"vscode:/vscode.git/clone" did not exist on "e45e757fc8118774a9d45001a9db9a7d933b939b"
Unverified Commit a768dea5 authored by Rostyslav Geyyer's avatar Rostyslav Geyyer Committed by GitHub
Browse files

Merge branch 'develop' into lwpck-471

parents 3f976dd0 0345963e
...@@ -16,6 +16,7 @@ template <ck::index_t... Is> ...@@ -16,6 +16,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b), d0, d1) // e = elementwise((a * b), d0, d1)
// outout: e[m, n] // outout: e[m, n]
...@@ -77,6 +78,29 @@ using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instanc ...@@ -77,6 +78,29 @@ using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instanc
// clang-format on // clang-format on
>; >;
// irregular tile size
using device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_irregular_tile_instances =
std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Row_Tuple, Row, F16, F16, F32, F32, F16_Tuple, F16, PassThrough, PassThrough, AddFastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances( void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row, std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col, Col,
...@@ -92,6 +116,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_inst ...@@ -92,6 +116,9 @@ void add_device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_inst
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances{}); instances, device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances{});
add_device_operation_instances(
instances,
device_gemm_add_fastgelu_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -16,6 +16,7 @@ template <ck::index_t... Is> ...@@ -16,6 +16,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::t ...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances = std::t
// clang-format on // clang-format on
>; >;
// irregular tile size
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances( void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col, std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Row, Row,
...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances( ...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances{});
add_device_operation_instances(
instances,
device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_kn_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -16,6 +16,7 @@ template <ck::index_t... Is> ...@@ -16,6 +16,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::t ...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances = std::t
// clang-format on // clang-format on
>; >;
// irregular tile size
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleD_Xdl_CShuffle< Col, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances( void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Col, std::vector<std::unique_ptr<DeviceGemmMultipleD<Col,
Col, Col,
...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances( ...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances{});
add_device_operation_instances(
instances,
device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_km_nk_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -16,6 +16,7 @@ template <ck::index_t... Is> ...@@ -16,6 +16,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::t ...@@ -86,6 +87,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances = std::t
// clang-format on // clang-format on
>; >;
// irregular tile size
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Row, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances( void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row, std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Row, Row,
...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances( ...@@ -101,6 +124,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances(
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances{});
add_device_operation_instances(
instances,
device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -16,6 +16,7 @@ template <ck::index_t... Is> ...@@ -16,6 +16,7 @@ template <ck::index_t... Is>
using S = ck::Sequence<Is...>; using S = ck::Sequence<Is...>;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default; static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
// e = elementwise((a * b)) // e = elementwise((a * b))
// outout: e[m, n] // outout: e[m, n]
...@@ -77,6 +78,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::t ...@@ -77,6 +78,28 @@ using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances = std::t
// clang-format on // clang-format on
>; >;
// irregular tile size
using device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//##############################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//##############################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//##############################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//##############################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v1>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Interwave, PipelineVersion::v1>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemmMultipleD_Xdl_CShuffle< Row, Col, Empty_Tuple, Row, F16, F16, F32, F32, Empty_Tuple, F16, PassThrough, PassThrough, FastGelu, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1, LoopScheduler::Default, PipelineVersion::v2>
#endif
// clang-format on
>;
void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances( void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGemmMultipleD<Row, std::vector<std::unique_ptr<DeviceGemmMultipleD<Row,
Col, Col,
...@@ -92,6 +115,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances( ...@@ -92,6 +115,9 @@ void add_device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
{ {
add_device_operation_instances( add_device_operation_instances(
instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances{}); instances, device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances{});
add_device_operation_instances(
instances,
device_gemm_fastgelu_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances = std::tuple< ...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances = std::tuple<
// clang-format on // clang-format on
>; >;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl< Col, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedGemm_Xdl< Col, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 16, 64, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 4>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>
// clang-format on
>;
void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances( void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col, std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Row, Row,
...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances( ...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances{}); device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances{});
add_device_operation_instances(
instances, device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances = std::tuple< ...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances = std::tuple<
// clang-format on // clang-format on
>; >;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl< Col, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedGemm_Xdl< Col, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 16, 64, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 4>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>
// clang-format on
>;
void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances( void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col, std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Col, Col,
...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances( ...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances{}); device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances{});
add_device_operation_instances(
instances, device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances = std::tuple< ...@@ -56,6 +56,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances = std::tuple<
// clang-format on // clang-format on
>; >;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedGemm_Xdl< Row, Row, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 16, 64, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 2, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>
// clang-format on
>;
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances( void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row, std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row, Row,
...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances( ...@@ -71,6 +84,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances{}); device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances{});
add_device_operation_instances(
instances, device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -53,6 +53,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances = std::tuple< ...@@ -53,6 +53,19 @@ using device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances = std::tuple<
// clang-format on // clang-format on
>; >;
static constexpr auto GemmMNKPadding = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
using device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_irregular_tile_instances = std::tuple<
// clang-format off
//###################| A| B| Ds| E| AData| BData| AccData| CShuffle| DsData| EData| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//###################| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//###################| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//###################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedGemm_Xdl< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 64, 16, 16, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>,
DeviceGroupedGemm_Xdl< Row, Col, Empty_Tuple, Row, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, GemmMNKPadding, 1, 256, 16, 64, 32, 8, 8, 16, 16, 1, 1, S<4, 16, 4>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 1, 8, 1, 1, 1, S<1, 16, 1, 4>, 1>
// clang-format on
>;
void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances( void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row, std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col, Col,
...@@ -68,6 +81,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances( ...@@ -68,6 +81,8 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
{ {
add_device_operation_instances(instances, add_device_operation_instances(instances,
device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances{}); device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances{});
add_device_operation_instances(
instances, device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_irregular_tile_instances{});
} }
} // namespace instance } // namespace instance
......
...@@ -31,6 +31,9 @@ std::size_t HostTensorDescriptor::GetElementSpaceSize() const ...@@ -31,6 +31,9 @@ std::size_t HostTensorDescriptor::GetElementSpaceSize() const
std::size_t space = 1; std::size_t space = 1;
for(std::size_t i = 0; i < mLens.size(); ++i) for(std::size_t i = 0; i < mLens.size(); ++i)
{ {
if(mLens[i] == 0)
continue;
space += (mLens[i] - 1) * mStrides[i]; space += (mLens[i] - 1) * mStrides[i];
} }
return space; return space;
......
include_directories(BEFORE include_directories(BEFORE
${PROJECT_SOURCE_DIR}/ ${CMAKE_CURRENT_LIST_DIR}/include
) )
# ck_profiler add_subdirectory(src)
set(PROFILER_SOURCE
src/profiler.cpp
src/profile_gemm.cpp
src/profile_gemm_splitk.cpp
src/profile_gemm_bilinear.cpp
src/profile_gemm_bias_add_reduce.cpp
src/profile_gemm_add_add_fastgelu.cpp
src/profile_gemm_reduce.cpp
src/profile_batched_gemm.cpp
src/profile_batched_gemm_gemm.cpp
src/profile_batched_gemm_add_relu_gemm_add.cpp
src/profile_batched_gemm_reduce.cpp
src/profile_grouped_gemm.cpp
src/profile_conv_fwd.cpp
src/profile_conv_fwd_bias_relu.cpp
src/profile_conv_fwd_bias_relu_add.cpp
src/profile_conv_bwd_data.cpp
src/profile_grouped_conv_fwd.cpp
src/profile_grouped_conv_bwd_weight.cpp
src/profile_reduce.cpp
src/profile_groupnorm.cpp
src/profile_layernorm.cpp
src/profile_softmax.cpp
src/profile_batchnorm_fwd.cpp
src/profile_batchnorm_bwd.cpp
)
add_executable(ckProfiler ${PROFILER_SOURCE})
target_link_libraries(ckProfiler PRIVATE utility)
target_link_libraries(ckProfiler PRIVATE device_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_splitk_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bilinear_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_add_add_fastgelu_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_add_relu_gemm_add_instance)
target_link_libraries(ckProfiler PRIVATE device_batched_gemm_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_gemm_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv1d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv2d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv3d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv1d_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_conv3d_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv1d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv2d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_grouped_conv3d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_normalization_instance)
target_link_libraries(ckProfiler PRIVATE device_softmax_instance)
target_link_libraries(ckProfiler PRIVATE device_reduce_instance)
target_link_libraries(ckProfiler PRIVATE device_batchnorm_instance)
rocm_install(TARGETS ckProfiler COMPONENT profiler)
...@@ -4,7 +4,7 @@ ...@@ -4,7 +4,7 @@
#pragma #pragma
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "profiler/include/data_type_enum.hpp" #include "profiler/data_type_enum.hpp"
namespace ck { namespace ck {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment