Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a781d078
Commit
a781d078
authored
Nov 16, 2022
by
Qianfeng Zhang
Browse files
Merge branch 'develop' into bnorm_bwd_pr
parents
fd76c787
4c4c7328
Changes
371
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
707 additions
and
1973 deletions
+707
-1973
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
...grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
+24
-0
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
...multiple_d/run_grouped_conv_fwd_bias_relu_add_example.inc
+142
-87
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
...uped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
+223
-0
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
+0
-11
example/30_grouped_convnd_fwd_bias_relu_add/README.md
example/30_grouped_convnd_fwd_bias_relu_add/README.md
+0
-34
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
+0
-459
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
+0
-459
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
+0
-459
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
...as_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
+0
-459
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
+1
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
+1
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
+1
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
+1
-0
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
+1
-0
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
...le/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
+5
-5
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+4
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
...mm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
+1
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
+159
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
...gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
+1
-0
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
...softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
+143
-0
No files found.
example/30_grouped_conv_fwd_multiple_d/grouped_conv_fwd_xdl_fp16.cpp
0 → 100644
View file @
a781d078
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
// kernel data types
using
InKernelDataType
=
FP16
;
using
WeiKernelDataType
=
FP16
;
using
AccDataType
=
FP32
;
using
CShuffleDataType
=
FP16
;
using
OutKernelDataType
=
FP16
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
OutElementOp
=
PassThrough
;
#include "run_grouped_conv_fwd_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_grouped_conv_fwd_example
(
argc
,
argv
);
}
example/30_grouped_conv
nd
_fwd_
bias_relu_add/
grouped_conv
nd
_fwd_bias_relu_add_
common.hpp
→
example/30_grouped_conv_fwd_
multiple_d/run_
grouped_conv_fwd_bias_relu_add_
example.inc
View file @
a781d078
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <numeric>
#include <type_traits>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
void
print_helper_msg
()
template
<
typename
BiasLay
,
typename
ResidualLay
>
struct
LayoutSetting
{
std
::
cout
<<
"arg1: verification (0=no, 1=yes)
\n
"
<<
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
<<
"arg3: time kernel (0=no, 1=yes)
\n
"
<<
ck
::
utils
::
conv
::
get_conv_param_parser_helper_msg
()
<<
std
::
endl
;
}
using
BiasLayout
=
BiasLay
;
using
ResidualLayout
=
ResidualLay
;
};
template
<
ck
::
index_t
NDimSpatial
>
struct
LayoutSettingSelector
;
template
<>
struct
LayoutSettingSelector
<
1
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NW_K
>
{
};
template
<>
struct
LayoutSettingSelector
<
2
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NHW_K
>
{
};
template
<>
struct
LayoutSettingSelector
<
3
>
final
:
LayoutSetting
<
ctl
::
G_K
,
ctl
::
G_NDHW_K
>
{
};
template
<
ck
::
index_t
NDimSpatial
>
using
BiasLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
BiasLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
ResidualLayout
=
typename
LayoutSettingSelector
<
NDimSpatial
>::
ResidualLayout
;
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<
BiasLayout
<
NDimSpatial
>
,
ResidualLayout
<
NDimSpatial
>>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InKernelDataType
,
typename
WeiKernelDataType
,
typename
CShuffleDataType
,
typename
OutKernelDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
InUserDataType
,
typename
WeiUserDataType
,
typename
OutUserDataType
,
typename
DeviceConvNDFwdInstance
>
int
run_grouped_conv_fwd_bias_relu_add
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
residual_g_n_k_wos_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
;
template
<
ck
::
index_t
NDimSpatial
>
bool
run_grouped_conv_fwd_bias_relu_add
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
const
auto
in_g_n_c_wis_desc
=
make_input_descriptor
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
make_weight_descriptor
(
conv_param
);
const
auto
bias_g_n_k_wos_desc
=
make_bias_descriptor
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
make_output_descriptor
(
conv_param
);
Tensor
<
InUserDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiUserDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutUserDataType
>
bias
(
bias_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
residual
(
residual
_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
residual
(
bias
_g_n_k_wos_desc
);
Tensor
<
OutUserDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutKernelDataType
>
out_device
(
out_g_n_k_wos_desc
);
...
...
@@ -63,7 +114,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
cout
<<
"residual: "
<<
residual
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
...
...
@@ -83,7 +134,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
DeviceMem
residual_device_buf
(
sizeof
(
OutKernelDataType
)
*
residual
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutKernelDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef
CK_EXPERIMENTAL_BIT
_INT_EX
TENSION_INT4
#ifdef
BUILD
_INT
4
_EX
AMPLE
const
Tensor
<
InKernelDataType
>
in_converted
(
in
);
const
Tensor
<
WeiKernelDataType
>
wei_converted
(
wei
);
const
Tensor
<
OutKernelDataType
>
bias_converted
(
bias
);
...
...
@@ -93,12 +144,12 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
wei_device_buf
.
ToDevice
(
wei_converted
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_converted
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual_converted
.
mData
.
data
());
#else
// CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#else
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
residual_device_buf
.
ToDevice
(
residual
.
mData
.
data
());
#endif
// CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
...
...
@@ -115,7 +166,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
()
,
y
.
begin
());
};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
...
...
@@ -123,8 +174,8 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_n_k_wos_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_n_k_wos_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
residual
_g_n_k_wos_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
residual
_g_n_k_wos_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
bias
_g_n_k_wos_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
bias
_g_n_k_wos_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
...
...
@@ -133,7 +184,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConv
ND
FwdInstance
{};
auto
conv
=
DeviceConvFwdInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
...
...
@@ -155,9 +206,9 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_e
lement
_op
,
w
ei
_e
lement
_op
,
o
ut
_e
lement
_op
);
InE
lement
Op
{}
,
W
ei
E
lement
Op
{}
,
O
ut
E
lement
Op
{}
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -166,7 +217,7 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InUserDataType
,
WeiUserDataType
,
OutUserDataType
>
();
...
...
@@ -176,20 +227,11 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
if
(
config
.
do_verification
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_conv
=
HostConvFwdInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
...
...
@@ -198,36 +240,49 @@ int run_grouped_conv_fwd_bias_relu_add(bool do_verification,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_e
lement
_op
,
w
ei
_e
lement
_op
,
InE
lement
Op
{}
,
W
ei
E
lement
Op
{}
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
o
ut
_e
lement
_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
residual
(
idx
));
O
ut
E
lement
Op
{}
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
residual
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
#ifdef
CK_EXPERIMENTAL_BIT
_INT_EX
TENSION_INT4
#ifdef
BUILD
_INT
4
_EX
AMPLE
const
Tensor
<
OutUserDataType
>
out_device_converted
(
out_device
);
return
ck
::
utils
::
check_err
(
out_device_converted
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#else // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
)
?
0
:
1
;
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
out_device_converted
,
out_host
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#else
return
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#endif
}
return
true
;
}
bool
run_grouped_conv_fwd_bias_relu_add_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_fwd_bias_relu_add
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_fwd_bias_relu_add
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_fwd_bias_relu_add
<
3
>
(
config
,
conv_param
);
}
return
0
;
return
false
;
}
example/30_grouped_conv_fwd_multiple_d/run_grouped_conv_fwd_example.inc
0 → 100644
View file @
a781d078
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
template
<
ck
::
index_t
NDimSpatial
>
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InputLayout
<
NDimSpatial
>
,
WeightLayout
<
NDimSpatial
>
,
ck
::
Tuple
<>
,
OutputLayout
<
NDimSpatial
>
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
template
<
ck
::
index_t
NDimSpatial
>
using
HostConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InUserDataType
,
WeiUserDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
;
template
<
ck
::
index_t
NDimSpatial
>
bool
run_grouped_conv_fwd
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
)
{
static_assert
(
1
<=
NDimSpatial
&&
NDimSpatial
<=
3
,
"Unsupported NDimSpatial"
);
const
auto
in_g_n_c_wis_desc
=
make_input_descriptor
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
make_weight_descriptor
(
conv_param
);
const
auto
out_g_n_k_wos_desc
=
make_output_descriptor
(
conv_param
);
Tensor
<
InUserDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiUserDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
OutUserDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutKernelDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InUserDataType
>
{
-
5
,
5
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiUserDataType
>
{
-
5
,
5
});
break
;
default
:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InUserDataType
>
{
0.0
,
1.0
});
wei
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiUserDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InKernelDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiKernelDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutKernelDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
InKernelDataType
>
in_converted
(
in
);
const
Tensor
<
WeiKernelDataType
>
wei_converted
(
wei
);
in_device_buf
.
ToDevice
(
in_converted
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_converted
.
mData
.
data
());
#else
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
#endif
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvFwdInstance
<
NDimSpatial
>
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InUserDataType
,
WeiUserDataType
,
OutUserDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_conv
=
HostConvFwdInstance
<
NDimSpatial
>
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
out_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
#ifdef BUILD_INT4_EXAMPLE
const
Tensor
<
OutUserDataType
>
out_device_converted
(
out_device
);
return
ck
::
utils
::
check_err
(
out_device_converted
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#else
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1
e
-
5
f
,
1
e
-
4
f
);
#endif
}
return
true
;
}
bool
run_grouped_conv_fwd_example
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_param
=
DefaultConvParam
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_param
))
{
return
false
;
}
switch
(
conv_param
.
num_dim_spatial_
)
{
case
1
:
return
run_grouped_conv_fwd
<
1
>
(
config
,
conv_param
);
case
2
:
return
run_grouped_conv_fwd
<
2
>
(
config
,
conv_param
);
case
3
:
return
run_grouped_conv_fwd
<
3
>
(
config
,
conv_param
);
}
return
false
;
}
example/30_grouped_convnd_fwd_bias_relu_add/CMakeLists.txt
deleted
100644 → 0
View file @
fd76c787
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_fp32 grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_bf16 grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int8 grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
)
if
(
USE_BITINT_EXTENSION_INT4
)
add_example_executable
(
example_grouped_convnd_fwd_bias_relu_add_xdl_int4 grouped_convnd_fwd_bias_relu_add_xdl_int4.cpp
)
endif
()
# USE_BITINT_EXTENSION_INT4
example/30_grouped_convnd_fwd_bias_relu_add/README.md
deleted
100644 → 0
View file @
fd76c787
```
bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: time kernel (0=no, 1=yes)
#Following arguments (depending on number of spatial dims):
# N spatial dimensions
# G, N, K, C,
# <filter spatial dimensions>, (ie Y, X for 2D)
# <input image spatial dimensions>, (ie Hi, Wi for 2D)
# <strides>, (ie Sy, Sx for 2D)
# <dilations>, (ie Dy, Dx for 2D)
# <left padding>, (ie LeftPy, LeftPx for 2D)
# <right padding>, (ie RightPy, RightPx for 2D)
bin/example_grouped_convnd_fwd_bias_relu_add_xdl_fp16 1 1 1
```
Result (MI100)
```
in: dim 5, lengths {2, 128, 192, 71, 71}, strides {192, 1935744, 1, 27264, 384}
wei: dim 5, lengths {2, 256, 192, 3, 3}, strides {442368, 1728, 1, 576, 192}
bias: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
residual: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 0, 1, 0, 0}
out: dim 5, lengths {2, 128, 256, 36, 36}, strides {256, 663552, 1, 18432, 512}
A[M, K]: {165888, 1728}
B[N, K]: {256, 1728}
Ds[M, N]: {165888, 256}
Ds[M, N]: {165888, 256}
E[M, N]: {165888, 256}
launch_and_time_kernel: grid_dim {2592, 1, 1}, block_dim {256, 1, 1}
Warm up 1 time
Start running 10 times...
Perf: 2.48075 ms, 118.325 TFlops, 268.946 GB/s, DeviceGroupedConvFwdMultipleD_Xdl_CShuffle<256, 128, 256, 32, Default>
```
\ No newline at end of file
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_bf16.cpp
deleted
100644 → 0
View file @
fd76c787
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using
InKernelDataType
=
ck
::
bhalf_t
;
using
WeiKernelDataType
=
ck
::
bhalf_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasKernelDataType
=
ck
::
bhalf_t
;
using
ResidualKernelDataType
=
ck
::
bhalf_t
;
using
OutKernelDataType
=
ck
::
bhalf_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
ResidualLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp16.cpp
deleted
100644 → 0
View file @
fd76c787
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using
InKernelDataType
=
ck
::
half_t
;
using
WeiKernelDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
half_t
;
using
BiasKernelDataType
=
ck
::
half_t
;
using
ResidualKernelDataType
=
ck
::
half_t
;
using
OutKernelDataType
=
ck
::
half_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
ResidualLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
32
,
// KPerBlock
8
,
// AK1
8
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_fp32.cpp
deleted
100644 → 0
View file @
fd76c787
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using
InKernelDataType
=
float
;
using
WeiKernelDataType
=
float
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
BiasKernelDataType
=
float
;
using
ResidualKernelDataType
=
float
;
using
OutKernelDataType
=
float
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
ResidualLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
16
,
// KPerBlock
4
,
// AK1
4
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
4
,
// ABlockTransferSrcScalarPerVector
4
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
4
,
// BBlockTransferSrcScalarPerVector
4
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/30_grouped_convnd_fwd_bias_relu_add/grouped_convnd_fwd_bias_relu_add_xdl_int8.cpp
deleted
100644 → 0
View file @
fd76c787
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "grouped_convnd_fwd_bias_relu_add_common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
// kernel data types
using
InKernelDataType
=
int8_t
;
using
WeiKernelDataType
=
int8_t
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int8_t
;
using
BiasKernelDataType
=
int8_t
;
using
ResidualKernelDataType
=
int8_t
;
using
OutKernelDataType
=
int8_t
;
// tensor data types
using
InUserDataType
=
InKernelDataType
;
using
WeiUserDataType
=
WeiKernelDataType
;
using
OutUserDataType
=
OutKernelDataType
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
ResidualLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
ResidualLayout
>
,
OutLayout
,
InKernelDataType
,
WeiKernelDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasKernelDataType
,
ResidualKernelDataType
>
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
namespace
ctc
=
ck
::
tensor_layout
::
convolution
;
print_helper_msg
();
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// conventional group conv definition
// G = 2
// [N, C, Hi, Wi] = [128, 384, 71, 71]
// [K, C, Y, X] = [512, 192, 3, 3]
// [N, K, Ho, Wo] = [128, 512, 36, 36]
// CK group conv definition
// [G, N, C, Hi, Wi] = [2, 128, 192, 71, 71]
// [G, K, C, Y, X] = [2, 256, 192, 3, 3]
// [G, N, K, Ho, Wo] = [2, 128, 256, 36, 36]
ck
::
utils
::
conv
::
ConvParam
conv_param
{
2
,
2
,
128
,
256
,
192
,
{
3
,
3
},
{
71
,
71
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
}};
if
(
argc
==
1
)
{
// use default
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
const
ck
::
index_t
num_dim_spatial
=
std
::
stoi
(
argv
[
4
]);
conv_param
=
ck
::
utils
::
conv
::
parse_conv_param
(
num_dim_spatial
,
5
,
argv
);
}
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
if
(
conv_param
.
num_dim_spatial_
==
1
)
{
using
InLayout
=
ctc
::
G_NW_C
;
using
WeiLayout
=
ctc
::
G_K_X_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NW_K
;
using
OutLayout
=
ctc
::
G_NW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
0
,
// k
1
,
// c
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
1
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
1
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
2
)
{
using
InLayout
=
ctc
::
G_NHW_C
;
using
WeiLayout
=
ctc
::
G_K_YX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NHW_K
;
using
OutLayout
=
ctc
::
G_NHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
2
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
2
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
else
if
(
conv_param
.
num_dim_spatial_
==
3
)
{
using
InLayout
=
ctc
::
G_NDHW_C
;
using
WeiLayout
=
ctc
::
G_K_ZYX_C
;
using
BiasLayout
=
ctc
::
G_K
;
using
ResidualLayout
=
ctc
::
G_NDHW_K
;
using
OutLayout
=
ctc
::
G_NDHW_K
;
const
auto
in_g_n_c_wis_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
C_
,
conv_param
.
input_spatial_lengths_
[
0
],
conv_param
.
input_spatial_lengths_
[
1
],
conv_param
.
input_spatial_lengths_
[
2
]},
{
conv_param
.
C_
,
// g
conv_param
.
input_spatial_lengths_
[
0
]
*
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// n
1
,
// c
conv_param
.
input_spatial_lengths_
[
1
]
*
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// di
conv_param
.
input_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
C_
,
// hi
conv_param
.
G_
*
conv_param
.
C_
// wi
});
const
auto
wei_g_k_c_xs_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
K_
,
conv_param
.
C_
,
conv_param
.
filter_spatial_lengths_
[
0
],
conv_param
.
filter_spatial_lengths_
[
1
],
conv_param
.
filter_spatial_lengths_
[
2
]},
{
conv_param
.
K_
*
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// g
conv_param
.
filter_spatial_lengths_
[
0
]
*
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// k
1
,
// c
conv_param
.
filter_spatial_lengths_
[
1
]
*
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// z
conv_param
.
filter_spatial_lengths_
[
2
]
*
conv_param
.
C_
,
// y
conv_param
.
C_
// x
});
const
auto
bias_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
residual_g_n_k_wos_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// z
0
,
// y
0
// x
});
const
auto
out_g_n_k_wos_desc
=
HostTensorDescriptor
(
{
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
],
conv_param
.
output_spatial_lengths_
[
2
]},
{
conv_param
.
K_
,
// g
conv_param
.
output_spatial_lengths_
[
0
]
*
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// n
1
,
// k
conv_param
.
output_spatial_lengths_
[
1
]
*
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// do
conv_param
.
output_spatial_lengths_
[
2
]
*
conv_param
.
G_
*
conv_param
.
K_
,
// ho
conv_param
.
G_
*
conv_param
.
K_
// wo
});
return
run_grouped_conv_fwd_bias_relu_add
<
3
,
InKernelDataType
,
WeiKernelDataType
,
CShuffleDataType
,
OutKernelDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
InUserDataType
,
WeiUserDataType
,
OutUserDataType
,
DeviceGroupedConvNDFwdInstance
<
3
,
InLayout
,
WeiLayout
,
BiasLayout
,
ResidualLayout
,
OutLayout
>>
(
do_verification
,
init_method
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_n_k_wos_desc
,
residual_g_n_k_wos_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
return
0
;
}
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_bf16.cpp
View file @
a781d078
...
...
@@ -23,6 +23,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
...
...
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp16.cpp
View file @
a781d078
...
...
@@ -23,6 +23,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
...
...
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_fp32.cpp
View file @
a781d078
...
...
@@ -23,6 +23,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
...
...
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int4.cpp
View file @
a781d078
...
...
@@ -27,6 +27,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
...
...
example/31_batched_gemm_gemm/batched_gemm_gemm_xdl_int8.cpp
View file @
a781d078
...
...
@@ -23,6 +23,7 @@ Gemm + Gemm fused operation. Computes C_m_o = A_m_k * B0_k_n * B1_n_o
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
...
...
example/31_batched_gemm_gemm/run_batched_gemm_gemm_example.inc
View file @
a781d078
...
...
@@ -106,15 +106,15 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
Row
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
stride
,
1
}));
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
stride
,
1_
uz
});
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
batch_stride
,
1
,
stride
}));
return
HostTensorDescriptor
({
batch_count
,
row
,
col
},
{
batch_stride
,
1_
uz
,
stride
});
}
};
...
...
@@ -270,7 +270,7 @@ bool run_batched_gemm_gemm_example(int argc, char* argv[])
c_g_m_o_device_buf
.
FromDevice
(
c_g_m_o_device_result
.
mData
.
data
());
#endif
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
.
mData
,
c_g_m_o_host_result
.
mData
);
return
ck
::
utils
::
check_err
(
c_g_m_o_device_result
,
c_g_m_o_host_result
);
}
return
true
;
...
...
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
a781d078
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_fp16 batched_gemm_scale_softmax_gemm_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_xdl_bf16 batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16 batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
)
add_example_executable
(
example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_example_executable
(
example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16 grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_permute_xdl_bf16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_grouped_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16
)
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_lower_triangle_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
a781d078
...
...
@@ -24,6 +24,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_bf16.cpp
0 → 100644
View file @
a781d078
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
// Ref Gemm0: bf16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, bf16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: bf16 in, bf16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm_permute.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_permute_xdl_fp16.cpp
View file @
a781d078
...
...
@@ -24,6 +24,7 @@ Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
...
...
example/32_batched_gemm_scale_softmax_gemm/batched_gemm_scale_softmax_gemm_xdl_bf16.cpp
0 → 100644
View file @
a781d078
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Gemm + Softmax + Gemm fused operation. Computes C_g_m_o = Softmax(A_g_m_k * B0_g_k_n) * B1_g_n_o
|-----------------|
Gemm0
|-------------------------------------|
Gemm1
*/
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
BF16
;
using
B0DataType
=
BF16
;
using
B1DataType
=
BF16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
BF16
;
using
ALayout
=
Row
;
using
B0Layout
=
Col
;
using
B1Layout
=
Row
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
B0ElementOp
=
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
B1ElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
ALayout
,
B0Layout
,
B1Layout
,
CLayout
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
false
>
;
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
#include "run_batched_gemm_scale_softmax_gemm.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
Prev
1
2
3
4
5
6
7
8
9
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment