Commit aa5859e4 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into wavelet_model

parents 9bd6cc0e 5ee30459
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
......@@ -8,7 +8,7 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template <typename ADataType,
typename BDataType,
typename CDataType,
typename C0DataType,
typename AccDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename AccElementwiseOperation,
typename CElementwiseOperation>
struct ReferenceGemmLayernorm : public device::BaseOperator
{
using ReferenceGemmInstance = ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementwiseOperation,
BElementwiseOperation,
element_wise::PassThrough>;
template <typename InDataType, typename OutDataType, typename ComputeDataType>
static void RunLayernorm(Tensor<OutDataType>& result,
const Tensor<ComputeDataType>& acc, // MxN
const Tensor<InDataType>& gamma, // 1xN
const Tensor<InDataType>& beta, // 1xN
const InDataType epsilon = 1e-5)
{
assert(acc.mDesc.GetLengths()[1] == gamma.mDesc.GetLengths()[0] &&
acc.mDesc.GetLengths()[1] == beta.mDesc.GetLengths()[0]);
size_t M = acc.mDesc.GetLengths()[0];
size_t N = acc.mDesc.GetLengths()[1];
Tensor<ComputeDataType> avg_acc_sq(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> avg_acc(HostTensorDescriptor(std::vector<size_t>({M})));
Tensor<ComputeDataType> acc_layernorm(acc);
// reduce N dim
for(size_t i = 0; i < M; i++)
{
ComputeDataType sum_acc_sq = 0;
ComputeDataType sum_acc = 0;
for(size_t j = 0; j < N; j++)
{
sum_acc_sq += acc_layernorm(i, j) * acc_layernorm(i, j);
sum_acc += acc_layernorm(i, j);
}
avg_acc_sq(i) = sum_acc_sq / N;
avg_acc(i) = sum_acc / N;
}
// normalize
acc_layernorm.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) =
(self(idx[0], idx[1]) - avg_acc(idx[0])) /
sqrt(avg_acc_sq(idx[0]) - avg_acc(idx[0]) * avg_acc(idx[0]) + epsilon);
});
// affine
acc_layernorm.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) = self(idx[0], idx[1]) * gamma(idx[1]) + beta(idx[1]);
});
// cast
result = acc_layernorm.template CopyAsType<OutDataType>();
}
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<ADataType>& a_m_k,
const Tensor<BDataType>& b_k_n,
Tensor<CDataType>& c_m_n,
const Tensor<C0DataType>& c0_n_bias, // 1xN
const Tensor<C0DataType>& c0_m_n_add, // MxN
const Tensor<C0DataType>& c0_n_gamma, // 1xN
const Tensor<C0DataType>& c0_n_beta, // 1xN
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
CElementwiseOperation c_element_op,
const CDataType epsilon = 1e-5)
: a_m_k_{a_m_k},
b_k_n_{b_k_n},
c_m_n_{c_m_n},
c0_n_bias_{c0_n_bias},
c0_m_n_add_{c0_m_n_add},
c0_n_gamma_{c0_n_gamma},
c0_n_beta_{c0_n_beta},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
acc_element_op_{acc_element_op},
c_element_op_{c_element_op},
epsilon_{epsilon}
{
}
const Tensor<ADataType>& a_m_k_;
const Tensor<BDataType>& b_k_n_;
Tensor<CDataType>& c_m_n_;
const Tensor<C0DataType>& c0_n_bias_;
const Tensor<C0DataType>& c0_m_n_add_;
const Tensor<C0DataType>& c0_n_gamma_;
const Tensor<C0DataType>& c0_n_beta_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
AccElementwiseOperation acc_element_op_;
CElementwiseOperation c_element_op_;
const CDataType epsilon_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
// using Argument = ReferenceGemm::Argument;
float Run(const Argument& arg)
{
Tensor<AccDataType> acc_m_n(arg.c_m_n_.mDesc);
acc_m_n.GenerateTensorValue(GeneratorTensor_1<AccDataType>{0});
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(arg.a_m_k_,
arg.b_k_n_,
acc_m_n,
arg.a_element_op_,
arg.b_element_op_,
element_wise::PassThrough{});
// gemm
ref_invoker.Run(ref_argument);
// activation(acc + bias)
acc_m_n.ForEach([&](auto& self, auto idx) {
AccDataType out;
arg.acc_element_op_(out, acc_m_n(idx[0], idx[1]) + arg.c0_n_bias_(idx[1]));
self(idx[0], idx[1]) = out;
});
// add from other layers
acc_m_n.ForEach([&](auto& self, auto idx) {
self(idx[0], idx[1]) += arg.c0_m_n_add_(idx[0], idx[1]);
});
// layernorm
RunLayernorm(arg.c_m_n_, acc_m_n, arg.c0_n_gamma_, arg.c0_n_beta_);
// elementwise op
arg.c_m_n_.ForEach([&](auto& self, auto idx) {
arg.c_element_op_(self(idx[0], idx[1]), self(idx[0], idx[1]));
});
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const Tensor<ADataType>& a_m_k,
const Tensor<BDataType>& b_k_n,
Tensor<CDataType>& c_m_n,
const Tensor<C0DataType>& c0_n_bias, // 1xN
const Tensor<C0DataType>& c0_m_n_add, // 1xN
const Tensor<C0DataType>& c0_n_gamma, // 1xN
const Tensor<C0DataType>& c0_n_beta, // 1xN
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
CElementwiseOperation c_element_op,
const CDataType epsilon = 1e-5)
{
return Argument{a_m_k,
b_k_n,
c_m_n,
c0_n_bias,
c0_m_n_add,
c0_n_gamma,
c0_n_beta,
a_element_op,
b_element_op,
acc_element_op,
c_element_op,
epsilon};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceGemmLayernorm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename AccDataType,
typename AccElementwiseOperation,
index_t Rank,
index_t NumReduceDim>
struct ReferenceLayernorm : public device::BaseOperator
{
// TODO - support generic layernorm
static_assert((Rank == 2 && NumReduceDim == 1), "Only support 2D version so far");
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<XDataType>& x_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims,
AccDataType epsilon)
: x_m_n_(x_m_n),
gamma_n_(gamma_n),
beta_n_(beta_n),
y_m_n_(y_m_n),
acc_elementwise_op_(acc_elementwise_op),
lengths_(lengths),
reduceDims_(reduceDims),
epsilon_(epsilon)
{
}
const Tensor<XDataType> x_m_n_;
const Tensor<XDataType> gamma_n_;
const Tensor<XDataType> beta_n_;
Tensor<YDataType>& y_m_n_;
AccElementwiseOperation acc_elementwise_op_;
std::vector<index_t> lengths_;
std::vector<index_t> reduceDims_;
AccDataType epsilon_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
int M = arg.lengths_[0];
int N = arg.lengths_[1];
Tensor<AccDataType> mean({M});
Tensor<AccDataType> var({M});
for(int m = 0; m < M; ++m)
{
mean(m) = 0;
var(m) = 0;
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
mean(m) += x_val;
var(m) += x_val * x_val;
}
mean(m) = mean(m) / N;
var(m) = (var(m) / N) - (mean(m) * mean(m));
}
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
auto x_val = ck::type_convert<AccDataType>(arg.x_m_n_(m, n));
auto y_val = (x_val - mean(m)) / sqrt(var(m) + arg.epsilon_);
y_val = (y_val * arg.gamma_n_(n)) + arg.beta_n_(n);
arg.y_m_n_(m, n) = ck::type_convert<YDataType>(y_val);
}
}
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
const Argument* p_arg_ = dynamic_cast<const Argument*>(p_arg);
// TODO - support generic layernorm
if(p_arg_->lengths_.size() != 2)
return false;
if(p_arg_->reduceDims_.size() != 1)
return false;
if(p_arg_->reduceDims_[0] != 1)
return false;
return true;
}
static auto MakeArgument(const Tensor<XDataType>& x_m_n,
const Tensor<GammaDataType>& gamma_n,
const Tensor<BetaDataType>& beta_n,
Tensor<YDataType>& y_m_n,
AccElementwiseOperation acc_elementwise_op,
const std::vector<index_t> lengths,
const std::vector<index_t> reduceDims,
AccDataType epsilon)
{
return Argument{
x_m_n, gamma_n, beta_n, y_m_n, acc_elementwise_op, lengths, reduceDims, epsilon};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceLayernorm"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
......@@ -9,8 +9,8 @@
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
......@@ -26,12 +26,11 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
const index_t rank,
const std::vector<index_t> sm_reduce_dims)
: in_(in), out_(out), alpha_(alpha), beta_(beta), sm_reduce_dims_(sm_reduce_dims)
{
// std::cout << "debug: scalar dims: ";
for(int i = 0; i < rank; i++)
for(size_t i = 0; i < in.mDesc.GetNumOfDimension(); i++)
{
if(std::find(sm_reduce_dims.begin(), sm_reduce_dims.end(), i) ==
sm_reduce_dims.end())
......@@ -47,7 +46,6 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out_;
AccDataType alpha_;
AccDataType beta_;
index_t rank_;
std::vector<index_t> sm_reduce_dims_;
std::vector<index_t> sm_scalar_dims_; // dim after internal max/sum reduction
};
......@@ -136,10 +134,9 @@ struct ReferenceSoftmax : public device::BaseOperator
Tensor<OutDataType>& out,
AccDataType alpha,
AccDataType beta,
const index_t rank,
const std::vector<index_t> sm_reduce_dims)
{
return Argument{in, out, alpha, beta, rank, sm_reduce_dims};
return Argument{in, out, alpha, beta, sm_reduce_dims};
}
static auto MakeInvoker() { return Invoker{}; }
......
......@@ -4,13 +4,17 @@
#pragma once
#include <vector>
#include <type_traits>
#include "ck/utility/functional2.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
template <typename OpInstance, typename NewOpInstances>
void add_device_operation_instances(std::vector<std::unique_ptr<OpInstance>>& op_instances,
template <typename BaseOp, typename NewOpInstances>
void add_device_operation_instances(std::vector<std::unique_ptr<BaseOp>>& op_instances,
const NewOpInstances& new_op_instances)
{
ck::static_for<0, std::tuple_size_v<NewOpInstances>, 1>{}([&](auto i) {
......@@ -18,10 +22,14 @@ void add_device_operation_instances(std::vector<std::unique_ptr<OpInstance>>& op
using NewOpInstance = remove_cvref_t<decltype(new_op_instance)>;
static_assert(std::is_base_of_v<BaseOp, NewOpInstance>,
"wrong! NewOpInstance should be derived from BaseOp");
op_instances.push_back(std::make_unique<NewOpInstance>(new_op_instance));
});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// aliasing, for commonly used data type
using F64 = double;
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using Empty_Tuple = ck::Tuple<>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F32_Tuple = ck::Tuple<F32>;
// GEMM layout
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using Row_Tuple = ck::Tuple<Row>;
using Row_Row_Tuple = ck::Tuple<Row, Row>;
// Conv layout
//
using NWC = ck::tensor_layout::convolution::NWC;
using NHWC = ck::tensor_layout::convolution::NHWC;
using NDHWC = ck::tensor_layout::convolution::NDHWC;
using KXC = ck::tensor_layout::convolution::KXC;
using KYXC = ck::tensor_layout::convolution::KYXC;
using KZYXC = ck::tensor_layout::convolution::KZYXC;
using NWK = ck::tensor_layout::convolution::NWK;
using NHWK = ck::tensor_layout::convolution::NHWK;
using NDHWK = ck::tensor_layout::convolution::NDHWK;
//
using GNWC = ck::tensor_layout::convolution::GNWC;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GNDHWC = ck::tensor_layout::convolution::GNDHWC;
using GKXC = ck::tensor_layout::convolution::GKXC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GKZYXC = ck::tensor_layout::convolution::GKZYXC;
using GNWK = ck::tensor_layout::convolution::GNWK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using GNDHWK = ck::tensor_layout::convolution::GNDHWK;
//
using NWGC = ck::tensor_layout::convolution::NWGC;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using NDHWGC = ck::tensor_layout::convolution::NDHWGC;
using KXGC = ck::tensor_layout::convolution::KXGC;
using KYXGC = ck::tensor_layout::convolution::KYXGC;
using KZYXGC = ck::tensor_layout::convolution::KZYXGC;
using NWGK = ck::tensor_layout::convolution::NWGK;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using NDHWGK = ck::tensor_layout::convolution::NDHWGK;
// pointwise functor
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Scale = ck::tensor_operation::element_wise::Scale;
using Bilinear = ck::tensor_operation::element_wise::Bilinear;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
template <typename DeviceOp>
struct DeviceOperationInstanceFactory;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Row, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Col, Row, BF16, BF16, BF16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Row, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Col, Row, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Row, Row, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Col, Col, Row, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Row, Row, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(
std::vector<std::unique_ptr<
DeviceBatchedGemm<Row, Col, Row, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(
std::vector<std::unique_ptr<DeviceBatchedGemm<Col,
Row,
Row,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(
std::vector<std::unique_ptr<DeviceBatchedGemm<Col,
Col,
Row,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(
std::vector<std::unique_ptr<DeviceBatchedGemm<Row,
Row,
Row,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
std::vector<std::unique_ptr<DeviceBatchedGemm<Row,
Col,
Row,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceBatchedGemm<
ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceBatchedGemm<ALayout,
BLayout,
CLayout,
ADataType,
BDataType,
CDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<CDataType, float>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, bhalf_t> && is_same_v<BDataType, bhalf_t> &&
is_same_v<CDataType, bhalf_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same_v<ADataType, int8_t> && is_same_v<BDataType, int8_t> &&
is_same_v<CDataType, int8_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<CLayout, Row>)
{
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmGemm<Row,
Col,
Row,
Row,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CLayout,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>
{
using DeviceOp = DeviceBatchedGemmGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<B0Layout, Col> &&
is_same_v<B1Layout, Row> && is_same_v<CLayout, Row>)
{
add_device_batched_gemm_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
std::vector<std::unique_ptr<DeviceBatchedGemmSoftmaxGemm<Row,
Col,
Row,
Row,
F16,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename B0Layout,
typename B1Layout,
typename CLayout,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>>
{
using DeviceOp = DeviceBatchedGemmSoftmaxGemm<ALayout,
B0Layout,
B1Layout,
CLayout,
ADataType,
B0DataType,
B1DataType,
CDataType,
PassThrough,
PassThrough,
PassThrough,
PassThrough,
PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<B0DataType, half_t> &&
is_same_v<B1DataType, half_t> && is_same_v<CDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<B0Layout, Col> &&
is_same_v<B1Layout, Row> && is_same_v<CLayout, Row>)
{
add_device_batched_gemm_softmax_gemm_xdl_cshuffle_f16_f16_f16_f16_gmk_gnk_gno_gmo_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
F32_Tuple,
F32,
PassThrough,
PassThrough,
Bilinear>>>& instances);
// Contraction + Bilinear
template <index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename DDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>>
{
using DeviceOp = DeviceContractionMultipleD<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<DDataType>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Bilinear>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<DDataType, float> && is_same_v<EDataType, float>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
Scale>>>& instances);
// Contraction + Scale
template <index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContractionMultipleD<
NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Scale>>
{
using DeviceOp = DeviceContractionMultipleD<NumDimM,
NumDimN,
NumDimK,
ADataType,
BDataType,
ck::Tuple<>,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::Scale>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, float> && is_same_v<BDataType, float> &&
is_same_v<EDataType, float>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward data
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<1,
NWC,
KXC,
NWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvBwdData<1, NWC, KXC, NWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<
DeviceConvBwdData<1, NWC, KXC, NWK, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<1,
NWC,
KXC,
NWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward data
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward data
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvBwdData<3,
NDHWC,
KZYXC,
NDHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdData<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdData<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv1d_bwd_data_xdl_nwc_kxc_nwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv3d_bwd_data_xdl_ndhwc_kzyxc_ndhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv1d backward weight
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<1,
NWC,
KXC,
NWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv2d backward weight
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<2,
NHWC,
KYXC,
NHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// conv3d backward weight
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
BF16,
F32,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F16,
F16,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<std::unique_ptr<DeviceConvBwdWeight<3,
NDHWC,
KZYXC,
NDHWK,
F32,
F32,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceConvBwdWeight<
NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvBwdWeight<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, NWC> && is_same_v<WeiLayout, KXC> &&
is_same_v<OutLayout, NWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, NDHWC> &&
is_same_v<WeiLayout, KZYXC> && is_same_v<OutLayout, NDHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_f32_bf16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// conv2d forward
void add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceConvFwd<2,
NHWC,
KYXC,
NHWK,
BF16,
BF16,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F16, F16, F16, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<std::unique_ptr<
DeviceConvFwd<2, NHWC, KYXC, NHWK, F32, F32, F32, PassThrough, PassThrough, PassThrough>>>&
instances);
void add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(
std::vector<std::unique_ptr<DeviceConvFwd<2,
NHWC,
KYXC,
NHWK,
int8_t,
int8_t,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
{
using DeviceOp = DeviceConvFwd<NumDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWC> &&
is_same_v<WeiLayout, KYXC> && is_same_v<OutLayout, NHWK>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_batched_gemm_instance {
using DeviceBatchedGemmNoOpPtr = ck::tensor_operation::device::DeviceBatchedGemmPtr<
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
void add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(
std::vector<DeviceBatchedGemmNoOpPtr>&);
template <typename ADataType,
typename BDataType,
typename CDataType,
typename ALayout,
typename BLayout,
typename CLayout>
auto get_device_batched_gemm_instances()
{
std::vector<DeviceBatchedGemmNoOpPtr> op_ptrs;
if constexpr(is_same<ADataType, float>::value && is_same<BDataType, float>::value &&
is_same<CDataType, float>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f32_f32_f32_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
is_same<CDataType, half_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_f16_f16_f16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, bhalf_t>::value && is_same<BDataType, bhalf_t>::value &&
is_same<CDataType, bhalf_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_bf16_bf16_bf16_gkm_gnk_gmn_instances(op_ptrs);
}
}
else if constexpr(is_same<ADataType, int8_t>::value && is_same<BDataType, int8_t>::value &&
is_same<CDataType, int8_t>::value)
{
if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gmk_gnk_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gkn_gmn_instances(op_ptrs);
}
else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
{
ck::tensor_operation::device::device_batched_gemm_instance::
add_device_batched_gemm_xdl_int8_int8_int8_gkm_gnk_gmn_instances(op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_batched_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -10,11 +10,12 @@
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Normalize = ck::tensor_operation::element_wise::Normalize;
using DeviceNormalizeFromMeanMeanSquarePtr =
......@@ -37,13 +38,14 @@ auto get_device_normalize_from_mean_meansquare_instances()
is_same<MeanSquareType, float>::value && is_same<GammaDataType, half_t>::value &&
is_same<BetaDataType, half_t>::value && is_same<OutputType, half_t>::value)
{
ck::tensor_operation::device::
ck::tensor_operation::device::instance::
add_device_normalize_from_mean_squaremean_f16_f32_f32_f16_f16_instances(op_ptrs);
}
return op_ptrs;
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace device_gemm_instance {
using DeviceGemmAddAddFastGeluPtr = ck::tensor_operation::device::DeviceGemmMultipleDPtr<
2,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::AddAddFastGelu>;
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
void add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<DeviceGemmAddAddFastGeluPtr>&);
template <typename ADataType,
typename BDataType,
typename AccDataType,
typename D0DataType,
typename D1DataType,
typename EDataType,
typename ALayout,
typename BLayout,
typename D0Layout,
typename D1Layout,
typename ELayout>
auto get_device_gemm_add_add_fastgelu_instances()
{
std::vector<DeviceGemmAddAddFastGeluPtr> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::RowMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::RowMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<BLayout, tensor_layout::gemm::ColumnMajor> &&
is_same_v<ELayout, tensor_layout::gemm::RowMajor>)
{
ck::tensor_operation::device::device_gemm_instance::
add_device_gemm_add_add_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
op_ptrs);
}
}
return op_ptrs;
}
} // namespace device_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment