Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
aa5859e4
Commit
aa5859e4
authored
Aug 13, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into wavelet_model
parents
9bd6cc0e
5ee30459
Changes
278
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1718 additions
and
1352 deletions
+1718
-1352
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
+6
-6
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
+6
-6
example/19_binary_elementwise/elementwise_add_1d.cpp
example/19_binary_elementwise/elementwise_add_1d.cpp
+6
-6
example/19_binary_elementwise/elementwise_add_4d.cpp
example/19_binary_elementwise/elementwise_add_4d.cpp
+6
-6
example/20_convnd_bwd_weight/CMakeLists.txt
example/20_convnd_bwd_weight/CMakeLists.txt
+5
-0
example/20_convnd_bwd_weight/convnd_bwd_weight_common.hpp
example/20_convnd_bwd_weight/convnd_bwd_weight_common.hpp
+152
-0
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_bf16.cpp
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_bf16.cpp
+219
-0
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_fp16.cpp
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_fp16.cpp
+216
-0
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
+0
-4
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
+0
-385
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
...nvnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
+0
-427
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+1
-0
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
..._gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
+168
-184
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
+147
-150
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
..._gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
+289
-0
example/22_cgemm/CMakeLists.txt
example/22_cgemm/CMakeLists.txt
+10
-0
example/22_cgemm/cgemm_xdl_bf16.cpp
example/22_cgemm/cgemm_xdl_bf16.cpp
+132
-0
example/22_cgemm/cgemm_xdl_common.hpp
example/22_cgemm/cgemm_xdl_common.hpp
+192
-0
example/22_cgemm/cgemm_xdl_fp16.cpp
example/22_cgemm/cgemm_xdl_fp16.cpp
+31
-178
example/22_cgemm/cgemm_xdl_fp32.cpp
example/22_cgemm/cgemm_xdl_fp32.cpp
+132
-0
No files found.
Too many changes to show.
To preserve performance only
278 of 278+
files are displayed.
Plain diff
Email patch
example/19_binary_elementwise/broadcast_add_2d_amn_bn.cpp
View file @
aa5859e4
...
...
@@ -9,9 +9,9 @@
#include "ck/tensor_operation/gpu/device/device_binary_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -92,9 +92,9 @@ int main()
a_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_n_device_buf
(
sizeof
(
ABDataType
)
*
a_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
b_n_device_buf
(
sizeof
(
ABDataType
)
*
b_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_n_device_buf
(
sizeof
(
ABDataType
)
*
a_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_n_device_buf
(
sizeof
(
ABDataType
)
*
b_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_m_n_device_buf
(
sizeof
(
CDataType
)
*
c_m_n
.
mDesc
.
GetElementSpace
Size
());
a_m_n_device_buf
.
ToDevice
(
a_m_n
.
mData
.
data
());
b_n_device_buf
.
ToDevice
(
b_n
.
mData
.
data
());
...
...
example/19_binary_elementwise/broadcast_add_3d_am_bmnk.cpp
View file @
aa5859e4
...
...
@@ -9,9 +9,9 @@
#include "ck/tensor_operation/gpu/device/device_binary_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -74,9 +74,9 @@ int main()
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m_n_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
());
DeviceMem
b_m_n_k_device_buf
(
sizeof
(
ABDataType
)
*
b_m_n_k
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_k_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_k
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_m_n_k_device_buf
(
sizeof
(
ABDataType
)
*
b_m_n_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_m_n_k_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_k
.
mDesc
.
GetElementSpace
Size
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_n_k_device_buf
.
ToDevice
(
b_m_n_k
.
mData
.
data
());
...
...
example/19_binary_elementwise/elementwise_add_1d.cpp
View file @
aa5859e4
...
...
@@ -8,9 +8,9 @@
#include "ck/tensor_operation/gpu/device/device_binary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -72,9 +72,9 @@ int main()
a_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b_m
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
());
DeviceMem
b_m_device_buf
(
sizeof
(
ABDataType
)
*
b_m
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_device_buf
(
sizeof
(
CDataType
)
*
c_m
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_device_buf
(
sizeof
(
ABDataType
)
*
a_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_m_device_buf
(
sizeof
(
ABDataType
)
*
b_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_m_device_buf
(
sizeof
(
CDataType
)
*
c_m
.
mDesc
.
GetElementSpace
Size
());
a_m_device_buf
.
ToDevice
(
a_m
.
mData
.
data
());
b_m_device_buf
.
ToDevice
(
b_m
.
mData
.
data
());
...
...
example/19_binary_elementwise/elementwise_add_4d.cpp
View file @
aa5859e4
...
...
@@ -9,9 +9,9 @@
#include "ck/tensor_operation/gpu/device/device_binary_elementwise.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
...
...
@@ -74,9 +74,9 @@ int main()
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
b
.
GenerateTensorValue
(
GeneratorTensor_3
<
ABDataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ABDataType
)
*
a
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
ABDataType
)
*
b
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ABDataType
)
*
a
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
ABDataType
)
*
b
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c
.
mDesc
.
GetElementSpace
Size
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b
.
mData
.
data
());
...
...
example/20_convnd_bwd_weight/CMakeLists.txt
0 → 100644
View file @
aa5859e4
add_example_executable
(
example_convnd_bwd_weight_xdl_fp16 convnd_bwd_weight_xdl_fp16.cpp
)
add_example_executable
(
example_convnd_bwd_weight_xdl_bf16 convnd_bwd_weight_xdl_bf16.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl_fp16 PRIVATE utility
)
target_link_libraries
(
example_convnd_bwd_weight_xdl_bf16 PRIVATE utility
)
example/20_convnd_bwd_weight/convnd_bwd_weight_common.hpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp"
void
print_helper_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvBwdWeightInstance
>
int
run_conv_bwd_weight
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
,
ck
::
index_t
split_k
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei_host_result
(
wei_g_k_c_xs_desc
);
Tensor
<
WeiDataType
>
wei_device_result
(
wei_g_k_c_xs_desc
);
Tensor
<
OutDataType
>
out
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
out
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
out
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out
.
mData
.
data
());
// init to 0
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
DeviceConvBwdWeightInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
,
conv_param
.
filter_spatial_lengths_
,
conv_param
.
output_spatial_lengths_
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
NDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei_host_result
,
out
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
wei_device_result
.
mData
,
wei_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_bf16.cpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
bhalf_t
;
// bf16 kernel use fp32 atomic add to accumulate Weight tensor into global memory
using
WeiDataType
=
float
;
using
OutDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvndBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
32
,
256
,
1024
,
{
3
,
3
},
{
14
,
14
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
ck
::
index_t
split_k
=
4
;
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
split_k
=
std
::
stoi
(
argv
[
5
+
3
+
6
*
num_dim_spatial
-
1
]);
split_k
=
std
::
max
(
1
,
split_k
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
GNWC
;
using
WeiLayout
=
ctc
::
GKXC
;
using
OutLayout
=
ctc
::
GNWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
1
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
GNHWC
;
using
WeiLayout
=
ctc
::
GKYXC
;
using
OutLayout
=
ctc
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
GNDHWC
;
using
WeiLayout
=
ctc
::
GKZYXC
;
using
OutLayout
=
ctc
::
GNDHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
3
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
return
0
;
}
example/20_convnd_bwd_weight/convnd_bwd_weight_xdl_fp16.cpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "convnd_bwd_weight_common.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_bwd_weight_nwc_kxc_nwk_xdl_cshuffle.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvndBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvNdBwdWeightNwcKxcNwk_Xdl_CShuffle
<
NDimSpatial
,
// NDimSpatial
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
1
,
32
,
256
,
1024
,
{
3
,
3
},
{
14
,
14
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
ck
::
index_t
split_k
=
4
;
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
split_k
=
std
::
stoi
(
argv
[
5
+
3
+
6
*
num_dim_spatial
-
1
]);
split_k
=
std
::
max
(
1
,
split_k
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
GNWC
;
using
WeiLayout
=
ctc
::
GKXC
;
using
OutLayout
=
ctc
::
GNWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
1
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
1
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
GNHWC
;
using
WeiLayout
=
ctc
::
GKYXC
;
using
OutLayout
=
ctc
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
2
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
2
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
GNDHWC
;
using
WeiLayout
=
ctc
::
GKZYXC
;
using
OutLayout
=
ctc
::
GNDHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
return
run_conv_bwd_weight
<
3
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
DeviceConvndBwdWeightInstance
<
3
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
return
0
;
}
example/20_convnd_bwd_weight_xdl/CMakeLists.txt
deleted
100644 → 0
View file @
9bd6cc0e
add_example_executable
(
example_convnd_bwd_weight_xdl convnd_bwd_weight_xdl.cpp
)
add_example_executable
(
example_convnd_bwd_weight_xdl_bf16_splitk convnd_bwd_weight_xdl_bf16_splitk.cpp
)
target_link_libraries
(
example_convnd_bwd_weight_xdl PRIVATE conv_util
)
target_link_libraries
(
example_convnd_bwd_weight_xdl_bf16_splitk PRIVATE conv_util
)
\ No newline at end of file
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl.cpp
deleted
100644 → 0
View file @
9bd6cc0e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
using
DeviceConvBwdWeightBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeightPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// clang-format off
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvndBwdWeightInstance
=
ck
::
tensor_operation
::
device
::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: is show log (0=no, 1=yes)
\n
"
<<
"arg5: split-k
\n
"
<<
"arg6: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
7
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
DeviceConvBwdWeightBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
do_log
=
0
;
int
split_k
=
1
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
C_
=
128
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
>
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
6
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
7
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
1
);
}
params
=
parse_conv_params
(
num_dim_spatial
,
argv
);
}
else
if
(
argc
!=
1
)
{
print_use_msg
();
exit
(
1
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
ck
::
utils
::
conv
::
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
ck
::
utils
::
conv
::
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
// alloc work space
float
ave_time
=
0.
f
;
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
ck
::
utils
::
conv
::
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
3
>
();
return
verify_f
(
ref_conv
);
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
2
>
();
return
verify_f
(
ref_conv
);
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
1
>
();
return
verify_f
(
ref_conv
);
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
return
0
;
}
example/20_convnd_bwd_weight_xdl/convnd_bwd_weight_xdl_bf16_splitk.cpp
deleted
100644 → 0
View file @
9bd6cc0e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/device/device_unary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
bhalf_t
;
using
WeiDataType
=
ck
::
bhalf_t
;
using
OutDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryTypeConvert
=
ck
::
tensor_operation
::
element_wise
::
UnaryTypeConvert
<
ck
::
bhalf_t
,
float
>
;
using
DeviceUnaryElementwiseTypeConvertInstance
=
ck
::
tensor_operation
::
device
::
DeviceUnaryElementwise
<
AccDataType
,
WeiDataType
,
UnaryTypeConvert
,
1
,
4
>
;
static
constexpr
auto
ConvBwdWeightDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardWeightSpecialization
::
Default
;
using
DeviceConvBwdWeightBasePtr
=
ck
::
tensor_operation
::
device
::
DeviceConvBwdWeightPtr
<
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
// clang-format off
template
<
ck
::
index_t
NumDimSpatial
>
using
DeviceConvndBwdWeightInstance_bf16_splitk
=
ck
::
tensor_operation
::
device
::
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
AccDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdWeightDefault
,
// ConvolutionBackwardWeightSpecialization
NumDimSpatial
,
// NumDimSpatial
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
template
<
ck
::
index_t
NumDimSpatial
>
using
ReferenceConvBwdWeightInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdWeight
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
NumDimSpatial
>
;
template
<
typename
HostTensorB
,
typename
HostTensorA
,
typename
Functor
>
void
host_elementwise
(
HostTensorB
&
B
,
const
HostTensorA
&
A
,
const
std
::
vector
<
std
::
size_t
>&
shape
,
Functor
functor
)
{
size_t
tensor_size
=
std
::
accumulate
(
shape
.
begin
(),
shape
.
end
(),
1
,
std
::
multiplies
<
int
>
{});
std
::
cout
<<
__LINE__
<<
":"
<<
tensor_size
<<
", "
<<
A
.
mData
[
0
]
<<
std
::
endl
;
for
(
std
::
size_t
n
=
0
;
n
<
tensor_size
;
++
n
)
{
B
.
mData
[
n
]
=
functor
(
A
.
mData
[
n
]);
}
}
void
print_use_msg
()
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=random value, 2= init to 1 )
\n
"
<<
"arg3: time kernel (0=n0, 1=yes)
\n
"
<<
"arg4: is show log (0=no, 1=yes)
\n
"
<<
"arg5: split-k : in this example split-k must be larger than 1
\n
"
<<
"arg6: N spatial dimensions (default 2)
\n
"
<<
"Following arguments (depending on number of spatial dims):
\n
"
<<
" N, K, C,
\n
"
<<
" <filter spatial dimensions>, (ie Y, X for 2D)
\n
"
<<
" <input image spatial dimensions>, (ie Hi, Wi for 2D)
\n
"
<<
" <strides>, (ie Sy, Sx for 2D)
\n
"
<<
" <dilations>, (ie Dy, Dx for 2D)
\n
"
<<
" <left padding>, (ie LeftPy, LeftPx for 2D)
\n
"
<<
" <right padding>, (ie RightPy, RightPx for 2D)
\n
"
<<
std
::
endl
;
}
ck
::
utils
::
conv
::
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
char
*
argv
[])
{
// (N, K, C) + num_dim_spatial * 6 (filter, input, strides, dilations, pad left, pad right)
ck
::
utils
::
conv
::
ConvParams
params
;
int
arg_idx
=
7
;
params
.
num_dim_spatial_
=
num_dim_spatial
;
params
.
N_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
K_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
C_
=
std
::
stoi
(
argv
[
arg_idx
++
]);
params
.
filter_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
filter_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_spatial_lengths_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_spatial_lengths_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_strides_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_strides_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
conv_filter_dilations_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
conv_filter_dilations_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_left_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_left_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
params
.
input_right_pads_
.
resize
(
num_dim_spatial
);
for
(
int
i
=
0
;
i
<
num_dim_spatial
;
++
i
)
{
params
.
input_right_pads_
[
i
]
=
std
::
stoi
(
argv
[
arg_idx
++
]);
}
return
params
;
}
DeviceConvBwdWeightBasePtr
get_conv_instance
(
int
num_dim_spatial
)
{
switch
(
num_dim_spatial
)
{
case
3
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
3
>>
();
}
case
2
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
2
>>
();
}
case
1
:
{
return
std
::
make_unique
<
DeviceConvndBwdWeightInstance_bf16_splitk
<
1
>>
();
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
num_dim_spatial
=
2
;
int
do_log
=
0
;
int
split_k
=
2
;
ck
::
utils
::
conv
::
ConvParams
params
;
params
.
C_
=
128
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
>
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
num_dim_spatial
=
std
::
stoi
(
argv
[
6
]);
// check args number
int
conv_args
=
3
+
num_dim_spatial
*
6
;
int
cmdline_nargs
=
conv_args
+
7
;
if
(
cmdline_nargs
!=
argc
)
{
print_use_msg
();
exit
(
1
);
}
params
=
parse_conv_params
(
num_dim_spatial
,
argv
);
}
else
if
(
argc
!=
1
)
{
print_use_msg
();
exit
(
1
);
}
if
(
split_k
<=
1
)
{
print_use_msg
();
exit
(
1
);
}
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params
.
input_spatial_lengths_
),
std
::
end
(
params
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params
.
K_
),
static_cast
<
std
::
size_t
>
(
params
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params
.
filter_spatial_lengths_
),
std
::
end
(
params
.
filter_spatial_lengths_
));
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
=
params
.
GetOutputSpatialLengths
();
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params
.
N_
),
static_cast
<
std
::
size_t
>
(
params
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
ck
::
utils
::
conv
::
get_input_host_tensor_descriptor
(
input_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
ck
::
utils
::
conv
::
get_filters_host_tensor_descriptor
(
filter_dims
,
num_dim_spatial
));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
ck
::
utils
::
conv
::
get_output_host_tensor_descriptor
(
output_dims
,
num_dim_spatial
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
2
,
2
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
2
,
2
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
// reset input to zero
wei_device_buf
.
SetZero
();
// do GEMM
auto
conv
=
get_conv_instance
(
num_dim_spatial
);
auto
invoker
=
conv
->
MakeInvokerPointer
();
auto
argument
=
conv
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
params
.
N_
,
params
.
K_
,
params
.
C_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
// alloc work space
size_t
bwd_weight_workspace_size
=
conv
->
GetWorkSpaceSize
(
argument
.
get
());
if
(
bwd_weight_workspace_size
<=
0
)
{
print_use_msg
();
exit
(
1
);
}
float
conv_ave_time
=
0.
f
;
DeviceMem
wei_work_space_device_buf
(
bwd_weight_workspace_size
);
wei_work_space_device_buf
.
SetZero
();
conv
->
SetWorkSpacePointer
(
argument
.
get
(),
wei_work_space_device_buf
.
GetDeviceBuffer
());
if
(
!
conv
->
IsSupportedArgument
(
argument
.
get
()))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
conv_ave_time
=
invoker
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
ck
::
utils
::
conv
::
get_flops
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
std
::
size_t
num_btype
=
ck
::
utils
::
conv
::
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params
.
N_
,
params
.
C_
,
params
.
K_
,
params
.
input_spatial_lengths_
,
params
.
filter_spatial_lengths_
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
conv_ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
conv_ave_time
;
std
::
cout
<<
"Perf: conv: "
<<
conv_ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
verify_f
=
[
&
](
const
auto
&
ref_conv
)
{
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
return
ck
::
utils
::
check_err
(
wei_k_c_y_x_device_result
.
mData
,
wei_k_c_y_x_host_result
.
mData
)
?
0
:
1
;
};
switch
(
num_dim_spatial
)
{
case
3
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
3
>
();
verify_f
(
ref_conv
);
break
;
}
case
2
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
2
>
();
verify_f
(
ref_conv
);
break
;
}
case
1
:
{
auto
ref_conv
=
ReferenceConvBwdWeightInstance
<
1
>
();
verify_f
(
ref_conv
);
break
;
}
default:
{
throw
std
::
runtime_error
(
"Unsupported number of spatial dimensions provided!"
);
}
}
}
return
0
;
}
example/21_gemm_layernorm/CMakeLists.txt
View file @
aa5859e4
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp
)
example/21_gemm_layernorm/gemm_bias_relu_add_layernorm_xdl_fp16.cpp
View file @
aa5859e4
...
...
@@ -9,13 +9,13 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
bias_add_reduce
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_multiple_r
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -28,57 +28,64 @@ using F32 = float;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
BiasDataType
=
F32
;
using
D0DataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
,
D1DataType
>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
D0ElementOp
=
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddReluAdd
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
Device
GemmBiasAddReduce
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
BiasAddReduce
_Xdl_CShuffle
//######| ALayout| BLayout|
C
Layout|AData| BData|
CData|C0Data|C1Data|
GemmAcc
| CShuffle|
ReduceAcc|
Reduce
Data| A| B|
C|
C1
|
Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy
|
//######| | | | Type| Type|
Type|
Type|
Type|
DataType|
Data
Type|
Data
Type|
Type Tupl
e| Elementwise| Elementwise| Elementwise| Elementwise| Operation|
|
| Memo
ryData| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar|
Dst
Scalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar|
Dst
Scalar| ExtraN| MXdlPerWave| NXdlPerW
av
e| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
SrcDstScalarPerVector|
//######| | | |
|
|
|
|
|
|
| | |
Operation
| Operation| Operation| Operation|
| | |
Operation|
| Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
_MPerBlock|
//######| | | |
|
|
| |
|
|
|
|
|
| | |
| |
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
| | |
|
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
D0
ElementOp
,
R
educeOps
,
ReduceIn
ElementOp
s
,
R
educeOutElementOps
,
ReduceGlobalMem
Op
s
,
Gemm
Specialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
using
Device
Op
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
MultipleDMultipleR
_Xdl_CShuffle
//######| ALayout| BLayout|
E
Layout|
AData|
BData|
GemmAcc
Data| CShuffle| DsData| EData|
ReduceAcc
Data
|
Rs
Data| A| B| C
DE
|
Qs
|
Rs| Thread| Global|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CDRThreadTransfer| CDE| RThreadTransfer
|
//######| | | |
Type|
Type|
Type|
DataType|
Type|
Type|
Type| Type| Elementwis
e| Elementwise|
Elementwise| Elementwise| Elementwise|
Reduce
|
Reduce|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraN| MXdlPerWave| NXdlPerWave|
ClusterLengths| ReduceThreadTransfer|
DstScalarPerVector|
//######| | | |
|
|
|
|
| |
|
| Operation| Operation|
Operation|
Operation| Operation| Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_MPerBlock_NPerBlock| ScalarPerVector|
_MPerBlock|
//######| | | |
|
|
| |
| |
| | | |
|
|
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
_NPerBlock|
|
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
C
DE
ElementOp
,
Qs
ElementOp
,
R
s
ElementOp
,
R
sThreadReduceOp
,
RsGlobalReduce
Op
,
Gemm
Default
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
E
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
...
...
@@ -88,9 +95,9 @@ using NormalizeFunctor = ck::tensor_operation::element_wise::Normalize;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
C
DataType
,
R
educe
DataType
,
R
educe
DataType
,
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
E
DataType
,
R
0
DataType
,
R
1
DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
...
...
@@ -124,41 +131,31 @@ auto f_host_tensor_descriptor2d =
}
};
template
<
typename
CDataType
,
typename
ReduceDataType
,
typename
AccDataType
,
typename
BiasDataType
,
typename
D0DataType
,
typename
A_functor
,
typename
B_functor
,
typename
C_functor
,
typename
C1_functor
>
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
A
DataType
>&
b_k_n
,
const
Tensor
<
Bias
DataType
>&
bias_n
,
const
Tensor
<
D
0
DataType
>&
c
1_m_n
,
const
Tensor
<
B
DataType
>&
b_k_n
,
const
Tensor
<
D0
DataType
>&
bias_n
,
const
Tensor
<
D
1
DataType
>&
d
1_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
GammaDataType
>&
beta_n
,
A_functor
a_element_op
,
B_functor
b_element_op
,
C_functor
c_element_op
,
C1_functor
c1_element_op
,
const
Tensor
<
BetaDataType
>&
beta_n
,
AElementOp
a_element_op
,
BElementOp
b_element_op
,
CDEElementOp
cde_element_op
,
int
M
,
int
N
)
{
int
Stride
C
=
N
;
Tensor
<
C
DataType
>
c
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
int
Stride
E
=
N
;
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e
_m_n
,
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
...
...
@@ -166,38 +163,32 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
for
(
int
m
=
0
;
m
<
M
;
++
m
)
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
acc
=
static_cast
<
AccDataType
>
(
c_m_n
(
m
,
n
))
+
static_cast
<
AccDataType
>
(
bias_n
(
n
));
AccDataType
c1
=
static_cast
<
AccDataType
>
(
c1_m_n
(
m
,
n
));
c_element_op
(
acc
,
acc
);
c1_element_op
(
c1
,
c1
);
acc
+=
c1
;
c_m_n
(
m
,
n
)
=
static_cast
<
CDataType
>
(
acc
);
auto
acc
=
ck
::
type_convert
<
GemmAccDataType
>
(
e_m_n
(
m
,
n
));
cde_element_op
(
e_m_n
(
m
,
n
),
acc
,
bias_n
(
n
),
d1_m_n
(
m
,
n
));
}
// reduce_mean and reduce_square_mean
auto
reduceSumOpInst
=
ReduceSumOp
{};
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r
educeSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
auto
square_
mean_
acc
=
r
educeSumOpInst
.
GetIdentityValue
<
AccDataType
>
();
auto
mean_acc
=
r
0Op
.
GetIdentityValue
<
Reduce
AccDataType
>
();
auto
mean_
square_acc
=
r
1Op
.
GetIdentityValue
<
Reduce
AccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
AccDataType
c_val
=
ck
::
type_convert
<
AccDataType
>
(
c
_m_n
(
m
,
n
));
AccDataType
square_
c
_val
=
0
;
Unary
Square
ElementOp
{}(
square_
c
_val
,
c
_val
);
auto
e_val
=
ck
::
type_convert
<
Reduce
AccDataType
>
(
e
_m_n
(
m
,
n
));
Reduce
AccDataType
square_
e
_val
=
0
;
Square
{}(
square_
e
_val
,
e
_val
);
r
educeSumOpInst
(
mean_acc
,
c
_val
);
r
educeSumOpInst
(
square_
mean_
acc
,
square_
c
_val
);
r
0Op
(
mean_acc
,
e
_val
);
r
1Op
(
mean_
square_acc
,
square_
e
_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
square_
mean_
acc
,
square_
mean_
acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
square_
mean_
acc
);
averageOpInst
(
mean_
square_acc
,
mean_
square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
0
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
1
DataType
>
(
mean_
square_acc
);
}
// LayerNorm
...
...
@@ -206,24 +197,25 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
Acc
DataType
out_acc
=
0
;
NormalizeCompute
DataType
out_acc
=
0
;
layerNormInst
(
out_acc
,
static_cast
<
Acc
DataType
>
(
c
_m_n
(
m
,
n
)),
static_cast
<
Acc
DataType
>
(
mean_m
(
m
)),
static_cast
<
Acc
DataType
>
(
meanSquare_m
(
m
)),
static_cast
<
Acc
DataType
>
(
gamma_n
(
n
)),
static_cast
<
Acc
DataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
static_cast
<
Reduce
DataType
>
(
out_acc
);
ck
::
type_convert
<
NormalizeCompute
DataType
>
(
e
_m_n
(
m
,
n
)),
ck
::
type_convert
<
NormalizeCompute
DataType
>
(
mean_m
(
m
)),
ck
::
type_convert
<
NormalizeCompute
DataType
>
(
meanSquare_m
(
m
)),
ck
::
type_convert
<
NormalizeCompute
DataType
>
(
gamma_n
(
n
)),
ck
::
type_convert
<
NormalizeCompute
DataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
ck
::
type_convert
<
LayerNormOut
DataType
>
(
out_acc
);
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
BiasDataType
,
typename
EDataType
,
typename
D0DataType
,
typename
ReduceDataType
,
typename
D1DataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
...
...
@@ -231,12 +223,12 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
2
)
*
M
*
N
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
Bias
DataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
;
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
D0
DataType
)
*
M
*
N
+
sizeof
(
D0DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
;
std
::
size_t
normalize_num_byte
=
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
normalize_num_byte
=
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
...
...
@@ -259,98 +251,90 @@ int main()
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
StrideC
=
1024
;
ck
::
index_t
StrideD0
=
1024
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
1024
;
ck
::
index_t
StrideE
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c_m
_n
(
f_host_tensor_descriptor
2
d
(
M
,
N
,
StrideC
,
CLayout
{}
));
Tensor
<
Bias
DataType
>
bias
_n
(
f_host_tensor_descriptor
1
d
(
N
,
1
));
Tensor
<
D0
DataType
>
c1
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
r
educe
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
r
educe
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
D0
DataType
>
bias
_n
(
f_host_tensor_descriptor
1
d
(
N
,
1
));
Tensor
<
D1
DataType
>
d1_m
_n
(
f_host_tensor_descriptor
2
d
(
M
,
N
,
StrideD1
,
ELayout
{}
));
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
r
0_
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
r
1_
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
Bias
DataType
>
{
-
1
,
1
});
c
1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
0
DataType
>
{
-
5
,
5
});
bias_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D0
DataType
>
{
-
1
,
1
});
d
1_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
D
1
DataType
>
{
-
5
,
5
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c
_device_buf
(
sizeof
(
C
DataType
)
*
c_m
_n
.
mDesc
.
GetElementSpace
());
DeviceMem
bias
_device_buf
(
sizeof
(
Bias
DataType
)
*
bias
_n
.
mDesc
.
GetElementSpace
());
DeviceMem
d0
_device_buf
(
sizeof
(
D0
DataType
)
*
c1
_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
r
educe
Mean_device_buf
(
sizeof
(
R
educe
DataType
)
*
r
educe
Mean_m
.
mDesc
.
GetElementSpace
());
DeviceMem
r
educe
MeanSquare_device_buf
(
sizeof
(
R
educe
DataType
)
*
reduce
MeanSquare_m
.
mDesc
.
GetElementSpace
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpace
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
bias
_device_buf
(
sizeof
(
D0
DataType
)
*
bias
_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
d1
_device_buf
(
sizeof
(
D1
DataType
)
*
d1_m
_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e
_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
r
0_
Mean_device_buf
(
sizeof
(
R
0
DataType
)
*
r
0_
Mean_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
r
1_
MeanSquare_device_buf
(
sizeof
(
R
1
DataType
)
*
r1_
MeanSquare_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
layerNorm_m_n
.
mDesc
.
GetElementSpace
());
layerNorm_m_n
.
mDesc
.
GetElementSpace
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_n
.
mData
.
data
());
d
0
_device_buf
.
ToDevice
(
c
1_m_n
.
mData
.
data
());
d
1
_device_buf
.
ToDevice
(
d
1_m_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d_element_op
=
D0ElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
auto
div
=
UnaryDivElementOp
{
N
};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
div
,
&
div
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduceMean_device_buf
.
GetDeviceBuffer
(),
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM,
reduce_mean, reduce_
mean_square
auto
gemmReduce
=
Device
GemmBiasAddReduce
Instance
{};
// Prepare GEMM,
mean,
mean_square
auto
gemmReduce
=
Device
Op
Instance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
bias_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
()},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{
StrideD0
},
gemm_element_ops
,
{
&
d_element_op
},
reduce_in_element_ops
,
reduce_out_element_ops
);
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
reduceMean_device_buf
.
SetZero
();
reduceMeanSquare_device_buf
.
SetZero
();
// init reducetion buffer to 0
r0_Mean_device_buf
.
SetZero
();
r1_MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
c
_device_buf
.
GetDeviceBuffer
(),
r
educe
Mean_device_buf
.
GetDeviceBuffer
(),
r
educe
MeanSquare_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
5
>
input
=
{
e
_device_buf
.
GetDeviceBuffer
(),
r
0_
Mean_device_buf
.
GetDeviceBuffer
(),
r
1_
MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
...
...
@@ -360,12 +344,12 @@ int main()
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
output
,
{
M
,
N
},
{
Stride
C
,
1
},
{
Stride
E
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
},
{
Stride
C
,
1
},
{
Stride
E
,
1
},
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
...
...
@@ -382,21 +366,20 @@ int main()
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
StrideC
,
CLayout
{}));
host_gemm_layernorm
<
CDataType
,
ReduceDataType
,
ReduceAccDataType
>
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
bias_n
,
c1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
c_element_op
,
d_element_op
,
M
,
N
);
f_host_tensor_descriptor2d
(
M
,
N
,
StrideE
,
ELayout
{}));
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
bias_n
,
d1_m_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
cde_element_op
,
M
,
N
);
layerNorm_device_buf
.
FromDevice
(
layerNorm_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
layerNorm_m_n
.
mData
,
...
...
@@ -418,10 +401,11 @@ int main()
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
BiasDataType
,
EDataType
,
D0DataType
,
ReduceDataType
,
D1DataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
...
...
example/21_gemm_layernorm/gemm_layernorm_xdl_fp16.cpp
View file @
aa5859e4
...
...
@@ -9,13 +9,13 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
reduce
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_
multiple_d_multiple_r
_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_5ary_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
host_tensor
/host_tensor_generator.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
#include "ck/library/
utility
/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
...
...
@@ -28,65 +28,73 @@ using F32 = float;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<>
;
using
EDataType
=
F16
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F32
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*
,
ReduceDataType
*>
;
using
R0DataType
=
F32
;
using
R1DataType
=
F32
;
using
RsDataType
=
ck
::
Tuple
<
R0DataType
,
R1DataType
>
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
LayerNormOutDataType
=
F16
;
using
NormalizeComputeDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceSumOp
=
ck
::
reduce
::
Add
;
using
ReduceOps
=
ck
::
Tuple
<
ReduceSumOp
,
ReduceSumOp
>
;
using
UnaryIdenticElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
UnaryDivElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
UnarySquareElementOp
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
ReduceInElementOps
=
ck
::
Tuple
<
UnaryIdenticElementOp
,
UnarySquareElementOp
>
;
using
ReduceOutElementOps
=
ck
::
Tuple
<
UnaryDivElementOp
,
UnaryDivElementOp
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
,
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
>
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D1Layout
=
Row
;
using
ELayout
=
D1Layout
;
// Elementwise op
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Square
=
ck
::
tensor_operation
::
element_wise
::
UnarySquare
;
using
Div
=
ck
::
tensor_operation
::
element_wise
::
UnaryDivide
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
PassThrough
;
using
QsElementOp
=
ck
::
Tuple
<
PassThrough
,
Square
>
;
using
RsElementOp
=
ck
::
Tuple
<
Div
,
Div
>
;
// ReduceOp
using
R0ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
R1ThreadReduceOp
=
ck
::
reduce
::
Add
;
using
RsThreadReduceOp
=
ck
::
Tuple
<
R0ThreadReduceOp
,
R1ThreadReduceOp
>
;
static
constexpr
auto
R0GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
static
constexpr
auto
R1GlobalReduceOp
=
ck
::
InMemoryDataOperationEnum
::
AtomicAdd
;
using
RsGlobalReduceOp
=
ck
::
InMemoryDataOperationEnumSequence
<
R0GlobalReduceOp
,
R1GlobalReduceOp
>
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
Device
GemmReduce
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
Reduce
_Xdl_CShuffle
//######| ALayout| BLayout|
C
Layout|AData| BData|
CData|
GemmAcc
| CShuffle|
ReduceAcc|
Reduce
Data| A| B|
C|
Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy
|
//######| | | | Type| Type|
Type|
DataType|
Data
Type|
Data
Type|
Type Tupl
e| Elementwise| Elementwise| Elementwise|
Operation| |
|
MemoryData|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
ExtraN| MXdlPerWave| NXdlPerWave|
_MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| Src
DstScalarPerVector|
//######| | | |
| | |
|
| | | Operation| Operation| Operation|
| | |
Operation|
| Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
_MPerBlock|
//######| | | | |
|
|
|
| | |
| | |
|
|
| |
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
| | |
|
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
ReducePtrsGlobal
,
AElementOp
,
BElementOp
,
CElementOp
,
ReduceOps
,
ReduceIn
ElementOp
s
,
R
educeOut
ElementOp
s
,
R
educeGlobalMem
Op
s
,
Gemm
Specialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
using
Device
Op
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
MultipleDMultipleR
_Xdl_CShuffle
//######| ALayout| BLayout|
E
Layout|
AData|
BData|
GemmAcc
Data| CShuffle| DsData| EData|
ReduceAcc
Data
|
Rs
Data| A| B| C
DE
|
Qs| Rs| Thread| Global|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle|
CDRThreadTransfer| CDE| RThreadTransfer
|
//######| | | |
Type|
Type|
Type|
DataType|
Type|
Type|
Type| Typ
e| Elementwise| Elementwise|
Elementwise|
Elementwise| Elementwise|
Reduce|
Reduce|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar|
Add
ExtraN| MXdlPerWave| NXdlPerWave|
ClusterLengths| ReduceThreadTransfer|
DstScalarPerVector|
//######| | | |
| | |
|
| | |
|
Operation| Operation|
Operation|
Operation| Operation| Operation|
Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle|
_MPerBlock_NPerBlock| ScalarPerVector|
_MPerBlock|
//######| | | |
|
|
|
|
| | | | | |
| | |
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
_NPerBlock|
|
<
ALayout
,
BLayout
,
ELayout
,
ADataType
,
BDataType
,
GemmAccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
ReduceAccDataType
,
RsDataType
,
AElementOp
,
BElementOp
,
C
DE
ElementOp
,
Qs
ElementOp
,
R
s
ElementOp
,
R
sThreadReduceOp
,
RsGlobalReduce
Op
,
Gemm
Default
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
C
DataType
,
E
DataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
PassThrough
>
;
using
NormalizeFunctor
=
ck
::
tensor_operation
::
element_wise
::
Normalize
;
// A:x, B:E[x], C:E[x^2], D:Gamma, E:Beta , F:y
using
DeviceNormalizeInstance
=
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
C
DataType
,
R
educe
DataType
,
R
educe
DataType
,
ck
::
tensor_operation
::
device
::
Device5AryElementwise
<
E
DataType
,
R
0
DataType
,
R
1
DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
,
...
...
@@ -120,60 +128,54 @@ auto f_host_tensor_descriptor2d =
}
};
template
<
typename
CDataType
,
typename
ReduceDataType
,
typename
A_functor
,
typename
B_functor
,
typename
C_functor
>
void
host_gemm_layernorm
(
Tensor
<
LayerNormOutDataType
>&
out_m_n
,
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
A
DataType
>&
b_k_n
,
const
Tensor
<
B
DataType
>&
b_k_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
Gamm
aDataType
>&
beta_n
,
A
_functor
a_element_op
,
B
_functor
b_element_op
,
C
_functor
c_element_op
,
const
Tensor
<
Bet
aDataType
>&
beta_n
,
A
ElementOp
a_element_op
,
B
ElementOp
b_element_op
,
C
DEElementOp
c_element_op
,
int
M
,
int
N
)
{
using
out_type
=
ck
::
remove_reference_t
<
decltype
(
out_m_n
(
0
,
0
))
>
;
int
Stride
C
=
N
;
Tensor
<
C
DataType
>
c
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
UnaryDivElementOp
{
N
};
int
Stride
E
=
N
;
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
meanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
auto
averageOpInst
=
Div
{
N
};
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c
_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
e
_m_n
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
// reduce_mean and reduce_square_mean
auto
reduceSumOpInst
=
ReduceSumOp
{};
auto
r0Op
=
R0ThreadReduceOp
{};
auto
r1Op
=
R1ThreadReduceOp
{};
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
auto
mean_acc
=
r
educeSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
square_
mean_
acc
=
r
educeSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_acc
=
r
0Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
mean_
square_acc
=
r
1Op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
auto
c_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n
(
m
,
n
));
auto
square_c_val
=
reduceSumOpInst
.
GetIdentityValue
<
ReduceAccDataType
>
();
auto
e_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
e_m_n
(
m
,
n
));
ReduceAccDataType
square_e_val
=
0
;
Square
{}(
square_e_val
,
e_val
);
UnarySquareElementOp
{}(
square_c_val
,
c_val
);
reduceSumOpInst
(
mean_acc
,
c_val
);
reduceSumOpInst
(
square_mean_acc
,
square_c_val
);
r0Op
(
mean_acc
,
e_val
);
r1Op
(
mean_square_acc
,
square_e_val
);
}
averageOpInst
(
mean_acc
,
mean_acc
);
averageOpInst
(
square_
mean_
acc
,
square_
mean_
acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
educe
DataType
>
(
square_
mean_
acc
);
averageOpInst
(
mean_
square_acc
,
mean_
square_acc
);
mean_m
(
m
)
=
ck
::
type_convert
<
R
0
DataType
>
(
mean_acc
);
meanSquare_m
(
m
)
=
ck
::
type_convert
<
R
1
DataType
>
(
mean_
square_acc
);
}
// LayerNorm
...
...
@@ -182,22 +184,23 @@ void host_gemm_layernorm(Tensor<LayerNormOutDataType>& out_m_n,
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
float
out_
f32
=
0
;
layerNormInst
(
out_
f32
,
static_cast
<
float
>
(
c
_m_n
(
m
,
n
)),
static_cast
<
float
>
(
mean_m
(
m
)),
static_cast
<
float
>
(
meanSquare_m
(
m
)),
static_cast
<
float
>
(
gamma_n
(
n
)),
static_cast
<
float
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
static_cast
<
out_t
ype
>
(
out_
f32
);
NormalizeComputeDataType
out_
acc
=
0
;
layerNormInst
(
out_
acc
,
ck
::
type_convert
<
NormalizeComputeDataType
>
(
e
_m_n
(
m
,
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
mean_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
meanSquare_m
(
m
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
gamma_n
(
n
)),
ck
::
type_convert
<
NormalizeComputeDataType
>
(
beta_n
(
n
)));
out_m_n
(
m
,
n
)
=
ck
::
type_convert
<
LayerNormOutDataT
ype
>
(
out_
acc
);
}
}
}
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ReduceDataType
,
typename
EDataType
,
typename
R0DataType
,
typename
R1DataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
NormalizeDataType
>
...
...
@@ -205,11 +208,11 @@ void DumpGemmLayerNormPerf(float gemm_reduce_time, float normalize_time, int M,
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
;
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
;
std
::
size_t
normalize_num_btye
=
sizeof
(
C
DataType
)
*
M
*
N
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
R
educe
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
std
::
size_t
normalize_num_btye
=
sizeof
(
E
DataType
)
*
M
*
N
+
sizeof
(
R
0
DataType
)
*
M
+
sizeof
(
R
1
DataType
)
*
M
+
sizeof
(
GammaDataType
)
*
N
+
sizeof
(
BetaDataType
)
*
N
+
sizeof
(
NormalizeDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
...
...
@@ -232,73 +235,66 @@ int main()
ck
::
index_t
StrideA
=
1024
;
ck
::
index_t
StrideB
=
1024
;
ck
::
index_t
Stride
C
=
1024
;
ck
::
index_t
Stride
E
=
1024
;
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor2d
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor2d
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
C
DataType
>
c
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
Tensor
<
R
educe
DataType
>
r
educe
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
educe
DataType
>
r
educe
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
E
DataType
>
e
_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
Tensor
<
R
0
DataType
>
r
0_
Mean_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
R
1
DataType
>
r
1_
MeanSquare_m
(
f_host_tensor_descriptor1d
(
M
,
1
));
Tensor
<
GammaDataType
>
gamma_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
BetaDataType
>
beta_n
(
f_host_tensor_descriptor1d
(
N
,
1
));
Tensor
<
LayerNormOutDataType
>
layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
1
,
1
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
1
,
1
});
gamma_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
GammaDataType
>
{
-
1
,
1
});
beta_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BetaDataType
>
{
-
1
,
1
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c
_device_buf
(
sizeof
(
C
DataType
)
*
c
_m_n
.
mDesc
.
GetElementSpace
());
DeviceMem
r
educe
Mean_device_buf
(
sizeof
(
R
educe
DataType
)
*
r
educe
Mean_m
.
mDesc
.
GetElementSpace
());
DeviceMem
r
educe
MeanSquare_device_buf
(
sizeof
(
R
educe
DataType
)
*
reduce
MeanSquare_m
.
mDesc
.
GetElementSpace
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpace
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpace
());
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
e
_device_buf
(
sizeof
(
E
DataType
)
*
e
_m_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
r
0_
Mean_device_buf
(
sizeof
(
R
0
DataType
)
*
r
0_
Mean_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
r
1_
MeanSquare_device_buf
(
sizeof
(
R
1
DataType
)
*
r1_
MeanSquare_m
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
gamma_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
beta_n
.
mDesc
.
GetElementSpace
Size
());
DeviceMem
layerNorm_device_buf
(
sizeof
(
LayerNormOutDataType
)
*
layerNorm_m_n
.
mDesc
.
GetElementSpace
());
layerNorm_m_n
.
mDesc
.
GetElementSpace
Size
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
gamma_device_buf
.
ToDevice
(
gamma_n
.
mData
.
data
());
beta_device_buf
.
ToDevice
(
beta_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
auto
passthrough
=
UnaryIdenticElementOp
{};
auto
square
=
UnarySquareElementOp
{};
auto
div
=
UnaryDivElementOp
{
N
};
std
::
array
<
void
*
,
2
>
reduce_in_element_ops
=
{
&
passthrough
,
&
square
};
std
::
array
<
void
*
,
2
>
reduce_out_element_ops
=
{
&
div
,
&
div
};
std
::
array
<
void
*
,
2
>
p_reduces
=
{
reduceMean_device_buf
.
GetDeviceBuffer
(),
reduceMeanSquare_device_buf
.
GetDeviceBuffer
()};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
qs_element_op
=
QsElementOp
{};
auto
rs_element_op
=
RsElementOp
{
N
,
N
};
// Prepare GEMM,
reduce_mean, reduce_
mean_square
auto
gemmReduce
=
Device
GemmReduce
Instance
{};
// Prepare GEMM,
mean,
mean_square
auto
gemmReduce
=
Device
Op
Instance
{};
auto
gemmReduce_invoker
=
gemmReduce
.
MakeInvoker
();
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
nullptr
,
{},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{},
gemm_element_ops
,
{},
reduce_in_element_ops
,
reduce_out_element_ops
);
auto
gemmReduce_argument
=
gemmReduce
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{},
e_device_buf
.
GetDeviceBuffer
(),
{
r0_Mean_device_buf
.
GetDeviceBuffer
(),
r1_MeanSquare_device_buf
.
GetDeviceBuffer
()},
M
,
N
,
K
,
StrideA
,
StrideB
,
{},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
,
qs_element_op
,
rs_element_op
);
if
(
!
gemmReduce
.
IsSupportedArgument
(
gemmReduce_argument
))
{
...
...
@@ -307,13 +303,13 @@ int main()
"not support this GEMM problem"
);
}
r
educe
Mean_device_buf
.
SetZero
();
r
educe
MeanSquare_device_buf
.
SetZero
();
r
0_
Mean_device_buf
.
SetZero
();
r
1_
MeanSquare_device_buf
.
SetZero
();
// Prepare LayerNorm
std
::
array
<
const
void
*
,
5
>
input
=
{
c
_device_buf
.
GetDeviceBuffer
(),
r
educe
Mean_device_buf
.
GetDeviceBuffer
(),
r
educe
MeanSquare_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
5
>
input
=
{
e
_device_buf
.
GetDeviceBuffer
(),
r
0_
Mean_device_buf
.
GetDeviceBuffer
(),
r
1_
MeanSquare_device_buf
.
GetDeviceBuffer
(),
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
layerNorm_device_buf
.
GetDeviceBuffer
()};
...
...
@@ -323,12 +319,12 @@ int main()
auto
normalize_argument
=
normalize
.
MakeArgument
(
input
,
output
,
{
M
,
N
},
{
Stride
C
,
1
},
{
Stride
E
,
1
},
{
1
,
0
},
{
1
,
0
},
{
0
,
1
},
{
0
,
1
},
{
Stride
C
,
1
},
{
Stride
E
,
1
},
NormalizeFunctor
{});
if
(
!
normalize
.
IsSupportedArgument
(
normalize_argument
))
...
...
@@ -345,18 +341,18 @@ int main()
{
// verification
Tensor
<
LayerNormOutDataType
>
host_layerNorm_m_n
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
C
,
C
Layout
{}));
host_gemm_layernorm
<
CDataType
,
ReduceDataType
>
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
c
_element_op
,
M
,
N
);
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
E
,
E
Layout
{}));
host_gemm_layernorm
(
host_layerNorm_m_n
,
a_m_k
,
b_k_n
,
gamma_n
,
beta_n
,
a_element_op
,
b_element_op
,
cde
_element_op
,
M
,
N
);
layerNorm_device_buf
.
FromDevice
(
layerNorm_m_n
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
layerNorm_m_n
.
mData
,
...
...
@@ -378,8 +374,9 @@ int main()
if
(
time_kernel
)
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
ReduceDataType
,
EDataType
,
R0DataType
,
R1DataType
,
GammaDataType
,
BetaDataType
,
LayerNormOutDataType
>
(
...
...
example/1
6
_gemm_
reduce/gemm_reduce_xdl_max
_fp16.cpp
→
example/
2
1_gemm_
layernorm/gemm_xdl_layernorm_single_kernel
_fp16.cpp
View file @
aa5859e4
...
...
@@ -4,83 +4,83 @@
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
F64
=
double
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
GemmAccDataType
=
F32
;
using
ReduceAccDataType
=
F32
;
using
ReduceDataType
=
F64
;
using
ReducePtrsGlobal
=
ck
::
Tuple
<
ReduceDataType
*>
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
C0DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ReduceOps
=
ck
::
Tuple
<
ck
::
reduce
::
Max
>
;
using
ReduceElementOps
=
ck
::
Tuple
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
using
ReduceGlobalMemOps
=
ck
::
InMemoryDataOperationEnumSequence
<
ck
::
InMemoryDataOperationEnum
::
AtomicMax
>
;
struct
Relu
{
template
<
typename
OutT
,
typename
InT
>
__host__
__device__
void
operator
()(
OutT
&
y
,
const
InT
&
x
)
const
{
y
=
x
>
0
?
x
:
0
;
}
};
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using
AccElementOp
=
Relu
;
// Elementwise operation that operates on the output of layer normalization
using
CElementOp
=
Relu
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemm
Reduce
Instance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
Reduce
_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle|
ReduceAcc|
ReduceData|
A| B|
C| Reduce| ReduceInEleOp| ReduceAccEleOp| Reduce|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce|
CReduceThreadLds2VGprCopy|
CReduceThread
Vgpr2Global
Copy|
//######| | | | Type| Type| Type|
Data
Type| DataType|
DataType|
Type Tupl
e| Elementwise| Elementwise| Elementwise|
Operation| | | MemoryData|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths|
SrcDstScalarPerVector|
SrcDstScalarPerVector|
//######| | | |
|
|
|
| |
|
| Operation| Operation| Operation|
| | |
Operation|
| Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock|
_NPerBlock|
_MPerBlock|
//######| | | |
| |
|
|
|
|
|
|
| | |
|
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
|
|
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
ReduceAccDataType
,
ReducePtrsGlobal
,
AElementOp
,
B
ElementOp
,
C
ElementOp
,
ReduceOps
,
Reduce
ElementOp
s
,
Reduce
ElementOp
s
,
ReduceGlobalMemOps
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemm
LayerNorm
_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|
AData|
BData|
CData|
C0Data|
GemmAcc|
CShuffle| ReduceAcc| A| B|
Acc| C|
GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce|
CReduceThreadCopy|
//######| | | |
Type|
Type|
Type|
Type|
DataType| DataType|
DataTyp
e| Elementwise| Elementwise|
Elementwise|
Elementwise|
Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
//######| | | | |
|
|
|
|
|
| Operation| Operation|
Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
//######| | | | |
|
|
|
| | | |
|
|
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
CShuffleDataType
,
AccDataType
,
A
ElementOp
,
B
ElementOp
,
Acc
ElementOp
,
C
ElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
GemmAccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ReduceDataType
>
void
DumpGemmLayerNormPerf
(
float
gemm_reduce_time
,
int
M
,
int
N
,
int
K
)
{
std
::
size_t
gemm_flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
gemm_num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
+
sizeof
(
ReduceDataType
)
*
M
;
float
tflops
=
static_cast
<
float
>
(
gemm_flop
)
/
1.E9
/
gemm_reduce_time
;
float
gemm_gb_per_sec
=
gemm_num_byte
/
1.E6
/
gemm_reduce_time
;
std
::
cout
<<
"gemm + reduceMax Perf: "
<<
gemm_reduce_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gemm_gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
}
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmLayernorm
<
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
...
...
@@ -90,12 +90,12 @@ int main(int argc, char* argv[])
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
StrideC
=
128
;
if
(
argc
==
1
)
{
...
...
@@ -125,7 +125,7 @@ int main(int argc, char* argv[])
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3:
run
kernel
# of times (>1
)
\n
"
);
printf
(
"arg3:
time
kernel
(0=n0, 1=yes
)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
...
...
@@ -146,19 +146,21 @@ int main(int argc, char* argv[])
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
ReduceDataType
>
reduce_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
AccDataType
>
acc_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_bias
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_m_n_add
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_gamma
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_n_beta
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"reduce_m: "
<<
reduce_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_bias: "
<<
c0_n_bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n_add: "
<<
c0_m_n_add
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_gamma: "
<<
c0_n_gamma
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_beta: "
<<
c0_n_beta
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
...
...
@@ -167,49 +169,62 @@ int main(int argc, char* argv[])
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default
:
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
reduce_device_buf
(
sizeof
(
ReduceDataType
)
*
reduce_m_device_result
.
mDesc
.
GetElementSpace
());
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_m_n_add
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_n_gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
2
});
c0_n_beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
5
});
c_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
CDataType
>
{
0
});
acc_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_bias_buf
(
sizeof
(
C0DataType
)
*
c0_n_bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_add_buf
(
sizeof
(
C0DataType
)
*
c0_m_n_add
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_gamma_buf
(
sizeof
(
C0DataType
)
*
c0_n_gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c0_beta_buf
(
sizeof
(
C0DataType
)
*
c0_n_beta
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_bias_buf
.
ToDevice
(
c0_n_bias
.
mData
.
data
());
c0_add_buf
.
ToDevice
(
c0_m_n_add
.
mData
.
data
());
c0_gamma_buf
.
ToDevice
(
c0_n_gamma
.
mData
.
data
());
c0_beta_buf
.
ToDevice
(
c0_n_beta
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
reduce_element_op
=
ReduceElementOps
{}[
ck
::
Number
<
0
>
{}];
std
::
array
<
void
*
,
3
>
gemm_element_ops
=
{
&
a_element_op
,
&
b_element_op
,
&
c_element_op
};
std
::
array
<
void
*
,
1
>
reduce_element_ops
=
{
&
reduce_element_op
};
std
::
array
<
void
*
,
1
>
p_reduces
=
{
reduce_device_buf
.
GetDeviceBuffer
()};
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
acc_element_op
=
AccElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemm
Reduce
Instance
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
nullptr
,
{},
c_device_buf
.
GetDeviceBuffer
(),
p_reduces
,
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_add_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_bias_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_gamma_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_beta_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
{},
gemm_element_ops
,
{},
reduce_element_ops
,
reduce_element_ops
);
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -218,59 +233,57 @@ int main(int argc, char* argv[])
"not support this GEMM problem"
);
}
// [CAUSION]: launch_and_time_kernel will not initialize D.
// If we evaluate kernel multiple time but without initialize D. Verification will fail
reduce_device_buf
.
SetValue
(
ck
::
NumericLimits
<
ReduceDataType
>::
Lowest
());
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
bool
pass
=
true
;
// extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
// excluding reduction steps
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
6
)
*
M
*
N
;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std
::
size_t
bytes
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
2
*
M
*
N
+
sizeof
(
C0DataType
)
*
3
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
reduce_device_buf
.
FromDevice
(
reduce_m_device_result
.
mData
.
data
());
auto
ref_gemm
=
Reference
Gemm
Instance
{};
auto
ref_gemm
=
ReferenceInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
auto
reduce_op
=
ReduceOps
{}[
ck
::
Number
<
0
>
{}];
for
(
int
m
=
0
;
m
<
M
;
++
m
)
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F32
>::
value
)
{
ReduceAccDataType
reduce_acc
=
reduce_op
.
GetIdentityValue
<
ReduceAccDataType
>
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ReduceAccDataType
curr_val
=
ck
::
type_convert
<
ReduceAccDataType
>
(
c_m_n_
host
_result
(
m
,
n
));
reduce_op
(
reduce_acc
,
curr_val
);
};
reduce_m_host_result
(
m
)
=
reduce_acc
;
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
}
else
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F16
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_
device
_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
)
;
}
pass
=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
)
&&
ck
::
utils
::
check_err
(
reduce_m_device_result
.
mData
,
reduce_m_host_result
.
mData
,
"Error: Incorrect results d"
,
1e-3
,
1e-3
);
}
if
(
time_kernel
)
{
float
gemm_reduceMax_ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
true
});
DumpGemmLayerNormPerf
<
ADataType
,
BDataType
,
CDataType
,
ReduceDataType
>
(
gemm_reduceMax_ave_time
,
M
,
N
,
K
);
}
return
pass
?
0
:
1
;
}
example/22_cgemm/CMakeLists.txt
View file @
aa5859e4
add_custom_target
(
example_cgemm_xdl
)
add_example_executable
(
example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp
)
add_example_executable
(
example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp
)
add_example_executable
(
example_cgemm_xdl_int8 cgemm_xdl_int8.cpp
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_bf16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp16
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_fp32
)
add_dependencies
(
example_cgemm_xdl example_cgemm_xdl_int8
)
example/22_cgemm/cgemm_xdl_bf16.cpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
BF16
;
using
BDataType
=
BF16
;
using
CDataType
=
BF16
;
using
AccDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
32
,
// index_t KPerBlock
8
,
// index_t AK1
8
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
8
,
// index_t ABlockTransferSrcScalarPerVector
8
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
8
,
// index_t BBlockTransferSrcScalarPerVector
8
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
416
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_common.hpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
BF16
=
ck
::
bhalf_t
;
using
INT8
=
std
::
int8_t
;
using
INT32
=
std
::
int32_t
;
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
DeviceCGemmInstance
,
typename
ReferenceCGemmInstance
>
int
run_cgemm_xdl
(
ck
::
index_t
M
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
bool
do_verification
,
int
init_method
,
bool
time_kernel
)
{
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k_real
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k_imag
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n_real
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_imag
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_real_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k_real: "
<<
a_m_k_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k_imag: "
<<
a_m_k_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_real: "
<<
b_k_n_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_imag: "
<<
b_k_n_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_real: "
<<
c_m_n_real_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_imag: "
<<
c_m_n_imag_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
default:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
auto
cgemm
=
DeviceCGemmInstance
{};
DeviceMem
a_m_k_real_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a_m_k_imag_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_real_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_real
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_k_n_imag_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_imag
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_real_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_real_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_m_n_imag_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_imag_device_result
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
workspace_device_buf
(
cgemm
.
GetWorkspaceSize
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
));
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag
.
mData
.
data
());
auto
a_element_op
=
AElementwiseOperation
{};
auto
b_element_op
=
BElementwiseOperation
{};
auto
c_element_op
=
CElementwiseOperation
{};
// do GEMM
auto
invoker
=
cgemm
.
MakeInvoker
();
auto
argument
=
cgemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ADataType
*>
(
a_m_k_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
workspace_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
cgemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
8
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
(
2
)
*
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
cgemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_real_device_buf
.
FromDevice
(
c_m_n_real_device_result
.
mData
.
data
());
c_m_n_imag_device_buf
.
FromDevice
(
c_m_n_imag_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CDataType
>
c_m_n_real_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
auto
ref_cgemm
=
ReferenceCGemmInstance
{};
auto
ref_invoker
=
ref_cgemm
.
MakeInvoker
();
auto
ref_argument
=
ref_cgemm
.
MakeArgument
(
a_m_k_real
,
a_m_k_imag
,
b_k_n_real
,
b_k_n_imag
,
c_m_n_real_host_result
,
c_m_n_imag_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
bool
result
=
true
;
result
=
ck
::
utils
::
check_err
(
c_m_n_real_device_result
.
mData
,
c_m_n_real_host_result
.
mData
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
result
=
result
&&
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
.
mData
,
c_m_n_imag_host_result
.
mData
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
return
result
?
0
:
1
;
}
return
0
;
}
example/22_cgemm/cgemm_xdl_fp16.cpp
View file @
aa5859e4
...
...
@@ -2,43 +2,30 @@
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
AccDataType
=
F32
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
...
...
@@ -48,7 +35,7 @@ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
C
Shuffle
DataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
...
...
@@ -84,9 +71,6 @@ using DeviceCGemmInstance = ck::tensor_operation::device::DeviceCGemm_4Gemm_Xdl_
8
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
...
...
@@ -124,155 +108,24 @@ int main(int argc, char* argv[])
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k_real
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_m_k_imag
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n_real
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
BDataType
>
b_k_n_imag
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_real_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
std
::
cout
<<
"a_m_k_real: "
<<
a_m_k_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_m_k_imag: "
<<
a_m_k_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_real: "
<<
b_k_n_real
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n_imag: "
<<
b_k_n_imag
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_real: "
<<
c_m_n_real_device_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n_imag: "
<<
c_m_n_imag_device_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
2
,
2
});
break
;
default:
a_m_k_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
a_m_k_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
-
0.5
,
0.5
});
b_k_n_real
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
b_k_n_imag
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
}
auto
cgemm
=
DeviceCGemmInstance
{};
DeviceMem
a_m_k_real_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_real
.
mDesc
.
GetElementSpace
());
DeviceMem
a_m_k_imag_device_buf
(
sizeof
(
ADataType
)
*
a_m_k_imag
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_real_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_real
.
mDesc
.
GetElementSpace
());
DeviceMem
b_k_n_imag_device_buf
(
sizeof
(
BDataType
)
*
b_k_n_imag
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_real_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_real_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c_m_n_imag_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_imag_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
workspace_device_buf
(
cgemm
.
GetWorkspaceSize
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
));
a_m_k_real_device_buf
.
ToDevice
(
a_m_k_real
.
mData
.
data
());
a_m_k_imag_device_buf
.
ToDevice
(
a_m_k_imag
.
mData
.
data
());
b_k_n_real_device_buf
.
ToDevice
(
b_k_n_real
.
mData
.
data
());
b_k_n_imag_device_buf
.
ToDevice
(
b_k_n_imag
.
mData
.
data
());
auto
a_element_op
=
PassThrough
{};
auto
b_element_op
=
PassThrough
{};
auto
c_element_op
=
PassThrough
{};
// do GEMM
auto
invoker
=
cgemm
.
MakeInvoker
();
auto
argument
=
cgemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_m_k_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
ADataType
*>
(
a_m_k_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_k_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_real_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_m_n_imag_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
workspace_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
);
if
(
!
cgemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_cgemm with the specified compilation parameters does "
"not support this CGEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
8
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
std
::
size_t
(
2
)
*
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
M
*
N
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
cgemm
.
GetTypeString
()
<<
std
::
endl
;
c_m_n_real_device_buf
.
FromDevice
(
c_m_n_real_device_result
.
mData
.
data
());
c_m_n_imag_device_buf
.
FromDevice
(
c_m_n_imag_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CDataType
>
c_m_n_real_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_imag_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
auto
ref_cgemm
=
ReferenceCGemmInstance
{};
auto
ref_invoker
=
ref_cgemm
.
MakeInvoker
();
auto
ref_argument
=
ref_cgemm
.
MakeArgument
(
a_m_k_real
,
a_m_k_imag
,
b_k_n_real
,
b_k_n_imag
,
c_m_n_real_host_result
,
c_m_n_imag_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
ck
::
utils
::
check_err
(
c_m_n_real_device_result
.
mData
,
c_m_n_real_host_result
.
mData
,
"Verification error: incorrect results in real part!"
,
1e-2
f
,
1e-1
f
);
ck
::
utils
::
check_err
(
c_m_n_imag_device_result
.
mData
,
c_m_n_imag_host_result
.
mData
,
"Verification error: incorrect results in imaginary part!"
,
1e-2
f
,
1e-1
f
);
}
return
0
;
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
example/22_cgemm/cgemm_xdl_fp32.cpp
0 → 100644
View file @
aa5859e4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "cgemm_xdl_common.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_cgemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_cgemm_4gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
using
ADataType
=
F32
;
using
BDataType
=
F32
;
using
CDataType
=
F32
;
using
AccDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
ReferenceCGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceCGemm
<
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// clang-format off
using
DeviceCGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceCGemm_4Gemm_Xdl_CShuffle
<
ALayout
,
// typename ALayout
BLayout
,
// typename BLayout
CLayout
,
// typename CLayout
ADataType
,
// typename ADataType
BDataType
,
// typename BDataType
CDataType
,
// typename CDataType
AccDataType
,
// typename GemmAccDataType
CDataType
,
// typename CShuffleDataType
PassThrough
,
// typename AElementwiseOperation
PassThrough
,
// typename BElementwiseOperation
PassThrough
,
// typename CElementwiseOperation
GemmDefault
,
// GemmSpecialization GemmSpec
1
,
// index_t NumGemmKPrefetchStage
256
,
// index_t BlockSize
256
,
// index_t MPerBlock
128
,
// index_t NPerBlock
16
,
// index_t KPerBlock
4
,
// index_t AK1
4
,
// index_t BK1
32
,
// index_t MPerXDL
32
,
// index_t NPerXDL
4
,
// index_t MXdlPerWave
2
,
// index_t NXdlPerWave
S
<
4
,
64
,
1
>
,
// typename ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// typename ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename ABlockTransferSrcAccessOrder
2
,
// index_t ABlockTransferSrcVectorDim
4
,
// index_t ABlockTransferSrcScalarPerVector
4
,
// index_t ABlockTransferDstScalarPerVector_AK1
1
,
// index_t ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// typename BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// typename BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// typename BBlockTransferSrcAccessOrder
2
,
// index_t BBlockTransferSrcVectorDim
4
,
// index_t BBlockTransferSrcScalarPerVector
4
,
// index_t BBlockTransferDstScalarPerVector_BK1
1
,
// index_t BBlockLdsExtraN
1
,
// index_t CShuffleMXdlPerWavePerShuffle
1
,
// index_t CShuffleNXdlPerWavePerShuffle
S
<
1
,
16
,
1
,
16
>
,
// typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
4
>
;
// index_t CShuffleBlockTransferScalarPerVector_NPerBlock
// clang-format on
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// CGEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: run kernel # of times (>1)
\n
"
<<
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
<<
std
::
endl
;
exit
(
0
);
}
return
run_cgemm_xdl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceCGemmInstance
,
ReferenceCGemmInstance
>
(
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
do_verification
,
init_method
,
time_kernel
);
}
Prev
1
2
3
4
5
6
7
8
9
…
14
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment