Unverified Commit a8629a98 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into gemm_v2r3_kpad_fix

parents 8dc713ea 94bfa502
...@@ -3,20 +3,20 @@ set(target 0) ...@@ -3,20 +3,20 @@ set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_convnd_fwd_reduce_xdl) add_custom_target(example_convnd_fwd_reduce_xdl)
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES)
add_example_executable(example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp) add_example_executable(example_convnd_fwd_max_xdl_int8 convnd_fwd_max_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8) add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_int8)
endif() endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp) add_example_executable_no_testing(example_convnd_fwd_max_xdl_bf16 convnd_fwd_max_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16) add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_bf16)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable_no_testing(example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp) add_example_executable_no_testing(example_convnd_fwd_max_xdl_fp16 convnd_fwd_max_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16) add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp16)
endif() endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp) add_example_executable(example_convnd_fwd_max_xdl_fp32 convnd_fwd_max_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32) add_dependencies(example_convnd_fwd_reduce_xdl example_convnd_fwd_max_xdl_fp32)
endif() endif()
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
......
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp)
add_example_executable(example_pool2d_fwd_fp16 pool2d_fwd_fp16.cpp) add_example_executable(example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_pool2d_fwd_fp32 pool2d_fwd_fp32.cpp)
endif()
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES)
# dlops # dlops
if(DL_KERNELS) add_example_executable(example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp)
add_example_executable(example_gemm_dl_quantization_int8 gemm_dl_quantization_int8.cpp)
endif()
# xdlops # xdlops
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0) set(target 0)
...@@ -14,4 +10,3 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -14,4 +10,3 @@ foreach(gpu IN LISTS GPU_TARGETS)
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
endif()
\ No newline at end of file
add_custom_target(example_grouped_gemm_xdl) add_custom_target(example_grouped_gemm_xdl)
add_example_executable(example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp)
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES) if(result EQUAL 0)
add_example_executable(example_grouped_gemm_xdl_fp32 grouped_gemm_xdl_fp32.cpp)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fp32)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp) if(result EQUAL 0)
add_example_executable(example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fp16)
add_example_executable(example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp) endif()
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16 grouped_gemm_xdl_fixed_nk_fp16.cpp) add_example_executable(example_grouped_gemm_multiple_d_dl_fp16 grouped_gemm_multiple_d_dl_fp16.cpp)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_bias_fp16 grouped_gemm_xdl_fixed_nk_bias_fp16.cpp) if(result EQUAL 0)
add_dependencies(example_grouped_gemm_xdl add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_multiple_d_dl_fp16)
example_grouped_gemm_xdl_fp16 endif()
example_grouped_gemm_multiple_d_dl_fp16 add_example_executable(example_grouped_gemm_xdl_splitk_fp16 grouped_gemm_xdl_splitk_fp16.cpp)
example_grouped_gemm_xdl_splitk_fp16 if(result EQUAL 0)
example_grouped_gemm_xdl_fixed_nk_fp16 add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_splitk_fp16)
example_grouped_gemm_xdl_fixed_nk_bias_fp16) endif()
endif() add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp16 grouped_gemm_xdl_fixed_nk_fp16.cpp)
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES) if(result EQUAL 0)
add_example_executable(example_grouped_gemm_xdl_bfp16 grouped_gemm_xdl_bfp16.cpp) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp16)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_bfp16) endif()
endif() add_example_executable(example_grouped_gemm_xdl_fixed_nk_bias_fp16 grouped_gemm_xdl_fixed_nk_bias_fp16.cpp)
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES) if(result EQUAL 0)
add_example_executable(example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_bias_fp16)
endif()
add_example_executable(example_grouped_gemm_xdl_bf16 grouped_gemm_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_bf16)
endif()
add_example_executable(example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8)
endif() endif()
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp8 grouped_gemm_xdl_fixed_nk_fp8.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp8)
endif()
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp) add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int4) add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int4)
endif()
endif() endif()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
int k_batch = 1;
bool time_kernel = false;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<void*> p_Cs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " c_m_n: " << c_device_tensors[i].mDesc
<< std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * sum_of_m * problem_size.Ks[i]));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(BDataType) * problem_size.Ns[i] * problem_size.Ks[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data(),
a_tensors[i].mDesc.GetElementSpaceSize() * sizeof(ADataType));
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data(),
b_tensors[i].mDesc.GetElementSpaceSize() * sizeof(BDataType));
c_tensors_device[i]->SetZero();
p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
gemm_descs.push_back({sum_of_m,
problem_size.Ns[i],
problem_size.Ks[i],
1,
problem_size.stride_Bs[i],
1,
{}});
grouped_gemm_kernel_args_.push_back({a_tensors_device[i]->GetDeviceBuffer(),
b_tensors_device[i]->GetDeviceBuffer(),
{},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, 0>> p_Ds = {};
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, c_element_op);
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data(),
c_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
problem_size.Ms = {
167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ns.push_back(768);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (> 0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
...@@ -6,30 +6,43 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -6,30 +6,43 @@ foreach(gpu IN LISTS GPU_TARGETS)
add_custom_target(example_gemm_reduce_xdl_max) add_custom_target(example_gemm_reduce_xdl_max)
add_custom_target(example_gemm_reduce_xdl_mean_meansquare) add_custom_target(example_gemm_reduce_xdl_mean_meansquare)
add_custom_target(example_gemm_add_add_mean_meansquare_xdl) add_custom_target(example_gemm_add_add_mean_meansquare_xdl)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp) add_example_executable(example_gemm_max_xdl_fp16 gemm_max_xdl_fp16.cpp)
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp) if(result EQUAL 0)
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16) add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp16)
endif()
add_example_executable(example_gemm_add_add_mean_meansquare_xdl_fp16 gemm_add_add_mean_meansquare_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16) add_dependencies(example_gemm_add_add_mean_meansquare_xdl example_gemm_add_add_mean_meansquare_xdl_fp16)
endif()
add_example_executable(example_gemm_mean_meansquare_xdl_fp16 gemm_mean_meansquare_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16) add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp16)
endif() endif()
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES)
add_example_executable(example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp) add_example_executable(example_gemm_max_xdl_int8 gemm_max_xdl_int8.cpp)
add_example_executable(example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp) if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int8) add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int8)
endif()
add_example_executable(example_gemm_add_addsquare_xdl_int8 gemm_add_addsquare_xdl_int8.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8) add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_add_addsquare_xdl_int8)
endif() endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp) add_example_executable(example_gemm_max_xdl_fp32 gemm_max_xdl_fp32.cpp)
add_example_executable(example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp) if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32) add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_fp32)
endif()
add_example_executable(example_gemm_mean_meansquare_xdl_fp32 gemm_mean_meansquare_xdl_fp32.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32) add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_fp32)
endif() endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_example_executable(example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp) add_example_executable(example_gemm_max_xdl_bf16 gemm_max_xdl_bf16.cpp)
add_example_executable(example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp) if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16) add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_bf16)
endif()
add_example_executable(example_gemm_mean_meansquare_xdl_bf16 gemm_mean_meansquare_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16) add_dependencies(example_gemm_reduce_xdl_mean_meansquare example_gemm_mean_meansquare_xdl_bf16)
endif() endif()
...@@ -40,8 +53,10 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -40,8 +53,10 @@ foreach(gpu IN LISTS GPU_TARGETS)
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp) add_example_executable(example_gemm_max_xdl_int4 gemm_max_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int4) add_dependencies(example_gemm_reduce_xdl_max example_gemm_max_xdl_int4)
endif() endif()
endif()
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_example_executable(example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp) add_example_executable(example_convnd_bwd_data_xdl_fp16 convnd_bwd_data_xdl_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(example_convnd_bwd_data_xdl_fp16 PRIVATE utility) target_link_libraries(example_convnd_bwd_data_xdl_fp16 PRIVATE utility)
endif()
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
if(DL_KERNELS)
add_example_executable(example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp) add_example_executable(example_convnd_bwd_data_dl_fp16 convnd_bwd_data_dl_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(example_convnd_bwd_data_dl_fp16 PRIVATE utility) target_link_libraries(example_convnd_bwd_data_dl_fp16 PRIVATE utility)
endif()
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
...@@ -7,4 +6,3 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -7,4 +6,3 @@ foreach(gpu IN LISTS GPU_TARGETS)
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
endif()
...@@ -3,22 +3,20 @@ set(target 0) ...@@ -3,22 +3,20 @@ set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0) if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_grouped_conv_bwd_weight) add_custom_target(example_grouped_conv_bwd_weight)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp) add_example_executable(example_grouped_conv_bwd_weight_xdl_fp16 grouped_conv_bwd_weight_xdl_fp16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16) add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_fp16)
endif() endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp) add_example_executable(example_grouped_conv_bwd_weight_xdl_bf16 grouped_conv_bwd_weight_xdl_bf16.cpp)
if(result EQUAL 0)
add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16) add_dependencies(example_grouped_conv_bwd_weight example_grouped_conv_bwd_weight_xdl_bf16)
endif() endif()
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_custom_target(example_grouped_conv_bwd_weight_dl)
if(DL_KERNELS) add_example_executable(example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp)
add_custom_target(example_grouped_conv_bwd_weight_dl) if(result EQUAL 0)
add_example_executable(example_grouped_conv_bwd_weight_dl_fp16 grouped_conv_bwd_weight_dl_fp16.cpp)
add_dependencies(example_grouped_conv_bwd_weight_dl example_grouped_conv_bwd_weight_dl_fp16) add_dependencies(example_grouped_conv_bwd_weight_dl example_grouped_conv_bwd_weight_dl_fp16)
endif()
endif() endif()
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
#include "common.hpp" #include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp" #include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp"
using InDataType = F16; using InDataType = F16;
using WeiDataType = F16; using WeiDataType = F16;
...@@ -15,9 +15,20 @@ using WeiElementOp = PassThrough; ...@@ -15,9 +15,20 @@ using WeiElementOp = PassThrough;
using OutElementOp = PassThrough; using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial> template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance = using DeviceConvBwdWeightInstance = ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Dl<
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl<
NDimSpatial, // NDimSpatial NDimSpatial, // NDimSpatial
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>, // InLayout
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>, // WeiLayout
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>, // OutLayout
InDataType, // InDataType InDataType, // InDataType
WeiDataType, // WeiDataType WeiDataType, // WeiDataType
OutDataType, // OutDataType OutDataType, // OutDataType
......
...@@ -14,20 +14,8 @@ template <ck::index_t NDimSpatial> ...@@ -14,20 +14,8 @@ template <ck::index_t NDimSpatial>
bool run_grouped_conv_bwd_weight(const ExecutionConfig& config, bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param) const ck::utils::conv::ConvParam& conv_param)
{ {
ck::index_t split_k;
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1 // Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support constexpr ck::index_t split_k = 1;
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102"))
{
split_k = 2;
}
else
{
split_k = 1;
}
const auto in_g_n_c_wis_desc = const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed< ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<
......
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942) list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0) set(target 0)
foreach(gpu IN LISTS GPU_TARGETS) foreach(gpu IN LISTS GPU_TARGETS)
...@@ -10,4 +9,4 @@ foreach(gpu IN LISTS GPU_TARGETS) ...@@ -10,4 +9,4 @@ foreach(gpu IN LISTS GPU_TARGETS)
set(target 1) set(target 1)
endif() endif()
endforeach() endforeach()
endif()
add_custom_target(example_cgemm_xdl) add_custom_target(example_cgemm_xdl)
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES) add_example_executable(example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp)
add_example_executable(example_cgemm_xdl_bf16 cgemm_xdl_bf16.cpp) if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_bf16) add_dependencies(example_cgemm_xdl example_cgemm_xdl_bf16)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp)
add_example_executable(example_cgemm_xdl_fp16 cgemm_xdl_fp16.cpp) if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp16) add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp16)
endif() endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_example_executable(example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp) add_example_executable(example_cgemm_xdl_fp32 cgemm_xdl_fp32.cpp)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp32) if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_fp32)
endif() endif()
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES) add_example_executable(example_cgemm_xdl_int8 cgemm_xdl_int8.cpp)
add_example_executable(example_cgemm_xdl_int8 cgemm_xdl_int8.cpp) if(result EQUAL 0)
add_dependencies(example_cgemm_xdl example_cgemm_xdl_int8) add_dependencies(example_cgemm_xdl example_cgemm_xdl_int8)
endif() endif()
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
......
add_custom_target(example_batched_gemm_xdl) add_custom_target(example_batched_gemm_xdl)
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES) add_example_executable(example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp)
add_example_executable(example_batched_gemm_xdl_fp32 batched_gemm_xdl_fp32.cpp) if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp32) add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp32)
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp)
add_example_executable(example_batched_gemm_xdl_fp16 batched_gemm_xdl_fp16.cpp) if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16) add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_fp16)
endif() endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES) add_example_executable(example_batched_gemm_xdl_bf16 batched_gemm_xdl_bf16.cpp)
add_example_executable(example_batched_gemm_xdl_bfp16 batched_gemm_xdl_bfp16.cpp) if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bfp16) add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_bf16)
endif() endif()
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES) add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp)
add_example_executable(example_batched_gemm_xdl_int8 batched_gemm_xdl_int8.cpp) if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8) add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int8)
endif() endif()
if(USE_BITINT_EXTENSION_INT4) if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp) add_example_executable(example_batched_gemm_xdl_int4 batched_gemm_xdl_int4.cpp)
if(result EQUAL 0)
add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int4) add_dependencies(example_batched_gemm_xdl example_batched_gemm_xdl_int4)
endif()
endif() endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp)
add_example_executable(example_gemm_bias_e_permute_g1m3n2k1_xdl_fp16 gemm_bias_e_permute_g1m3n2k1_xdl_fp16.cpp) add_example_executable(example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp)
add_example_executable(example_gemm_bias_e_permute_g1m2n3k1_xdl_fp16 gemm_bias_e_permute_g1m2n3k1_xdl_fp16.cpp)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES) add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp)
add_example_executable(example_contraction_bilinear_xdl_fp32 contraction_bilinear_xdl_fp32.cpp) add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp)
add_example_executable(example_contraction_scale_xdl_fp32 contraction_scale_xdl_fp32.cpp) add_example_executable(example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp)
endif() add_example_executable(example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp)
if(DTYPES MATCHES "fp64" OR NOT DEFINED DTYPES)
add_example_executable(example_contraction_bilinear_xdl_fp64 contraction_bilinear_xdl_fp64.cpp)
add_example_executable(example_contraction_scale_xdl_fp64 contraction_scale_xdl_fp64.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_layernorm_fp16 layernorm_fp16.cpp)
add_example_executable(example_layernorm_fp16 layernorm_fp16.cpp) add_example_executable(example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp)
add_example_executable(example_layernorm_splitk_fp16 layernorm_splitk_fp16.cpp)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES) add_example_executable(example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp)
add_example_executable(example_grouped_gemm_bias_e_permute_xdl_fp16 grouped_gemm_bias_e_permute_xdl_fp16.cpp)
endif()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment