Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a7e00533
Commit
a7e00533
authored
Aug 22, 2022
by
Anthony Chang
Browse files
gemm_softmax_gemm with output permutation
parent
9c167d57
Changes
7
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
787 additions
and
132 deletions
+787
-132
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+1
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+394
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
+18
-18
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+207
-114
include/ck/tensor_operation/gpu/device/gemm_specialization.hpp
...de/ck/tensor_operation/gpu/device/gemm_specialization.hpp
+18
-0
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
+135
-0
include/ck/utility/functional.hpp
include/ck/utility/functional.hpp
+14
-0
No files found.
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
a7e00533
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
0 → 100644
View file @
a7e00533
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CPermuteNumDims_G_M_O
=
S
<
2
,
1
,
1
>
;
// "using CLayout = Row" has been replaced by CPermuteNumDims_G_M_O
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
PassThrough
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CPermuteNumDims_G_M_O
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CShuffleBlockTransferScalarPerVector_NPerBlock
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
CElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape for A/B0/B1/C
// C_g_m_o = A_g_m_k * B0_g_k_n * B1_g_n_o
ck
::
index_t
M
=
128
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
64
;
ck
::
index_t
O
=
128
;
ck
::
index_t
StrideA
=
-
1
;
ck
::
index_t
StrideB0
=
-
1
;
ck
::
index_t
StrideB1
=
-
1
;
ck
::
index_t
BatchStrideA
=
-
1
;
ck
::
index_t
BatchStrideB0
=
-
1
;
ck
::
index_t
BatchStrideB1
=
-
1
;
// Output shape C[G0, M, G1, O]. Batch dim, outer dim, inner dim must match GEMM shape
// C_g0_g1_m_o = reshape(C_g_m_o, [g0, g1, m, o])
// C_g0_m_g1_o = permute(C_g0_g1_m_o, [0, 2, 1, 3])
ck
::
index_t
G0
=
7
;
ck
::
index_t
G1
=
13
;
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
9
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 17: M, N, K, O, Batch, StrideA, StrideB0, StrideB1, StrideC, BatchStrideA, "
"BatchStrideB0, BatchStrideB1, BatchStrideC
\n
"
);
exit
(
0
);
}
const
int
DefaultStrideA
=
ck
::
is_same_v
<
ALayout
,
Row
>
?
K
:
M
;
const
int
DefaultStrideB0
=
ck
::
is_same_v
<
B0Layout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB1
=
ck
::
is_same_v
<
B1Layout
,
Row
>
?
O
:
N
;
StrideA
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
StrideB0
=
(
StrideB0
<
0
)
?
DefaultStrideB0
:
StrideB0
;
StrideB1
=
(
StrideB1
<
0
)
?
DefaultStrideB1
:
StrideB1
;
const
int
DefaultBatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Col
>
?
K
:
M
)
*
StrideA
;
const
int
DefaultBatchStrideB0
=
(
ck
::
is_same_v
<
B0Layout
,
Col
>
?
N
:
K
)
*
StrideB0
;
const
int
DefaultBatchStrideB1
=
(
ck
::
is_same_v
<
B1Layout
,
Col
>
?
O
:
N
)
*
StrideB1
;
BatchStrideA
=
BatchStrideA
<
0
?
DefaultBatchStrideA
:
BatchStrideA
;
BatchStrideB0
=
BatchStrideB0
<
0
?
DefaultBatchStrideB0
:
BatchStrideB0
;
BatchStrideB1
=
BatchStrideB1
<
0
?
DefaultBatchStrideB1
:
BatchStrideB1
;
const
int
BatchCount
=
G0
*
G1
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
}
};
// C_m_o = A_m_k * B0_k_n * B1_n_o
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
B0DataType
>
b0_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB0
,
BatchStrideB0
,
B0Layout
{}));
Tensor
<
B1DataType
>
b1_g_n_o
(
f_host_tensor_descriptor
(
BatchCount
,
N
,
O
,
StrideB1
,
BatchStrideB1
,
B1Layout
{}));
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_lengths
.
begin
(),
c_gs_ms_os_lengths
.
end
()),
std
::
vector
<
std
::
size_t
>
(
c_gs_ms_os_strides
.
begin
(),
c_gs_ms_os_strides
.
end
()));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_g_k_n: "
<<
b0_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_g_n_o: "
<<
b1_g_n_o
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_1
<
ADataType
>
{
1
});
b0_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
b1_g_n_o
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
}
DeviceMem
a_g_m_k_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b0_g_k_n_device_buf
(
sizeof
(
B0DataType
)
*
b0_g_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b1_g_n_o_device_buf
(
sizeof
(
B1DataType
)
*
b1_g_n_o
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
c_gs_ms_os_device_buf
(
sizeof
(
CDataType
)
*
c_gs_ms_os_device_result
.
mDesc
.
GetElementSpaceSize
());
a_g_m_k_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b0_g_k_n_device_buf
.
ToDevice
(
b0_g_k_n
.
mData
.
data
());
b1_g_n_o_device_buf
.
ToDevice
(
b1_g_n_o
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_g_m_k_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B0DataType
*>
(
b0_g_k_n_device_buf
.
GetDeviceBuffer
()),
static_cast
<
B1DataType
*>
(
b1_g_n_o_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_gs_ms_os_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
O
,
BatchCount
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
StrideA
,
StrideB0
,
StrideB1
,
BatchStrideA
,
BatchStrideB0
,
BatchStrideB1
,
a_element_op
,
b0_element_op
,
acc0_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
c_gs_ms_os_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
// Output of Gemm0 is input A of Gemm1
Tensor
<
AccDataType
>
acc0_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
ADataType
>
a1_g_m_n
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
N
,
M
*
N
,
Row
{}));
Tensor
<
CDataType
>
c_g_m_o_host_result
(
std
::
vector
<
int
>
{
BatchCount
,
M
,
O
},
std
::
vector
<
int
>
{
M
*
O
,
O
,
1
});
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
PassThrough
{});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm.hpp
→
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm
_permute
.hpp
View file @
a7e00533
...
...
@@ -15,7 +15,7 @@ namespace device {
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
C
Layout
,
typename
C
PermuteNumDims_G_M_Gemm1N
,
// Sequence<>
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
...
...
@@ -25,7 +25,7 @@ template <typename ALayout,
typename
Acc0ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceBatchedGemmSoftmaxGemm
:
public
BaseOperator
struct
DeviceBatchedGemmSoftmaxGemm
Permute
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
...
...
@@ -37,14 +37,14 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
ck
::
index_t
K
,
ck
::
index_t
O
,
ck
::
index_t
Batch
,
std
::
vector
<
index_t
>
c_gs_ms_os_lengths
,
std
::
vector
<
index_t
>
c_gs_ms_os_strides
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB0
,
ck
::
index_t
StrideB1
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB0
,
ck
::
index_t
BatchStrideB1
,
ck
::
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0ElementwiseOperation
acc0_element_op
,
...
...
@@ -57,7 +57,7 @@ struct DeviceBatchedGemmSoftmaxGemm : public BaseOperator
template
<
typename
ALayout
,
typename
B0Layout
,
typename
B1Layout
,
typename
C
Layout
,
typename
C
PermuteNumDims_G_M_Gemm1N
,
// Sequence<>
typename
ADataType
,
typename
B0DataType
,
typename
B1DataType
,
...
...
@@ -68,10 +68,10 @@ template <typename ALayout,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceBatchedGemmSoftmaxGemmPtr
=
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemm
<
ALayout
,
std
::
unique_ptr
<
DeviceBatchedGemmSoftmaxGemm
Permute
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
CPermuteNumDims_G_M_Gemm1N
,
ADataType
,
B0DataType
,
B1DataType
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp
→
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_
permute_
xdl_cshuffle.hpp
View file @
a7e00533
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/gemm_specialization.hpp
View file @
a7e00533
...
...
@@ -9,6 +9,7 @@ namespace device {
enum
struct
GemmSpecialization
{
// Gemm
Default
,
MPadding
,
NPadding
,
...
...
@@ -17,6 +18,15 @@ enum struct GemmSpecialization
MKPadding
,
NKPadding
,
MNKPadding
,
// Gemm + Gemm
OPadding
,
MOPadding
,
NOPadding
,
KOPadding
,
MNOPadding
,
MKOPadding
,
NKOPadding
,
MNKOPadding
,
};
inline
std
::
string
getGemmSpecializationString
(
const
GemmSpecialization
&
s
)
...
...
@@ -31,6 +41,14 @@ inline std::string getGemmSpecializationString(const GemmSpecialization& s)
case
GemmSpecialization
::
MKPadding
:
return
"MKPadding"
;
case
GemmSpecialization
::
NKPadding
:
return
"NKPadding"
;
case
GemmSpecialization
::
MNKPadding
:
return
"MNKPadding"
;
case
GemmSpecialization
::
OPadding
:
return
"OPadding"
;
case
GemmSpecialization
::
MOPadding
:
return
"MOPadding"
;
case
GemmSpecialization
::
NOPadding
:
return
"NOPadding"
;
case
GemmSpecialization
::
KOPadding
:
return
"KOPadding"
;
case
GemmSpecialization
::
MNOPadding
:
return
"MNOPadding"
;
case
GemmSpecialization
::
MKOPadding
:
return
"MKOPadding"
;
case
GemmSpecialization
::
NKOPadding
:
return
"NKOPadding"
;
case
GemmSpecialization
::
MNKOPadding
:
return
"MNKOPadding"
;
default:
return
"Unrecognized specialization!"
;
}
}
...
...
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
View file @
a7e00533
...
...
@@ -12,6 +12,141 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
// For padding tensors without batch dimension
template
<
bool
PadM
,
bool
PadN
,
typename
TensorDesc_MRaw_NRaw
,
typename
MPerBlockType
,
typename
NPerBlockType
,
enable_if_t
<
TensorDesc_MRaw_NRaw
::
GetNumOfVisibleDimension
()
==
2
,
bool
>
=
false
>
__host__
__device__
constexpr
auto
PadTensorDescriptor
(
const
TensorDesc_MRaw_NRaw
&
tensor_desc_mraw_nraw
,
MPerBlockType
MPerBlock
,
NPerBlockType
NPerBlock
)
{
const
auto
MRaw
=
tensor_desc_mraw_nraw
.
GetLength
(
Number
<
0
>
{});
const
auto
NRaw
=
tensor_desc_mraw_nraw
.
GetLength
(
Number
<
1
>
{});
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
MTransform
=
conditional_expr
<
PadM
>
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
MRaw
));
const
auto
NTransform
=
conditional_expr
<
PadN
>
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_pass_through_transform
(
NRaw
));
return
transform_tensor_descriptor
(
tensor_desc_mraw_nraw
,
make_tuple
(
MTransform
,
NTransform
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
// For padding tensors with batch dimension
template
<
bool
PadM
,
bool
PadN
,
typename
TensorDesc_GRaw_MRaw_NRaw
,
typename
MPerBlockType
,
typename
NPerBlockType
,
enable_if_t
<
TensorDesc_GRaw_MRaw_NRaw
::
GetNumOfVisibleDimension
()
==
3
,
bool
>
=
false
>
__host__
__device__
constexpr
auto
PadTensorDescriptor
(
const
TensorDesc_GRaw_MRaw_NRaw
&
tensor_desc_graw_mraw_nraw
,
MPerBlockType
MPerBlock
,
NPerBlockType
NPerBlock
)
{
const
auto
GRaw
=
tensor_desc_graw_mraw_nraw
.
GetLength
(
Number
<
0
>
{});
const
auto
MRaw
=
tensor_desc_graw_mraw_nraw
.
GetLength
(
Number
<
1
>
{});
const
auto
NRaw
=
tensor_desc_graw_mraw_nraw
.
GetLength
(
Number
<
2
>
{});
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
MTransform
=
conditional_expr
<
PadM
>
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
MRaw
));
const
auto
NTransform
=
conditional_expr
<
PadN
>
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_pass_through_transform
(
NRaw
));
return
transform_tensor_descriptor
(
tensor_desc_graw_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
GRaw
),
MTransform
,
NTransform
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
}
// M/N/K/OPerTileType could be index_t or Number<>
template
<
GemmSpecialization
GemmSpec
,
typename
MPerTileType
,
typename
NPerTileType
,
typename
KPerTileType
,
typename
OPerTileType
>
struct
GemmGemmPadder
{
// TODO: hard to scale; use mask instead
static
constexpr
bool
PadM
=
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
MOPadding
||
GemmSpec
==
GemmSpecialization
::
MNOPadding
||
GemmSpec
==
GemmSpecialization
::
MKOPadding
||
GemmSpec
==
GemmSpecialization
::
MNKOPadding
;
static
constexpr
bool
PadN
=
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
NOPadding
||
GemmSpec
==
GemmSpecialization
::
MNOPadding
||
GemmSpec
==
GemmSpecialization
::
NKOPadding
||
GemmSpec
==
GemmSpecialization
::
MNKOPadding
;
static
constexpr
bool
PadK
=
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KOPadding
||
GemmSpec
==
GemmSpecialization
::
MKOPadding
||
GemmSpec
==
GemmSpecialization
::
NKOPadding
||
GemmSpec
==
GemmSpecialization
::
MNKOPadding
;
static
constexpr
bool
PadO
=
GemmSpec
==
GemmSpecialization
::
OPadding
||
GemmSpec
==
GemmSpecialization
::
MOPadding
||
GemmSpec
==
GemmSpecialization
::
NOPadding
||
GemmSpec
==
GemmSpecialization
::
KOPadding
||
GemmSpec
==
GemmSpecialization
::
MNOPadding
||
GemmSpec
==
GemmSpecialization
::
MKOPadding
||
GemmSpec
==
GemmSpecialization
::
NKOPadding
||
GemmSpec
==
GemmSpecialization
::
MNKOPadding
;
// A[M, K]
template
<
typename
ADesc_MRaw_KRaw
>
__host__
__device__
constexpr
auto
PadADescriptor_M_K
(
const
ADesc_MRaw_KRaw
&
a_desc_mraw_kraw
)
const
{
return
PadTensorDescriptor
<
PadM
,
PadK
>
(
a_desc_mraw_kraw
,
MPerTile_
,
KPerTile_
);
}
// B[K, N]
template
<
typename
BDesc_NRaw_KRaw
>
__host__
__device__
constexpr
auto
PadBDescriptor_N_K
(
const
BDesc_NRaw_KRaw
&
b_desc_nraw_kraw
)
const
{
return
PadTensorDescriptor
<
PadN
,
PadK
>
(
b_desc_nraw_kraw
,
NPerTile_
,
KPerTile_
);
}
// B1[Gemm1N, Gemm1K] = B1[O, N]
template
<
typename
B1Desc_NRaw_KRaw
>
__host__
__device__
constexpr
auto
PadB1Descriptor_N_K
(
const
B1Desc_NRaw_KRaw
&
b1_desc_nraw_kraw
)
const
{
return
PadTensorDescriptor
<
PadO
,
PadN
>
(
b1_desc_nraw_kraw
,
OPerTile_
,
NPerTile_
);
}
// C[M, Gemm1N] = C[M, O]
template
<
typename
CDesc_MRaw_NRaw
>
__host__
__device__
constexpr
auto
PadCDescriptor_M_N
(
const
CDesc_MRaw_NRaw
&
c_desc_mraw_nraw
)
const
{
return
PadTensorDescriptor
<
PadM
,
PadO
>
(
c_desc_mraw_nraw
,
MPerTile_
,
OPerTile_
);
}
MPerTileType
MPerTile_
;
NPerTileType
NPerTile_
;
KPerTileType
KPerTile_
;
OPerTileType
OPerTile_
;
};
// M/N/KPerTileType could be index_t or Number<>
template
<
GemmSpecialization
GemmSpec
,
typename
MPerTileType
,
...
...
include/ck/utility/functional.hpp
View file @
a7e00533
...
...
@@ -114,4 +114,18 @@ struct conditional<false, X, Y>
template
<
bool
predicate
,
class
X
,
class
Y
>
using
conditional_t
=
typename
conditional
<
predicate
,
X
,
Y
>::
type
;
// z = predicate ? x : y
template
<
bool
predicate
,
typename
X
,
typename
Y
>
constexpr
auto
conditional_expr
(
X
&&
x
,
Y
&&
y
)
{
if
constexpr
(
predicate
)
{
return
std
::
forward
<
X
>
(
x
);
}
else
{
return
std
::
forward
<
Y
>
(
y
);
}
}
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment