
auto f_ms_ns = [&](auto g0, auto g1, auto m0, auto m1, auto n0, auto n1) {
const int K0 = arg.a_gs_ms_ks_.mDesc.GetLengths()[4];
AccDataType v_acc = 0;
for(int k0 = 0; k0 < K0; ++k0)
{
AccDataType v_a;
AccDataType v_b;
arg.a_element_op_(
v_a,
ck::type_convert<const AccDataType>(arg.a_gs_ms_ks_(g0, g1, m0, m1, k0)));
arg.b_element_op_(
v_b,
ck::type_convert<const AccDataType>(arg.b_gs_ns_ks_(g0, g1, n0, n1, k0)));
v_acc += v_a * v_b;
}
AccDataType v_c;
arg.cde_element_op_(v_c, v_acc);
arg.e_gs_ms_ns_(g0, g1, m0, m1, n0, n1) = v_c;
};
make_ParallelTensorFunctor(f_ms_ns,
arg.e_gs_ms_ns_.mDesc.GetLengths()[0],
arg.e_gs_ms_ns_.mDesc.GetLengths()[1],
arg.e_gs_ms_ns_.mDesc.GetLengths()[2],
arg.e_gs_ms_ns_.mDesc.GetLengths()[3],
arg.e_gs_ms_ns_.mDesc.GetLengths()[4],
arg.e_gs_ms_ns_.mDesc.GetLengths()[5])(
std::thread::hardware_concurrency());
return 0;
}
float Run(const ck::tensor_operation::device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const ck::tensor_operation::device::BaseArgument*) override
{
return true;
}
static auto MakeArgument(const Tensor<ADataType>& a_gs_ms_ks,
const Tensor<BDataType>& b_gs_ns_ks,
Tensor<EDataType>& e_gs_ms_ns,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
a_gs_ms_ks, b_gs_ns_ks, e_gs_ms_ns, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<ck::tensor_operation::device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceContraction_G2_M2_N2_K1"
<< std::endl;
// clang-format on
return str.str();
}
};
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
ck::index_t G0 = 1;
ck::index_t G1 = 2;
ck::index_t M0 = 4;
ck::index_t M1 = 256;
ck::index_t N0 = 16;
ck::index_t N1 = 128;
ck::index_t K0 = 64;
// A[G0, G1, M0, M1, K0]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M0, M1, K0};
std::vector<ck::index_t> a_gs_ms_ks_strides{G1 * M0 * M1 * K0, M0 * M1 * K0, M1 * K0, K0, 1};
// B[G0, G1, N0, N1, K0]
std::vector<ck::index_t> b_gs_ns_ks_lengths{G0, G1, N0, N1, K0};
std::vector<ck::index_t> b_gs_ns_ks_strides{G1 * N0 * N1 * K0, N0 * N1 * K0, N1 * K0, K0, 1};
// D[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> d_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> d_gs_ms_ns_strides{G1 * N0 * N1, N0 * N1, 0, 0, N1, 1};
// E[G0, G1, M0, N0, M1, N1]
std::vector<ck::index_t> e_gs_ms_ns_lengths{G0, G1, M0, M1, N0, N1};
std::vector<ck::index_t> e_gs_ms_ns_strides{
G1 * M0 * N0 * M1 * N1, M0 * N0 * M1 * N1, N0 * M1 * N1, N1, M1 * N1, 1};
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
exit(0);
}
Tensor<ADataType> a_gs_ms_ks(
std::vector<std::size_t>(a_gs_ms_ks_lengths.begin(), a_gs_ms_ks_lengths.end()),
std::vector<std::size_t>(a_gs_ms_ks_strides.begin(), a_gs_ms_ks_strides.end()));
Tensor<BDataType> b_gs_ns_ks(
std::vector<std::size_t>(b_gs_ns_ks_lengths.begin(), b_gs_ns_ks_lengths.end()),
std::vector<std::size_t>(b_gs_ns_ks_strides.begin(), b_gs_ns_ks_strides.end()));
Tensor<DDataType> d_gs_ms_ns(
std::vector<std::size_t>(d_gs_ms_ns_lengths.begin(), d_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(d_gs_ms_ns_strides.begin(), d_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
Tensor<EDataType> e_gs_ms_ns_device_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b_gs_ns_ks: " << b_gs_ns_ks.mDesc << std::endl;
std::cout << "d_gs_ms_ns: " << d_gs_ms_ns.mDesc << std::endl;
std::cout << "e_gs_ms_ns: " << e_gs_ms_ns_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b_device_buf(sizeof(BDataType) * b_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d_device_buf(sizeof(DDataType) * d_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem e_device_buf(sizeof(EDataType) *
e_gs_ms_ns_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b_device_buf.ToDevice(b_gs_ns_ks.mData.data());
d_device_buf.ToDevice(d_gs_ms_ns.mData.data());
// set zero
e_device_buf.SetZero();
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// device operation
auto op = DeviceOpInstance{};
auto invoker = op.MakeInvoker();
auto argument = op.MakeArgument(a_device_buf.GetDeviceBuffer(),
b_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_device_buf.GetDeviceBuffer()},
e_device_buf.GetDeviceBuffer(),
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
b_gs_ns_ks_strides,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths},
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides},
e_gs_ms_ns_lengths,
e_gs_ms_ns_strides,
a_element_op,
b_element_op,
cde_element_op);
if(!op.IsSupportedArgument(argument))
{
std::cout << op.GetTypeString() << " does not support this problem" << std::endl;
return 0;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
ck::index_t G = std::accumulate(e_gs_ms_ns_lengths.begin(),
e_gs_ms_ns_lengths.begin() + NumDimG,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t M = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t N = std::accumulate(e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM,
e_gs_ms_ns_lengths.begin() + NumDimG + NumDimM + NumDimN,
ck::index_t{1},
std::multiplies<ck::index_t>{});
ck::index_t K = std::accumulate(a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM,
a_gs_ms_ks_lengths.begin() + NumDimG + NumDimM + NumDimK,
ck::index_t{1},
std::multiplies<ck::index_t>{});
std::size_t flop = std::size_t(2) * G * M * N * K;
std::size_t num_btype = sizeof(ADataType) * G * M * K + sizeof(BDataType) * G * K * N +
sizeof(DDataType) * G * M * N + sizeof(EDataType) * G * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< op.GetTypeString() << std::endl;
e_device_buf.FromDevice(e_gs_ms_ns_device_result.mData.data());
if(do_verification)
{
Tensor<CShuffleDataType> c_ms_ns_host_result(
std::vector<std::size_t>(e_gs_ms_ns_lengths.begin(), e_gs_ms_ns_lengths.end()),
std::vector<std::size_t>(e_gs_ms_ns_strides.begin(), e_gs_ms_ns_strides.end()));
using ReferenceOpInstance = ReferenceContraction_G2_M2_N2_K1<NumDimG,
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
CShuffleDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceOpInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_gs_ms_ks, b_gs_ns_ks, c_ms_ns_host_result, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(size_t g0 = 0; g0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[0]; ++g0)
{
for(size_t g1 = 0; g1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[1]; ++g1)
{
for(size_t m0 = 0; m0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[2]; ++m0)
{
for(size_t m1 = 0; m1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[3]; ++m1)
{
for(size_t n0 = 0; n0 < e_gs_ms_ns_host_result.mDesc.GetLengths()[4]; ++n0)
{
for(size_t n1 = 0; n1 < e_gs_ms_ns_host_result.mDesc.GetLengths()[5];
++n1)
{
cde_element_op(e_gs_ms_ns_host_result(g0, g1, m0, m1, n0, n1),
c_ms_ns_host_result(g0, g1, m0, m1, n0, n1),
d_gs_ms_ns(g0, g1, m0, m1, n0, n1));
}
}
}
}
}
}
return ck::utils::check_err(e_gs_ms_ns_device_result.mData, e_gs_ms_ns_host_result.mData)
? 0
: 1;
}
return 0;
}
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 PRIVATE utility)
add_example_executable(example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp)
target_link_libraries(example_grouped_convnd_fwd_bias_relu_add_xdl_int8 PRIVATE utility)
\ No newline at end of file
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#Following arguments (depending on number of spatial dims):
# N spatial dimensions
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
bin/example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {2, 128, 192, 71, 71}, strides {192, 1935744, 1, 27264, 384}
wei: dim 5, lengths {2, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 663552, 1, 18432, 512}
A[M, K]: {165888, 1728}
B[N, K]: {256, 1728}
Ds[M, N]: {165888, 256}
Ds[M, N]: {165888, 256}
E[M, N]: {165888, 256}
launch_and_time_kernel: grid_dim {2592, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.48075 ms, 118.325 TFlops, 268.946 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 32, Default>
```
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
void print_helper_msg()
{
std::cout << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename CShuffleDataType,
typename OutDataType,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp,
typename DeviceConvNDFwdInstance>
int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
int init_method,
bool time_kernel,
const ck::utils::conv::ConvParam& conv_param,
const HostTensorDescriptor& in_g_n_c_wis_desc,
const HostTensorDescriptor& wei_g_k_c_xs_desc,
const HostTensorDescriptor& bias_g_n_k_wos_desc,
const HostTensorDescriptor& residual_g_n_k_wos_desc,
const HostTensorDescriptor& out_g_n_k_wos_desc,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
Tensor<InDataType> in(in_g_n_c_wis_desc);
Tensor<WeiDataType> wei(wei_g_k_c_xs_desc);
Tensor<OutDataType> bias(bias_g_n_k_wos_desc);
Tensor<OutDataType> residual(residual_g_n_k_wos_desc);
Tensor<OutDataType> out_host(out_g_n_k_wos_desc);
Tensor<OutDataType> out_device(out_g_n_k_wos_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "wei: " << wei.mDesc << std::endl;
std::cout << "bias: " << bias.mDesc << std::endl;
std::cout << "residual: " << residual.mDesc << std::endl;
std::cout << "out: " << out_host.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias.GenerateTensorValue(GeneratorTensor_3<OutDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei.mDesc.GetElementSpaceSize());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias.mDesc.GetElementSpaceSize());
DeviceMem residual_device_buf(sizeof(OutDataType) * residual.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
wei_device_buf.ToDevice(wei.mData.data());
bias_device_buf.ToDevice(bias.mData.data());
residual_device_buf.ToDevice(residual.mData.data());
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_lengths{};
std::array<ck::index_t, NDimSpatial + 3> a_g_n_c_wis_strides{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_lengths{};
std::array<ck::index_t, NDimSpatial + 3> b_g_k_c_xs_strides{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d0_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> d1_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> d1_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_lengths{};
std::array<ck::index_t, NDimSpatial + 3> e_g_n_k_wos_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(in_g_n_c_wis_desc.GetLengths(), a_g_n_c_wis_lengths);
copy(in_g_n_c_wis_desc.GetStrides(), a_g_n_c_wis_strides);
copy(wei_g_k_c_xs_desc.GetLengths(), b_g_k_c_xs_lengths);
copy(wei_g_k_c_xs_desc.GetStrides(), b_g_k_c_xs_strides);
copy(bias_g_n_k_wos_desc.GetLengths(), d0_g_n_k_wos_lengths);
copy(bias_g_n_k_wos_desc.GetStrides(), d0_g_n_k_wos_strides);
copy(residual_g_n_k_wos_desc.GetLengths(), d1_g_n_k_wos_lengths);
copy(residual_g_n_k_wos_desc.GetStrides(), d1_g_n_k_wos_strides);
copy(out_g_n_k_wos_desc.GetLengths(), e_g_n_k_wos_lengths);
copy(out_g_n_k_wos_desc.GetStrides(), e_g_n_k_wos_strides);
copy(conv_param.conv_filter_strides_, conv_filter_strides);
copy(conv_param.conv_filter_dilations_, conv_filter_dilations);
copy(conv_param.input_left_pads_, input_left_pads);
copy(conv_param.input_right_pads_, input_right_pads);
// do Conv
auto conv = DeviceConvNDFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(in_device_buf.GetDeviceBuffer(),
wei_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{bias_device_buf.GetDeviceBuffer(),
residual_device_buf.GetDeviceBuffer()},
out_device_buf.GetDeviceBuffer(),
a_g_n_c_wis_lengths,
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths,
b_g_k_c_xs_strides,
std::array<std::array<ck::index_t, NDimSpatial + 3>, 2>{
{d0_g_n_k_wos_lengths, d1_g_n_k_wos_lengths}},
std::array<std::array<ck::index_t, NDimSpatial + 3>, 2>{
{d0_g_n_k_wos_strides, d1_g_n_k_wos_strides}},
e_g_n_k_wos_lengths,
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
in_element_op,
wei_element_op,
out_element_op);
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem");
}
float avg_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = conv_param.GetFlops();
std::size_t num_btype = conv_param.GetByte<InDataType, WeiDataType, OutDataType>();
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< conv.GetTypeString() << std::endl;
if(do_verification)
{
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
Tensor<CShuffleDataType> c_host(out_g_n_k_wos_desc);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
WeiDataType,
CShuffleDataType,
InElementOp,
WeiElementOp,
PassThrough>();
auto ref_invoker = ref_conv.MakeInvoker();
auto ref_argument = ref_conv.MakeArgument(in,
wei,
c_host,
conv_param.conv_filter_strides_,
conv_param.conv_filter_dilations_,
conv_param.input_left_pads_,
conv_param.input_right_pads_,
in_element_op,
wei_element_op,
PassThrough{});
ref_invoker.Run(ref_argument);
// TODO: implement elementwise operation for host
out_host.ForEach([&](auto&, auto idx) {
out_element_op(out_host(idx), c_host(idx), bias(idx), residual(idx));
});
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(
out_device.mData, out_host.mData, "Error: incorrect results!", 1e-5f, 1e-4f)
? 0
: 1;
}
return 0;
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment