Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a71a3f65
Commit
a71a3f65
authored
Jul 05, 2023
by
ltqin
Browse files
add group
parent
5938d555
Changes
5
Hide whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
3584 additions
and
4 deletions
+3584
-4
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
+2
-1
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_backward_v3.cpp
..._softmax_gemm/grouped_multihead_attention_backward_v3.cpp
+849
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v1.hpp
...pl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v1.hpp
+1363
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v2.hpp
...pl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v2.hpp
+1369
-0
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_bacckward_ydotygrad.hpp
...dwise_batched_multihead_attention_bacckward_ydotygrad.hpp
+1
-3
No files found.
example/32_batched_gemm_scale_softmax_gemm/CMakeLists.txt
View file @
a71a3f65
...
@@ -15,10 +15,11 @@ add_example_executable(example_grouped_multihead_attention_forward_v2 grouped_mu
...
@@ -15,10 +15,11 @@ add_example_executable(example_grouped_multihead_attention_forward_v2 grouped_mu
add_example_executable
(
example_batched_multihead_attention_forward_v2 batched_multihead_attention_forward_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_forward_v2 batched_multihead_attention_forward_v2.cpp
)
add_example_executable
(
example_grouped_multihead_attention_backward_v2 grouped_multihead_attention_backward_v2.cpp
)
add_example_executable
(
example_grouped_multihead_attention_backward_v2 grouped_multihead_attention_backward_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v2 batched_multihead_attention_backward_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v2 batched_multihead_attention_backward_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v3 batched_multihead_attention_backward_v3.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v2_phased batched_multihead_attention_backward_v2_phased.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v2_phased batched_multihead_attention_backward_v2_phased.cpp
)
add_example_executable
(
example_grouped_multihead_attention_train_v2 grouped_multihead_attention_train_v2.cpp
)
add_example_executable
(
example_grouped_multihead_attention_train_v2 grouped_multihead_attention_train_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_train_v2 batched_multihead_attention_train_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_train_v2 batched_multihead_attention_train_v2.cpp
)
add_example_executable
(
example_batched_multihead_attention_backward_v3 batched_multihead_attention_backward_v3.cpp
)
add_example_executable
(
example_grouped_multihead_attention_backward_v3 grouped_multihead_attention_backward_v3.cpp
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_custom_target
(
example_gemm_scale_softmax_gemm
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
add_dependencies
(
example_gemm_scale_softmax_gemm example_batched_gemm_scale_softmax_gemm_xdl_fp16
)
...
...
example/32_batched_gemm_scale_softmax_gemm/grouped_multihead_attention_backward_v3.cpp
0 → 100644
View file @
a71a3f65
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
/*
Backprop for Gemm + Softmax + Gemm fused operation, where forward prop is defined as:
Y_g_m_o = Softmax(alpha * Q_g_m_k * K_g_k_n) * V_g_n_o
Computation graph:
K^T V
| |
| |
Q --- * ----- Softmax ----- * --> Y
S P
Kernel inputs:
Q, K, V, Y, dY, per-row softmax stats (LSE)
Kernel outputs:
dQ, dK, dV
*/
#define USING_MASK 0
#define DIM 32 // DIM should be a multiple of 8.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <fstream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v1.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v2.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_dropout.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F32
=
float
;
using
U16
=
unsigned
short
;
using
INT32
=
int32_t
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Scale
=
ck
::
tensor_operation
::
element_wise
::
Scale
;
using
QKVElementOp
=
PassThrough
;
using
YElementOp
=
PassThrough
;
using
InputDataType
=
F16
;
using
OutputDataType
=
F16
;
using
GemmDataType
=
F16
;
using
AccDataType
=
F32
;
using
ShuffleDataType
=
F32
;
using
LSEDataType
=
F32
;
using
ZDataType
=
INT32
;
// U16
using
Acc0BiasDataType
=
ck
::
Tuple
<>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
using
DDataType
=
F32
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
// When OutputDataType == F32, CShuffleBlockTransferScalarPerVector_NPerBlock = 4
// When OutputDataType == F16/BF16, CShuffleBlockTransferScalarPerVector_NPerBlock = 8
static
constexpr
ck
::
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
=
8
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
#if USING_MASK
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskOutUpperTriangle
;
#else
static
constexpr
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
#endif
static
constexpr
auto
TensorSpecQ
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecK
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecV
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecY
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
bool
Deterministic
=
false
;
// DIM should be a multiple of 8.
// If DIM <= 32 , ues prototype1.
// If 32 < DIM <= 64 , ues prototype1.
// If 64 < DIM <= 128, ues prototype2.
#if(DIM <= 32)
// clang-format off
using
DeviceGemmInstance
=
// ##################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| DDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2|YDotYGrad| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ##################################################################################| | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| KPer| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Block| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
InputDataType
,
OutputDataType
,
GemmDataType
,
ZDataType
,
LSEDataType
,
DDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
128
,
128
,
32
,
32
,
32
,
8
,
8
,
2
,
32
,
32
,
4
,
1
,
1
,
1
,
32
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpec
,
Deterministic
>
;
// clang-format on
#elif(DIM <= 64)
// clang-format off
using
DeviceGemmInstance
=
// ##################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| DDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2|YDotYGrad| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ##################################################################################| | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| KPer| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Block| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | |
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V1
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
InputDataType
,
OutputDataType
,
GemmDataType
,
ZDataType
,
LSEDataType
,
DDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
64
,
128
,
64
,
64
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
1
,
2
,
1
,
64
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpec
,
Deterministic
>
;
// ##################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| DDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2|YDotYGrad| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ##################################################################################| | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| KPer| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Block| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 4, 1, 2, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 2, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 4, 1, 2, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 2, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 64, 64, 32, 8, 8, 2, 32, 32, 4, 1, 2, 2, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 2, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// clang-format on
#elif(DIM <= 128)
// clang-format off
using
DeviceGemmInstance
=
// ##################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| DDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2|YDotYGrad| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
// ##################################################################################| | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| NXdl| KPer| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Per| Block| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | | |
// ##################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 4, 1, 4, 2, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 64, 128, 32, 8, 8, 2, 32, 32, 4, 1, 4, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 4, 1, 4, 2, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 4, 1, 4, 4, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 4, 1, 4, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 64, 128, 64, 128, 32, 8, 8, 2, 32, 32, 2, 1, 4, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 64, 128, 64, 128, 32, 8, 8, 2, 32, 32, 2, 1, 4, 2, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 64, 128, 32, 128, 32, 8, 8, 2, 32, 32, 2, 1, 4, 1, 64, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
ck
::
tensor_operation
::
device
::
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
InputDataType
,
OutputDataType
,
GemmDataType
,
ZDataType
,
LSEDataType
,
DDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
ShuffleDataType
,
QKVElementOp
,
QKVElementOp
,
Scale
,
QKVElementOp
,
YElementOp
,
GemmSpec
,
TensorSpecQ
,
TensorSpecK
,
TensorSpecV
,
TensorSpecY
,
1
,
256
,
64
,
128
,
128
,
128
,
32
,
8
,
8
,
2
,
32
,
32
,
2
,
1
,
4
,
1
,
64
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
4
,
S
<
1
,
32
,
1
,
8
>
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpec
,
Deterministic
>
;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 32, 128, 128, 128, 32, 8, 8, 2, 32, 32, 1, 1, 4, 1, 64, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// ck::tensor_operation::device::DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, OutputDataType, GemmDataType, ZDataType, LSEDataType, DDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 32, 128, 64, 128, 32, 8, 8, 2, 32, 32, 1, 1, 4, 1, 64, S<8, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 4, S<1, 32, 1, 8>, CShuffleBlockTransferScalarPerVector_NPerBlock, MaskingSpec, Deterministic>;
// clang-format on
#endif
// Ref Gemm0: S = alpha * Q * K^T
// fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
InputDataType
,
InputDataType
,
AccDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
// Ref Softmax: P = Softmax(S)
// fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
InputDataType
,
AccDataType
>
;
// Ref Gemm1: Y = P * V
// fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
InputDataType
,
InputDataType
,
InputDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// Ref Gemm for backward pass
// fp16 in, fp16 out
using
ReferenceGemm0GradInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
InputDataType
,
InputDataType
,
InputDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
using
ReferenceGemm1GradInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
InputDataType
,
InputDataType
,
OutputDataType
,
AccDataType
,
PassThrough
,
PassThrough
,
Scale
>
;
// Ref dropout
using
ReferenceDropoutInstance
=
ck
::
tensor_operation
::
host
::
ReferenceDropout
<
ZDataType
,
InputDataType
,
InputDataType
>
;
template
<
typename
TensorQ
,
typename
TensorK
,
typename
TensorV
,
typename
TensorS
,
typename
TensorP
,
typename
TensorZ
,
typename
TensorY
,
typename
TensorLSE
=
TensorP
>
void
run_attention_fwd_host
(
const
TensorQ
&
q_g_m_k
,
const
TensorK
&
k_g_n_k
,
const
TensorV
&
v_g_n_o
,
const
float
alpha
,
TensorS
&
s_g_m_n
,
TensorP
&
p_g_m_n
,
TensorY
&
y_g_m_o
,
TensorLSE
&
lse_g_m
,
TensorP
&
p_drop_g_m_n
,
TensorZ
&
z_g_m_n
,
ZDataType
p_dropout_in_16bits
,
float
rp_dropout
)
{
// S = alpha * Q * K^T
auto
k_g_k_n
=
k_g_n_k
.
Transpose
({
0
,
2
,
1
});
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
q_g_m_k
,
k_g_k_n
,
s_g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
});
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
// masking
auto
N
=
s_g_m_n
.
GetLengths
()[
2
];
const
auto
mask
=
DeviceGemmInstance
::
C0MatrixMask
(
N
);
s_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// P = Softmax(S)
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
s_g_m_n
,
p_g_m_n
,
1
,
0
,
{
2
},
&
lse_g_m
);
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// P_dropped
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_n
,
p_g_m_n
,
p_drop_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
// Y = P_dropout * V
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
p_drop_g_m_n
,
v_g_n_o
,
y_g_m_o
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
}
int
run
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
2
;
// method 1 will have slightly higher error; TODO: to investigate
bool
time_kernel
=
true
;
// Overall QKV matrices shape
// y_g_m_o = Softmax(alpha * Q_g_m_k * K_g_k_n) * V_g_n_o
// y_g0_g1_m_o = reshape(y_g_m_o, [G0, G1, M, O])
// y_g0_m_g1_o = permute(y_g0_g1_m_o, [0, 2, 1, 3])
float
alpha
=
1.
f
/
std
::
sqrt
(
DIM
);
float
p_drop
=
0.0
;
bool
input_permute
=
true
;
bool
output_permute
=
true
;
const
unsigned
long
long
seed
=
1
;
const
unsigned
long
long
offset
=
0
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
7
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
p_drop
=
std
::
stof
(
argv
[
4
]);
input_permute
=
std
::
stoi
(
argv
[
5
]);
output_permute
=
std
::
stoi
(
argv
[
6
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
printf
(
"arg11 to 12: input / output permute
\n
"
);
exit
(
0
);
}
float
p_dropout
=
1
-
p_drop
;
ZDataType
p_dropout_in_16bits
=
ZDataType
(
std
::
floor
(
p_dropout
*
65535.0
));
float
rp_dropout
=
1.0
/
p_dropout
;
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
DeviceGemmInstance
::
ProblemDesc
>
problem_descs
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
const
void
*>
p_q
;
std
::
vector
<
const
void
*>
p_k
;
std
::
vector
<
void
*>
p_z
;
// for result verification
std
::
vector
<
void
*>
p_z_nullptr
;
// for time test
std
::
vector
<
const
void
*>
p_v
;
std
::
vector
<
const
void
*>
p_y
;
std
::
vector
<
const
void
*>
p_lse
;
std
::
vector
<
void
*>
p_d
;
std
::
vector
<
void
*>
p_qgrad
;
std
::
vector
<
void
*>
p_kgrad
;
std
::
vector
<
void
*>
p_vgrad
;
std
::
vector
<
const
void
*>
p_ygrad
;
std
::
vector
<
Tensor
<
InputDataType
>>
q_g_m_ks
;
std
::
vector
<
Tensor
<
InputDataType
>>
k_g_n_ks
;
std
::
vector
<
Tensor
<
ZDataType
>>
z_g_m_ns
;
std
::
vector
<
Tensor
<
InputDataType
>>
v_g_n_os
;
std
::
vector
<
Tensor
<
AccDataType
>>
s_g_m_ns
;
std
::
vector
<
Tensor
<
InputDataType
>>
p_g_m_ns
;
std
::
vector
<
Tensor
<
InputDataType
>>
y_g_m_os
;
std
::
vector
<
Tensor
<
LSEDataType
>>
lse_g_ms
;
std
::
vector
<
Tensor
<
DDataType
>>
d_g_ms
;
std
::
vector
<
Tensor
<
InputDataType
>>
p_drop_g_m_ns
;
std
::
vector
<
Tensor
<
InputDataType
>>
q_tensors
;
std
::
vector
<
Tensor
<
InputDataType
>>
k_tensors
;
std
::
vector
<
Tensor
<
InputDataType
>>
v_tensors
;
std
::
vector
<
Tensor
<
InputDataType
>>
y_tensors
;
std
::
vector
<
Tensor
<
ZDataType
>>
z_tensors
;
std
::
vector
<
Tensor
<
LSEDataType
>>
lse_tensors
;
std
::
vector
<
Tensor
<
OutputDataType
>>
qgrad_tensors
;
std
::
vector
<
Tensor
<
OutputDataType
>>
kgrad_tensors
;
std
::
vector
<
Tensor
<
OutputDataType
>>
vgrad_tensors
;
std
::
vector
<
Tensor
<
InputDataType
>>
ygrad_tensors
;
std
::
vector
<
DeviceMemPtr
>
q_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
k_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
z_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
v_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
y_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
lse_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
d_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
qgrad_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
ygrad_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
kgrad_tensors_device
;
std
::
vector
<
DeviceMemPtr
>
vgrad_tensors_device
;
std
::
size_t
group_count
=
10
;
std
::
size_t
flop
=
0
,
num_byte
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
int
M
=
128
*
(
rand
()
%
8
)
+
(
rand
()
%
128
);
int
N
=
128
*
(
rand
()
%
8
)
+
(
rand
()
%
128
);
int
K
=
DIM
;
int
O
=
DIM
;
int
G0
=
rand
()
%
4
+
1
;
int
G1
=
rand
()
%
4
+
1
;
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
q_gs_ms_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// Q layout [G0, M, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
K
,
M
*
K
,
K
,
1
};
// Q layout [G0, G1, M, K]
std
::
vector
<
ck
::
index_t
>
k_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
k_gs_ns_ks_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
}
// K layout [G0, N, G1, K]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
K
,
N
*
K
,
K
,
1
};
// K layout [G0, G1, N, K]
std
::
vector
<
ck
::
index_t
>
v_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
v_gs_os_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
}
// V layout [G0, N, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
N
*
O
,
N
*
O
,
1
,
O
};
// V layout [G0, G1, N, O]
std
::
vector
<
ck
::
index_t
>
y_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
y_gs_ms_os_strides
=
output_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
}
// Y layout [G0, M, G1, O]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
O
,
M
*
O
,
O
,
1
};
// Y layout [G0, G1, M, O]
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
z_gs_ms_ns_strides
=
input_permute
?
std
::
vector
<
ck
::
index_t
>
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
}
// Z layout [G0, M, G1, N]
:
std
::
vector
<
ck
::
index_t
>
{
G1
*
M
*
N
,
M
*
N
,
N
,
1
};
// Z layout [G0, G1, M, N]
// The softmax stat log-sum-exp (LSE) is used to speed up softmax calculation in backward
// pass Pi = exp(Si) / sum(exp(S0) + exp(S1) + ...)
// = exp(Si) / exp(log(sum(exp() + ...)))
// = exp(Si - log(sum(exp() + ...)))
// ^^^^^^^^^^^^^^^^^^^^^
// LSE
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_lengths
{
G0
,
G1
,
M
};
std
::
vector
<
ck
::
index_t
>
lse_gs_ms_strides
{
G1
*
M
,
M
,
1
};
// LSE layout [G0, G1, M]
// D = row_sum(y dot ygrad)
std
::
vector
<
ck
::
index_t
>
d_gs_ms_lengths
{
G0
,
G1
,
M
};
std
::
vector
<
ck
::
index_t
>
d_gs_ms_strides
{
G1
*
M
,
M
,
1
};
// D layout [G0, G1, M]
problem_descs
.
push_back
({
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
,
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
,
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
,
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
,
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
,
lse_gs_ms_lengths
,
lse_gs_ms_strides
,
d_gs_ms_lengths
,
d_gs_ms_strides
,
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc0_biases_gs_ms_ns_strides},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{},
// std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
});
int
BatchCount
=
G0
*
G1
;
flop
+=
(
size_t
(
3
)
*
M
*
N
*
K
+
size_t
(
2
)
*
M
*
N
*
O
)
*
2
*
BatchCount
;
// Q/K/V/Y, dQ/dK/dV/dY, LSE
num_byte
+=
(
sizeof
(
InputDataType
)
*
M
*
K
+
sizeof
(
InputDataType
)
*
K
*
N
+
sizeof
(
InputDataType
)
*
N
*
O
+
sizeof
(
InputDataType
)
*
M
*
O
*
size_t
(
2
)
+
sizeof
(
OutputDataType
)
*
M
*
K
+
sizeof
(
OutputDataType
)
*
K
*
N
+
sizeof
(
OutputDataType
)
*
N
*
O
)
*
BatchCount
+
sizeof
(
LSEDataType
)
*
M
*
BatchCount
;
Tensor
<
InputDataType
>
q_gs_ms_ks
(
q_gs_ms_ks_lengths
,
q_gs_ms_ks_strides
);
Tensor
<
InputDataType
>
k_gs_ns_ks
(
k_gs_ns_ks_lengths
,
k_gs_ns_ks_strides
);
Tensor
<
ZDataType
>
z_gs_ms_ns
(
z_gs_ms_ns_lengths
,
z_gs_ms_ns_strides
);
Tensor
<
InputDataType
>
v_gs_os_ns
(
v_gs_os_ns_lengths
,
v_gs_os_ns_strides
);
Tensor
<
InputDataType
>
y_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
Tensor
<
InputDataType
>
ygrad_gs_ms_os
(
y_gs_ms_os_lengths
,
y_gs_ms_os_strides
);
Tensor
<
LSEDataType
>
lse_gs_ms
(
lse_gs_ms_lengths
,
lse_gs_ms_strides
);
Tensor
<
DDataType
>
d_gs_ms
(
d_gs_ms_lengths
,
d_gs_ms_strides
);
if
(
i
<
4
)
{
std
::
cout
<<
"q_gs_ms_ks: "
<<
q_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"k_gs_ns_ks: "
<<
k_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"z_gs_ms_ns: "
<<
z_gs_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"v_gs_os_ns: "
<<
v_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"y_gs_ms_os: "
<<
y_gs_ms_os
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"lse_gs_ms_os: "
<<
lse_gs_ms
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_gs_ms_os: "
<<
d_gs_ms
.
mDesc
<<
std
::
endl
;
}
z_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
0
});
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
2
,
2
});
break
;
case
2
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
0.0
,
1.0
});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
-
0.5
,
0.5
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_3
<
InputDataType
>
{
-
0.5
,
0.5
});
break
;
case
3
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
InputDataType
>
{
-
5
,
5
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
break
;
case
4
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
break
;
case
5
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
// dy[g0, g1, m, o]
// dO dot O = [0; 1; 2; ...]
break
;
case
6
:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
3
>
{});
// dy[g0, g1, m, o]
// assume mnko = 256
// P = softmax(QK) = 0.0039 * ones
// O = P V = 0.0039 * ones
// dP = dO V = [0, 1, 2, ...; 0, 1, 2, ...; ...]
// dO dot O = [127.5; ...]
// dS = P * (dP - dO dot O)
//
break
;
default:
q_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
k_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
v_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
InputDataType
>
{});
ygrad_gs_ms_os
.
GenerateTensorValue
(
GeneratorTensor_1
<
InputDataType
>
{
1
});
// dy[g0, g1, m, o]
// assume mnko = 256
// P = softmax(QK) = 0.0039 * ones
// O = P V = 0.0039 * ones
// dP = dO V = ones
// dS = P * (dP - (dO dot O))
// = 0.0039 * ones * (ones - 0.0039*256)
// = 0.0039 * ones * (ones - 1)
// = 0
}
Tensor
<
InputDataType
>
q_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
InputDataType
>
k_g_n_k
({
BatchCount
,
N
,
K
});
Tensor
<
ZDataType
>
z_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
v_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
s_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
p_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
y_g_m_o
({
BatchCount
,
M
,
O
});
Tensor
<
LSEDataType
>
lse_g_m
({
BatchCount
,
M
});
Tensor
<
DDataType
>
d_g_m
({
BatchCount
,
M
});
Tensor
<
InputDataType
>
p_drop_g_m_n
({
BatchCount
,
M
,
N
});
q_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
q_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
k_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
k_g_n_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
v_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
v_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
q_g_m_ks
.
push_back
(
q_g_m_k
);
k_g_n_ks
.
push_back
(
k_g_n_k
);
z_g_m_ns
.
push_back
(
z_g_m_n
);
v_g_n_os
.
push_back
(
v_g_n_o
);
s_g_m_ns
.
push_back
(
s_g_m_n
);
p_g_m_ns
.
push_back
(
p_g_m_n
);
y_g_m_os
.
push_back
(
y_g_m_o
);
lse_g_ms
.
push_back
(
lse_g_m
);
d_g_ms
.
push_back
(
d_g_m
);
p_drop_g_m_ns
.
push_back
(
p_drop_g_m_n
);
q_tensors
.
push_back
(
q_gs_ms_ks
);
k_tensors
.
push_back
(
k_gs_ns_ks
);
v_tensors
.
push_back
(
v_gs_os_ns
);
y_tensors
.
push_back
(
y_gs_ms_os
);
z_tensors
.
push_back
(
z_gs_ms_ns
);
lse_tensors
.
push_back
(
lse_gs_ms
);
ygrad_tensors
.
push_back
(
ygrad_gs_ms_os
);
q_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
InputDataType
)
*
q_gs_ms_ks
.
GetElementSpaceSize
()));
k_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
InputDataType
)
*
k_gs_ns_ks
.
GetElementSpaceSize
()));
z_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
ZDataType
)
*
z_gs_ms_ns
.
GetElementSpaceSize
()));
v_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
InputDataType
)
*
v_gs_os_ns
.
GetElementSpaceSize
()));
y_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
InputDataType
)
*
y_gs_ms_os
.
GetElementSpaceSize
()));
lse_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
LSEDataType
)
*
lse_gs_ms
.
GetElementSpaceSize
()));
d_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
DDataType
)
*
d_gs_ms
.
GetElementSpaceSize
()));
qgrad_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
OutputDataType
)
*
q_gs_ms_ks
.
GetElementSpaceSize
()));
kgrad_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
OutputDataType
)
*
k_gs_ns_ks
.
GetElementSpaceSize
()));
vgrad_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
OutputDataType
)
*
v_gs_os_ns
.
GetElementSpaceSize
()));
ygrad_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
InputDataType
)
*
y_gs_ms_os
.
GetElementSpaceSize
()));
q_tensors_device
.
back
()
->
ToDevice
(
q_gs_ms_ks
.
data
());
k_tensors_device
.
back
()
->
ToDevice
(
k_gs_ns_ks
.
data
());
z_tensors_device
.
back
()
->
ToDevice
(
z_gs_ms_ns
.
data
());
v_tensors_device
.
back
()
->
ToDevice
(
v_gs_os_ns
.
data
());
ygrad_tensors_device
.
back
()
->
ToDevice
(
ygrad_gs_ms_os
.
data
());
p_q
.
push_back
(
q_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_k
.
push_back
(
k_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_z
.
push_back
(
z_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_z_nullptr
.
push_back
(
nullptr
);
p_v
.
push_back
(
v_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_y
.
push_back
(
y_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_lse
.
push_back
(
lse_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_d
.
push_back
(
d_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_kgrad
.
push_back
(
kgrad_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_vgrad
.
push_back
(
vgrad_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_ygrad
.
push_back
(
ygrad_tensors_device
.
back
()
->
GetDeviceBuffer
());
p_qgrad
.
push_back
(
qgrad_tensors_device
.
back
()
->
GetDeviceBuffer
());
}
auto
argument
=
gemm
.
MakeArgument
(
p_q
,
p_k
,
p_z_nullptr
,
p_v
,
p_y
,
p_lse
,
p_d
,
p_ygrad
,
p_qgrad
,
p_kgrad
,
p_vgrad
,
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
problem_descs
,
QKVElementOp
{},
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
DeviceMem
problem_desc_workspace
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
problem_desc_workspace
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
// get z matrix
argument
=
gemm
.
MakeArgument
(
p_q
,
p_k
,
p_z
,
p_v
,
p_y
,
p_lse
,
p_d
,
p_ygrad
,
p_qgrad
,
p_kgrad
,
p_vgrad
,
{},
// std::array<void*, 1> p_acc0_biases;
{},
// std::array<void*, 1> p_acc1_biases;
problem_descs
,
QKVElementOp
{},
QKVElementOp
{},
Scale
{
alpha
},
QKVElementOp
{},
YElementOp
{},
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
(
seed
,
offset
));
DeviceMem
problem_desc_workspace_verify
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
problem_desc_workspace_verify
.
GetDeviceBuffer
());
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
gemm
.
GetTypeString
()
<<
" does not support this problem"
<<
std
::
endl
;
return
0
;
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
int
G1
=
v_tensors
[
i
].
GetLengths
()[
1
];
// copy z matirx data form device
z_tensors_device
[
i
]
->
FromDevice
(
z_tensors
[
i
].
mData
.
data
());
z_tensors
[
i
].
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
z_g_m_ns
[
i
](
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
run_attention_fwd_host
(
q_g_m_ks
[
i
],
k_g_n_ks
[
i
],
v_g_n_os
[
i
],
alpha
,
s_g_m_ns
[
i
],
p_g_m_ns
[
i
],
y_g_m_os
[
i
],
lse_g_ms
[
i
],
p_drop_g_m_ns
[
i
],
z_g_m_ns
[
i
],
p_dropout_in_16bits
,
rp_dropout
);
y_tensors
[
i
].
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
y_g_m_os
[
i
](
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
]);
});
y_tensors_device
[
i
]
->
ToDevice
(
y_tensors
[
i
].
data
());
lse_tensors
[
i
].
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
)
=
lse_g_ms
[
i
](
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
]);
});
lse_tensors_device
[
i
]
->
ToDevice
(
lse_tensors
[
i
].
data
());
qgrad_tensors_device
[
i
]
->
SetZero
();
kgrad_tensors_device
[
i
]
->
SetZero
();
vgrad_tensors_device
[
i
]
->
SetZero
();
}
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
for
(
std
::
size_t
i
=
0
;
i
<
group_count
;
i
++
)
{
int
G0
=
v_tensors
[
i
].
GetLengths
()[
0
];
int
G1
=
v_tensors
[
i
].
GetLengths
()[
1
];
int
O
=
v_tensors
[
i
].
GetLengths
()[
2
];
int
N
=
v_tensors
[
i
].
GetLengths
()[
3
];
int
M
=
q_tensors
[
i
].
GetLengths
()[
2
];
int
K
=
q_tensors
[
i
].
GetLengths
()[
3
];
int
BatchCount
=
G0
*
G1
;
Tensor
<
OutputDataType
>
qgrad_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
OutputDataType
>
kgrad_g_n_k
({
BatchCount
,
N
,
K
});
Tensor
<
OutputDataType
>
vgrad_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
InputDataType
>
sgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
pgrad_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
pgrad_drop_g_m_n
({
BatchCount
,
M
,
N
});
Tensor
<
InputDataType
>
ygrad_g_m_o
({
BatchCount
,
M
,
O
});
ygrad_tensors
[
i
].
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
ygrad_g_m_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
auto
ref_gemm0_grad
=
ReferenceGemm0GradInstance
{};
auto
ref_gemm0_grad_invoker
=
ref_gemm0_grad
.
MakeInvoker
();
using
RefGemm0GradArg
=
ReferenceGemm0GradInstance
::
Argument
;
auto
ref_gemm1_grad
=
ReferenceGemm1GradInstance
{};
auto
ref_gemm1_grad_invoker
=
ref_gemm1_grad
.
MakeInvoker
();
using
RefGemm1GradArg
=
ReferenceGemm1GradInstance
::
Argument
;
// dP = dY * V^T
auto
v_g_o_n
=
v_g_n_os
[
i
].
Transpose
({
0
,
2
,
1
});
ref_gemm0_grad_invoker
.
Run
(
RefGemm0GradArg
{
ygrad_g_m_o
,
v_g_o_n
,
pgrad_drop_g_m_n
,
PassThrough
{},
PassThrough
{},
Scale
{
1.
f
}});
auto
ref_dropout
=
ReferenceDropoutInstance
{};
auto
ref_dropout_invoker
=
ref_dropout
.
MakeInvoker
();
auto
ref_dropout_argment
=
ref_dropout
.
MakeArgument
(
z_g_m_ns
[
i
],
pgrad_drop_g_m_n
,
pgrad_g_m_n
,
p_dropout_in_16bits
,
rp_dropout
);
ref_dropout_invoker
.
Run
(
ref_dropout_argment
);
sgrad_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx_gmn
)
{
float
ygrad_dot_y
=
0
;
for
(
int
o
=
0
;
o
<
O
;
o
++
)
{
auto
idx_gmo
=
idx_gmn
;
idx_gmo
[
2
]
=
o
;
ygrad_dot_y
+=
ck
::
type_convert
<
AccDataType
>
(
ygrad_g_m_o
(
idx_gmo
))
*
ck
::
type_convert
<
AccDataType
>
(
y_g_m_os
[
i
](
idx_gmo
));
}
self
(
idx_gmn
)
=
ck
::
type_convert
<
InputDataType
>
(
ck
::
type_convert
<
AccDataType
>
(
p_g_m_ns
[
i
](
idx_gmn
))
*
(
ck
::
type_convert
<
AccDataType
>
(
pgrad_g_m_n
(
idx_gmn
))
-
ygrad_dot_y
));
});
auto
p_drop_g_n_m
=
p_drop_g_m_ns
[
i
].
Transpose
({
0
,
2
,
1
});
ref_gemm1_grad_invoker
.
Run
(
RefGemm1GradArg
{
p_drop_g_n_m
,
ygrad_g_m_o
,
vgrad_g_n_o
,
PassThrough
{},
PassThrough
{},
Scale
{
1.0
f
}});
ref_gemm1_grad_invoker
.
Run
(
RefGemm1GradArg
{
sgrad_g_m_n
,
k_g_n_ks
[
i
],
qgrad_g_m_k
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
}});
auto
sgrad_g_n_m
=
sgrad_g_m_n
.
Transpose
({
0
,
2
,
1
});
ref_gemm1_grad_invoker
.
Run
(
RefGemm1GradArg
{
sgrad_g_n_m
,
q_g_m_ks
[
i
],
kgrad_g_n_k
,
PassThrough
{},
PassThrough
{},
Scale
{
alpha
}});
Tensor
<
OutputDataType
>
qgrad_gs_ms_ks_host_result
(
q_tensors
[
i
].
GetLengths
(),
q_tensors
[
i
].
GetStrides
());
Tensor
<
OutputDataType
>
kgrad_gs_ns_ks_host_result
(
k_tensors
[
i
].
GetLengths
(),
k_tensors
[
i
].
GetStrides
());
Tensor
<
OutputDataType
>
vgrad_gs_os_ns_host_result
(
v_tensors
[
i
].
GetLengths
(),
v_tensors
[
i
].
GetStrides
());
Tensor
<
OutputDataType
>
qgrad_gs_ms_ks_device_result
(
q_tensors
[
i
].
GetLengths
(),
q_tensors
[
i
].
GetStrides
());
Tensor
<
OutputDataType
>
kgrad_gs_ns_ks_device_result
(
k_tensors
[
i
].
GetLengths
(),
k_tensors
[
i
].
GetStrides
());
Tensor
<
OutputDataType
>
vgrad_gs_os_ns_device_result
(
v_tensors
[
i
].
GetLengths
(),
v_tensors
[
i
].
GetStrides
());
qgrad_tensors_device
[
i
]
->
FromDevice
(
qgrad_gs_ms_ks_device_result
.
data
());
kgrad_tensors_device
[
i
]
->
FromDevice
(
kgrad_gs_ns_ks_device_result
.
data
());
vgrad_tensors_device
[
i
]
->
FromDevice
(
vgrad_gs_os_ns_device_result
.
data
());
// permute
qgrad_gs_ms_ks_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
qgrad_g_m_k
(
g
,
idx
[
2
],
idx
[
3
]);
});
kgrad_gs_ns_ks_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
kgrad_g_n_k
(
g
,
idx
[
2
],
idx
[
3
]);
});
vgrad_gs_os_ns_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
vgrad_g_n_o
(
g
,
idx
[
3
],
idx
[
2
]);
});
std
::
cout
<<
"Checking qgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
qgrad_gs_ms_ks_device_result
.
mData
,
qgrad_gs_ms_ks_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
std
::
cout
<<
"Checking kgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
kgrad_gs_ns_ks_device_result
.
mData
,
kgrad_gs_ns_ks_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
std
::
cout
<<
"Checking vgrad:
\n
"
;
pass
&=
ck
::
utils
::
check_err
(
vgrad_gs_os_ns_device_result
.
mData
,
vgrad_gs_os_ns_host_result
.
mData
,
"error"
,
1e-2
,
1e-2
);
}
}
return
pass
?
((
void
)(
std
::
cout
<<
"pass
\n
"
),
0
)
:
((
void
)(
std
::
cout
<<
"fail
\n
"
),
1
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
run
(
argc
,
argv
);
}
include/ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v1.hpp
0 → 100644
View file @
a71a3f65
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_light_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_bacckward_ydotygrad.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
/*CK_MIN_BLOCK_PER_CU*/
1
)
#endif
kernel_grouped_multihead_attention_backward_ydotygrad_v1
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
arg_ptr
[
group_id
].
d_block_start_
&&
block_id
<
arg_ptr
[
group_id
].
d_block_end_
)))
{
if
(
block_id
<
arg_ptr
[
group_id
].
d_block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
d_num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
d_block_start_
)
/
num_blocks_per_batch
);
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
d_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetLSEBasePtr
(
g_idx
)));
GridwiseGemm
::
Run
(
arg_ptr
[
group_id
].
p_c_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
d_batch_offset
,
static_cast
<
void
*>
(
p_shared
),
arg_ptr
[
group_id
].
d_y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
d_grid_desc_m_
,
arg_ptr
[
group_id
].
d_block_2_ctile_map_
);
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
HasMainKBlockLoop
,
bool
Deterministic
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
/*CK_MIN_BLOCK_PER_CU*/
1
)
#endif
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v1
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
,
const
float
p_dropout
,
const
unsigned
long
long
seed
,
const
unsigned
long
long
offset
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
(
(
!
(
block_id
>=
arg_ptr
[
group_id
].
block_start_
&&
block_id
<
arg_ptr
[
group_id
].
block_end_
)))
{
if
(
block_id
<
arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
block_start_
)
/
(
Deterministic
?
1
:
num_blocks_per_batch
));
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
z_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetZBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
lse_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetLSEBasePtr
(
g_idx
)));
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
ck
::
philox
ph
(
seed
,
global_thread_id
,
offset
);
auto
z_matrix_ptr
=
(
arg_ptr
[
group_id
].
p_z_grid_
==
nullptr
?
nullptr
:
arg_ptr
[
group_id
].
p_z_grid_
+
z_batch_offset
);
if
constexpr
(
Deterministic
)
{
for
(
index_t
i
=
0
;
i
<
num_blocks_per_batch
;
i
++
)
{
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
z_matrix_ptr
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_lse_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_qgrad_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_kgrad_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_vgrad_grid_
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
ygrad_grid_desc_o0_m_o1_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
,
p_dropout
,
ph
,
arg_ptr
[
group_id
].
z_random_matrix_offset_
+
g_idx
*
arg_ptr
[
group_id
].
raw_m_padded_
*
arg_ptr
[
group_id
].
raw_n_padded_
,
arg_ptr
[
group_id
].
raw_n_padded_
,
i
);
}
}
else
{
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
z_matrix_ptr
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_lse_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_qgrad_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_kgrad_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_vgrad_grid_
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
ygrad_grid_desc_o0_m_o1_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
,
p_dropout
,
ph
,
arg_ptr
[
group_id
].
z_random_matrix_offset_
+
g_idx
*
arg_ptr
[
group_id
].
raw_m_padded_
*
arg_ptr
[
group_id
].
raw_n_padded_
,
arg_ptr
[
group_id
].
raw_n_padded_
,
0
);
}
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
ignore
=
p_dropout
;
ignore
=
seed
;
ignore
=
offset
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
// NumDimGemm1N
typename
InputDataType
,
typename
OutputDataType
,
typename
GemmDataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
DDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
B1Spec
,
TensorSpecialization
CSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
index_t
Gemm2NXdlPerWave
,
index_t
DKPerBlock
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpecialization
MaskingSpec
,
bool
Deterministic
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V1
:
public
BaseOperator
// TODO inherit atten bwd op once API stablizes
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
&&
NumDimO
>
0
,
"Number of dimension must be greater than 0"
);
static
constexpr
index_t
NumAcc0Bias
=
Acc0BiasDataType
::
Size
();
static
constexpr
index_t
NumAcc1Bias
=
Acc1BiasDataType
::
Size
();
// TODO: implement bias combination
static_assert
(
NumAcc0Bias
==
0
&&
NumAcc0Bias
==
0
,
"Bias addition is unimplemented"
);
using
DeviceOp
=
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V1
;
struct
ProblemDesc
{
std
::
vector
<
index_t
>
a_gs_ms_ks_lengths
;
std
::
vector
<
index_t
>
a_gs_ms_ks_strides
;
std
::
vector
<
index_t
>
b_gs_ns_ks_lengths
;
std
::
vector
<
index_t
>
b_gs_ns_ks_strides
;
std
::
vector
<
index_t
>
z_gs_ms_ns_lengths
;
std
::
vector
<
index_t
>
z_gs_ms_ns_strides
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_lengths
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_strides
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
;
std
::
vector
<
index_t
>
lse_gs_ms_lengths
;
std
::
vector
<
index_t
>
lse_gs_ms_strides
;
std
::
vector
<
index_t
>
d_gs_ms_lengths
;
std
::
vector
<
index_t
>
d_gs_ms_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_strides
;
};
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
Q_K1
=
8
;
static
constexpr
index_t
K_K1
=
8
;
static
constexpr
index_t
V_N1
=
2
;
static
constexpr
index_t
Q_M1
=
2
;
static
constexpr
index_t
K_N1
=
2
;
static
constexpr
index_t
V_O1
=
8
;
static
constexpr
index_t
Y_O1
=
8
;
static
constexpr
index_t
Y_M1
=
2
;
static
constexpr
auto
padder
=
GemmGemmPadder
<
GemmSpec
,
Number
<
MPerBlock
>
,
Number
<
NPerBlock
>
,
Number
<
KPerBlock
>
,
Number
<
Gemm1NPerBlock
>>
{};
using
Transform
=
TransformBatchedContractionContractionToBatchedGemmGemm
<
Sequence
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
>
,
Sequence
<
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
>
,
GemmSpec
,
ASpec
,
BSpec
,
B1Spec
,
CSpec
>
;
/*
Descriptors for inputs:
Q, K, V, Y, dY, per-row softmax stats
Descriptors for outputs:
dQ, dK, dV
*/
// Q in Gemm A position
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
),
Number
<
AK1
>
{});
}
// K in Gemm B0 position
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB0GridDescriptor_N_K
(
b_gs_ns_ks_lengths_vec
,
b_gs_ns_ks_strides_vec
),
Number
<
BK1
>
{});
}
//
// dV = P^T * dY
//
// VGrad in Gemm C position
static
auto
MakeVGradGridDescriptor_N_O
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
vgrad_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
return
PadTensorDescriptor
(
vgrad_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
}
//
// dQ = alpha * dS * K
//
static
auto
MakeYGradGridDescriptor_O0_M_O1
(
const
std
::
vector
<
index_t
>&
y_gs_ms_os_lengths_vec
,
const
std
::
vector
<
index_t
>&
y_gs_ms_os_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
y_gs_ms_os_lengths_vec
,
y_gs_ms_os_strides_vec
),
Number
<
Y_O1
>
{});
}
// V in Gemm B position
static
auto
MakeVGridDescriptor_O0_N_O1
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
v_grid_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
const
auto
v_grid_desc_n_o
=
PadTensorDescriptor
(
v_grid_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
// N_O to O0_N_O1; to refactor
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
v_grid_desc_n_o
,
Number
<
V_O1
>
{});
}
static
auto
MakeZGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
z_gs_ms_ns_lengths_vec
,
z_gs_ms_ns_strides_vec
);
}
static
auto
MakeLSEGridDescriptor_M
(
index_t
MRaw
)
{
const
auto
lse_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
MRaw
));
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
lse_grid_desc_mraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
lse_grid_desc_mraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
({},
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
YGridDesc_M_O
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
LSEGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
using
AGridDesc_G_M_K
=
decltype
(
Transform
::
MakeAGridDescriptor_G_M_K
({},
{}));
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
ZGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
KGridDesc_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_N_K
({},
{}));
using
YGradGridDesc_O0_M_O1
=
decltype
(
MakeYGradGridDescriptor_O0_M_O1
({},
{}));
using
ZGridDesc_M_N
=
decltype
(
MakeZGridDescriptor_M_N
({},
{}));
using
DGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
constexpr
static
auto
make_MaskOutPredicate
()
{
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskDisabled
)
{
return
MaskDisabledPredicate
{};
}
else
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
)
{
return
MaskOutUpperTrianglePredicate
{};
}
}
using
C0MatrixMask
=
C0MatrixMask_impl
<
decltype
(
make_MaskOutPredicate
())
>
;
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
ZGridDesc_G_M_N
&
z_grid_desc_g_m_n
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
,
index_t
batch_stride_lse
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
z_grid_desc_g_m_n_
(
z_grid_desc_g_m_n
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
),
batch_stride_lse_
(
batch_stride_lse
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
a_grid_desc_g_m_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
b_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetZBasePtr
(
index_t
g_idx
)
const
{
return
z_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
b1_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetLSEBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
batch_stride_lse_
);
}
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
batch_stride_lse_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle_V1
<
InputDataType
,
// TODO: distinguish A/B datatype
OutputDataType
,
ZDataType
,
GemmDataType
,
GemmAccDataType
,
CShuffleDataType
,
LSEDataType
,
DDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
KGridDesc_N_K
,
ZGridDesc_M_N
,
B1GridDesc_BK0_N_BK1
,
YGridDesc_M_O
,
LSEGridDesc_M
,
DGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
Gemm2NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
Transform
::
matrix_padder
.
PadN
,
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
,
Deterministic
>
;
using
Block2CTileMap
=
OffsettedBlockToCTileMap
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
;
// GridwiseYDotYGrad
using
GridwiseYDotYGrad
=
GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
<
InputDataType
,
// TODO: distinguish A/B
DDataType
,
// datatype
YGridDesc_M_O
,
DGridDesc_M
,
BlockSize
,
BlockSize
,
DKPerBlock
>
;
struct
GroupKernelArg
{
// pointers
const
InputDataType
*
p_a_grid_
;
const
InputDataType
*
p_b_grid_
;
ZDataType
*
p_z_grid_
;
const
InputDataType
*
p_b1_grid_
;
const
InputDataType
*
p_c_grid_
;
const
LSEDataType
*
p_lse_grid_
;
const
InputDataType
*
p_ygrad_grid_
;
OutputDataType
*
p_qgrad_grid_
;
OutputDataType
*
p_kgrad_grid_
;
OutputDataType
*
p_vgrad_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
ZGridDesc_M_N
z_grid_desc_m_n_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
YGridDesc_M_O
y_grid_desc_m_o_
;
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock_
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
;
LSEGridDesc_M
lse_grid_desc_m_
;
KGridDesc_N_K
k_grid_desc_n_k_
;
YGradGridDesc_O0_M_O1
ygrad_grid_desc_o0_m_o1_
;
// block-to-c-tile map
Block2CTileMap
block_2_ctile_map_
;
index_t
num_blocks_per_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
index_t
block_start_
,
block_end_
;
index_t
z_random_matrix_offset_
;
index_t
raw_m_padded_
,
raw_n_padded_
;
// D parameter
DDataType
*
p_d_grid_
;
DGridDesc_M
d_grid_desc_m_
;
typename
GridwiseYDotYGrad
::
DefaultBlock2CTileMap
d_block_2_ctile_map_
;
typename
GridwiseYDotYGrad
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
d_y_grid_desc_mblock_mperblock_oblock_operblock_
;
index_t
d_num_blocks_per_batch_
;
index_t
d_block_start_
,
d_block_end_
;
};
struct
GroupDeviceArg
{
// lengths for the last dimensions of overall problem for sanity check of vector load/store
std
::
vector
<
index_t
>
raw_lengths_mz_nz_kz_gemm1nz_
;
// strides for the last dimensions of each tensor for sanity check of vector load/store
std
::
vector
<
index_t
>
a_mz_kz_strides_
;
std
::
vector
<
index_t
>
b_nz_kz_strides_
;
std
::
vector
<
index_t
>
b1_nz_kz_strides_
;
std
::
vector
<
index_t
>
c_mz_gemm1nz_strides_
;
// for gridwise gemm check
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
batch_count_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
p_dropout_
{
p_drop
}
{
seed_
=
std
::
get
<
0
>
(
seeds
);
offset_
=
std
::
get
<
1
>
(
seeds
);
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
problem_desc_vec
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Zs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_B1s
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Cs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ygrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Qgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Kgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Vgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_LSEs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/b1/c.size"
);
}
if
(
!
(
p_acc0_biases
.
size
()
==
p_acc1_biases
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! acc0_bias_vec.size != acc1_bias_vec.size"
);
}
grid_size_
=
0
;
index_t
z_random_matrix_offset
=
0
;
d_grid_size_
=
0
;
for
(
index_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
InputDataType
*>
(
p_As
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
InputDataType
*>
(
p_Bs
[
i
]);
auto
p_z_grid
=
static_cast
<
ZDataType
*>
(
p_Zs
[
i
]);
const
auto
p_b1_grid
=
static_cast
<
const
InputDataType
*>
(
p_B1s
[
i
]);
const
auto
p_c_grid
=
static_cast
<
const
InputDataType
*>
(
p_Cs
[
i
]);
const
auto
p_lse_grid
=
static_cast
<
const
LSEDataType
*>
(
p_LSEs
[
i
]);
const
auto
p_ygrad_grid
=
static_cast
<
const
InputDataType
*>
(
p_Ygrads
[
i
]);
auto
p_qgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Qgrads
[
i
]);
auto
p_kgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Kgrads
[
i
]);
auto
p_vgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Vgrads
[
i
]);
const
auto
&
problem_desc
=
problem_desc_vec
[
i
];
const
auto
a_grid_desc_ak0_m_ak1
=
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
z_grid_desc_m_n
=
DeviceOp
::
MakeZGridDescriptor_M_N
(
problem_desc
.
z_gs_ms_ns_lengths
,
problem_desc
.
z_gs_ms_ns_strides
);
const
auto
b1_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeVGridDescriptor_O0_N_O1
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
y_grid_desc_m_o
=
Transform
::
MakeCGridDescriptor_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
const
auto
lse_grid_desc_m
=
DeviceOp
::
MakeLSEGridDescriptor_M
(
problem_desc
.
lse_gs_ms_lengths
[
NumDimG
]);
const
auto
k_grid_desc_n_k
=
Transform
::
MakeB0GridDescriptor_N_K
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
ygrad_grid_desc_o0_m_o1
=
DeviceOp
::
MakeYGradGridDescriptor_O0_M_O1
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
const
auto
a_grid_desc_g_m_k
=
Transform
::
MakeAGridDescriptor_G_M_K
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_g_n_k
=
Transform
::
MakeB0GridDescriptor_G_N_K
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
z_grid_desc_g_m_n
=
Transform
::
MakeCGridDescriptor_G_M_N
(
problem_desc
.
z_gs_ms_ns_lengths
,
problem_desc
.
z_gs_ms_ns_strides
);
const
auto
b1_grid_desc_g_n_k
=
Transform
::
MakeB1GridDescriptor_G_N_K
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
c_grid_desc_g_m_n
=
Transform
::
MakeCGridDescriptor_G_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3
;
const
index_t
BlockStart
=
grid_size_
;
const
auto
block_2_ctile_map
=
Block2CTileMap
(
k_grid_desc_n_k
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
))
{
y_grid_desc_mblock_mperblock_oblock_operblock
=
GridwiseGemm
::
MakeYGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
(
y_grid_desc_m_o
);
}
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3
(
z_grid_desc_m_n
);
const
index_t
batch_count
=
c_grid_desc_g_m_n
.
GetLength
(
I0
);
const
index_t
grid_size_grp
=
(
Deterministic
?
1
:
block_2_ctile_map
.
CalculateGridSize
(
k_grid_desc_n_k
))
*
batch_count
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
// batch stride
const
auto
compute_base_ptr_of_batch
=
ComputeBasePtrOfStridedBatch
(
a_grid_desc_g_m_k
,
b_grid_desc_g_n_k
,
z_grid_desc_g_m_n
,
b1_grid_desc_g_n_k
,
c_grid_desc_g_m_n
,
type_convert
<
index_t
>
(
lse_grid_desc_m
.
GetElementSpaceSize
()));
// C0 mask
const
auto
c0_matrix_mask
=
C0MatrixMask
(
b_grid_desc_g_n_k
.
GetLength
(
I1
));
grid_size_
+=
grid_size_grp
;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and
// so on
if
(
!
(
problem_desc
.
acc0_biases_gs_ms_ns_lengths
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc0_biases_gs_ms_ns_strides
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_lengths
.
size
()
==
NumAcc1Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_strides
.
size
()
==
NumAcc1Bias
))
{
throw
std
::
runtime_error
(
"wrong! number of biases in function argument does not "
"match that in template argument"
);
}
const
auto
raw_m_padded
=
GridwiseGemm
::
GetPaddedSize
(
problem_desc
.
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
]);
const
auto
raw_n_padded
=
GridwiseGemm
::
GetPaddedSize
(
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
]);
// D parameters
const
auto
p_d_grid
=
static_cast
<
DDataType
*>
(
p_Ds
[
i
]);
const
auto
d_grid_desc_m
=
DeviceOp
::
MakeLSEGridDescriptor_M
(
problem_desc
.
d_gs_ms_lengths
[
NumDimG
]);
const
auto
d_block_2_ctile_map
=
GridwiseYDotYGrad
::
MakeDefaultBlock2CTileMap
(
y_grid_desc_m_o
);
const
auto
d_y_grid_desc_mblock_mperblock_oblock_operblock
=
GridwiseYDotYGrad
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
y_grid_desc_m_o
);
index_t
d_num_blocks_per_batch
=
d_block_2_ctile_map
.
CalculateGridSize
(
y_grid_desc_m_o
);
index_t
d_block_start
=
d_grid_size_
;
index_t
d_block_end
=
d_block_start
+
d_num_blocks_per_batch
*
batch_count
;
d_grid_size_
=
d_block_end
;
group_kernel_args_
.
push_back
({
p_a_grid
,
p_b_grid
,
p_z_grid
,
p_b1_grid
,
p_c_grid
,
p_lse_grid
,
p_ygrad_grid
,
p_qgrad_grid
,
p_kgrad_grid
,
p_vgrad_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
z_grid_desc_m_n
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
,
y_grid_desc_mblock_mperblock_oblock_operblock
,
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3
,
lse_grid_desc_m
,
k_grid_desc_n_k
,
ygrad_grid_desc_o0_m_o1
,
block_2_ctile_map
,
block_2_ctile_map
.
CalculateGridSize
(
k_grid_desc_n_k
),
compute_base_ptr_of_batch
,
c0_matrix_mask
,
BlockStart
,
BlockEnd
,
z_random_matrix_offset
,
raw_m_padded
,
raw_n_padded
,
p_d_grid
,
d_grid_desc_m
,
d_block_2_ctile_map
,
d_y_grid_desc_mblock_mperblock_oblock_operblock
,
d_num_blocks_per_batch
,
d_block_start
,
d_block_end
});
z_random_matrix_offset
=
z_random_matrix_offset
+
raw_m_padded
*
raw_n_padded
*
batch_count
;
group_device_args_
.
push_back
(
{{
problem_desc
.
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
+
NumDimK
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
[
NumDimG
+
NumDimO
-
1
]},
{
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
]},
{
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
]},
{
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
+
NumDimN
-
1
]},
{
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
+
NumDimO
-
1
]},
c_grid_desc_g_m_n
,
batch_count
});
}
// TODO: implement bias addition
// ignore = p_acc0_biases;
// ignore = p_acc1_biases;
// ignore = acc0_biases_gs_ms_ns_lengths;
// ignore = acc0_biases_gs_ms_ns_strides;
// ignore = acc1_biases_gs_ms_gemm1ns_lengths;
// ignore = acc1_biases_gs_ms_gemm1ns_strides;
}
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
float
p_dropout_
;
unsigned
long
long
seed_
;
unsigned
long
long
offset_
;
index_t
grid_size_
;
index_t
group_count_
;
std
::
vector
<
GroupKernelArg
>
group_kernel_args_
;
std
::
vector
<
GroupDeviceArg
>
group_device_args_
;
index_t
d_grid_size_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
bool
all_has_main_k_block_loop
=
false
;
bool
some_has_main_k_block_loop
=
false
;
// for(std::size_t i = 0; i < arg.group_count_; i++)
// {
// const auto K =
// arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I0) *
// arg.group_kernel_args_[i].a_grid_desc_ak0_m_ak1_.GetLength(I2);
// const bool y = GridwiseGemm::CalculateHasMainKBlockLoop(K);
// all_has_main_k_block_loop &= y;
// some_has_main_k_block_loop |= y;
// }
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
group_kernel_args_
.
data
(),
arg
.
group_kernel_args_
.
size
()
*
sizeof
(
GroupKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
{
auto
launch_kernel
=
[
&
]()
{
const
auto
kernel
=
kernel_grouped_multihead_attention_backward_ydotygrad_v1
<
GridwiseYDotYGrad
,
GroupKernelArg
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
d_grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
);
};
ave_time
=
launch_kernel
();
}
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v1
<
GridwiseGemm
,
GroupKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
has_main_k_block_loop_
,
Deterministic
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
,
arg
.
p_dropout_
,
arg
.
seed_
,
arg
.
offset_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
all_has_main_k_block_loop
)
{
ave_time
+=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
if
(
!
some_has_main_k_block_loop
)
{
ave_time
+=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
else
{
throw
std
::
runtime_error
(
"wrong! all gemm problems have to simultaneously meet "
"has_main_k_block_loop or no_main_k_block_loop"
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
// TODO: Check if tensor specialization & strides mismatch
const
auto
&
kernel_arg
=
arg
.
group_kernel_args_
[
i
];
const
auto
&
device_arg
=
arg
.
group_device_args_
[
i
];
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
device_arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I1
);
const
index_t
a_m
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I0
)
*
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
);
if
(
!
(
c_g
==
device_arg
.
batch_count_
&&
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part
// of vector is out of bounds Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const
auto
MzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
0
];
const
auto
NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
1
];
const
auto
KzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
2
];
const
auto
Gemm1NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
ABlockTransferSrcVectorDim
==
2
?
KzRaw
:
MzRaw
;
const
auto
b_extent_lowest
=
BBlockTransferSrcVectorDim
==
2
?
KzRaw
:
NzRaw
;
const
auto
c_extent_lowest
=
Gemm1NzRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector load/store requirement
const
auto
a_stride_lowest
=
ABlockTransferSrcVectorDim
==
2
?
device_arg
.
a_mz_kz_strides_
[
1
]
:
device_arg
.
a_mz_kz_strides_
[
0
];
const
auto
b_stride_lowest
=
BBlockTransferSrcVectorDim
==
2
?
device_arg
.
b_nz_kz_strides_
[
1
]
:
device_arg
.
b_nz_kz_strides_
[
0
];
const
auto
c_stride_lowest
=
device_arg
.
c_mz_gemm1nz_strides_
[
1
];
// cshuffle assumes lowest dim in Gemm1Ns to be
// contiguous
if
(
!
(
a_stride_lowest
==
1
||
b_stride_lowest
==
1
||
c_stride_lowest
==
1
))
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
kernel_arg
.
a_grid_desc_ak0_m_ak1_
,
kernel_arg
.
b_grid_desc_bk0_n_bk1_
,
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
,
kernel_arg
.
y_grid_desc_m_o_
))
{
return
false
;
}
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupKernelArg
);
}
static
auto
MakeArgument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Zs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ds
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
p_acc1_biases
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
// FIXME: constness
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
// override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Zs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ds
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
// cast in struct Argument
p_acc1_biases
,
// cast in struct Argument
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
// override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V1"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
"ASpec"
<<
getTensorSpecializationString
(
ASpec
)
<<
", "
<<
"B0Spec"
<<
getTensorSpecializationString
(
BSpec
)
<<
", "
<<
"B1Spec"
<<
getTensorSpecializationString
(
B1Spec
)
<<
", "
<<
"CSpec"
<<
getTensorSpecializationString
(
CSpec
)
<<
", "
<<
getMaskingSpecializationString
(
MaskingSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_mha_bwd_xdl_cshuffle_qloop_light_v2.hpp
0 → 100644
View file @
a71a3f65
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/utility/philox_rand.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
// #include "ck/tensor_operation/gpu/device/device_batched_multihead_attention_backward.hpp" // TODO
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/masking_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_mha_bwd_xdl_cshuffle_qloop_b2t_light_v2.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_bacckward_ydotygrad.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
/*CK_MIN_BLOCK_PER_CU*/
1
)
#endif
kernel_grouped_multihead_attention_backward_ydotygrad_v2
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
arg_ptr
[
group_id
].
d_block_start_
&&
block_id
<
arg_ptr
[
group_id
].
d_block_end_
)))
{
if
(
block_id
<
arg_ptr
[
group_id
].
d_block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
d_num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
d_block_start_
)
/
num_blocks_per_batch
);
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
d_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetLSEBasePtr
(
g_idx
)));
GridwiseGemm
::
Run
(
arg_ptr
[
group_id
].
p_c_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
d_batch_offset
,
static_cast
<
void
*>
(
p_shared
),
arg_ptr
[
group_id
].
d_y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
d_grid_desc_m_
,
arg_ptr
[
group_id
].
d_block_2_ctile_map_
);
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template
<
typename
GridwiseGemm
,
typename
GroupKernelArg
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
bool
HasMainKBlockLoop
,
bool
Deterministic
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
/*CK_MIN_BLOCK_PER_CU*/
1
)
#endif
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v2
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
group_kernel_args
,
const
index_t
group_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
,
const
float
p_dropout
,
const
unsigned
long
long
seed
,
const
unsigned
long
long
offset
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
block_id
=
get_block_1d_id
();
const
auto
arg_ptr
=
reinterpret_cast
<
const
GroupKernelArg
*>
(
cast_pointer_to_generic_address_space
(
group_kernel_args
));
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
(
(
!
(
block_id
>=
arg_ptr
[
group_id
].
block_start_
&&
block_id
<
arg_ptr
[
group_id
].
block_end_
)))
{
if
(
block_id
<
arg_ptr
[
group_id
].
block_start_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
// per-group batch offset
const
index_t
num_blocks_per_batch
=
arg_ptr
[
group_id
].
num_blocks_per_batch_
;
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
(
block_id
-
arg_ptr
[
group_id
].
block_start_
)
/
(
Deterministic
?
1
:
num_blocks_per_batch
));
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
z_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetZBasePtr
(
g_idx
)));
const
long_index_t
b1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetB1BasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
lse_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
arg_ptr
[
group_id
].
compute_base_ptr_of_batch_
.
GetLSEBasePtr
(
g_idx
)));
const
index_t
global_thread_id
=
get_thread_global_1d_id
();
ck
::
philox
ph
(
seed
,
global_thread_id
,
offset
);
auto
z_matrix_ptr
=
(
arg_ptr
[
group_id
].
p_z_grid_
==
nullptr
?
nullptr
:
arg_ptr
[
group_id
].
p_z_grid_
+
z_batch_offset
);
if
constexpr
(
Deterministic
)
{
for
(
index_t
i
=
0
;
i
<
num_blocks_per_batch
;
i
++
)
{
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
z_matrix_ptr
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_lse_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_qgrad_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_kgrad_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_vgrad_grid_
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
ygrad_grid_desc_m0_o_m1_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
,
p_dropout
,
ph
,
arg_ptr
[
group_id
].
z_random_matrix_offset_
+
g_idx
*
arg_ptr
[
group_id
].
raw_m_padded_
*
arg_ptr
[
group_id
].
raw_n_padded_
,
arg_ptr
[
group_id
].
raw_n_padded_
,
i
);
}
}
else
{
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
arg_ptr
[
group_id
].
p_a_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_b_grid_
+
b_batch_offset
,
z_matrix_ptr
,
arg_ptr
[
group_id
].
p_b1_grid_
+
b1_batch_offset
,
arg_ptr
[
group_id
].
p_lse_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_d_grid_
+
lse_batch_offset
,
arg_ptr
[
group_id
].
p_ygrad_grid_
+
c_batch_offset
,
arg_ptr
[
group_id
].
p_qgrad_grid_
+
a_batch_offset
,
arg_ptr
[
group_id
].
p_kgrad_grid_
+
b_batch_offset
,
arg_ptr
[
group_id
].
p_vgrad_grid_
+
b1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
arg_ptr
[
group_id
].
a_grid_desc_ak0_m_ak1_
,
arg_ptr
[
group_id
].
b_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
,
arg_ptr
[
group_id
].
b1_grid_desc_bk0_n_bk1_
,
arg_ptr
[
group_id
].
y_grid_desc_mblock_mperblock_oblock_operblock_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
lse_grid_desc_m_
,
arg_ptr
[
group_id
].
ygrad_grid_desc_m0_o_m1_
,
arg_ptr
[
group_id
].
block_2_ctile_map_
,
arg_ptr
[
group_id
].
c0_matrix_mask_
,
p_dropout
,
ph
,
arg_ptr
[
group_id
].
z_random_matrix_offset_
+
g_idx
*
arg_ptr
[
group_id
].
raw_m_padded_
*
arg_ptr
[
group_id
].
raw_n_padded_
,
arg_ptr
[
group_id
].
raw_n_padded_
,
0
);
}
#else
ignore
=
group_kernel_args
;
ignore
=
group_count
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
ignore
=
p_dropout
;
ignore
=
seed
;
ignore
=
offset
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// Computes C = A * B0 * B1
// ^^^^^^ (Acc0)
// ^^^^^^^^^^^ (Acc1)
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
index_t
NumDimO
,
// NumDimGemm1N
typename
InputDataType
,
typename
OutputDataType
,
typename
GemmDataType
,
typename
ZDataType
,
typename
LSEDataType
,
typename
DDataType
,
typename
Acc0BiasDataType
,
typename
Acc1BiasDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
B1Spec
,
TensorSpecialization
CSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
// Gemm0NPerBlock
index_t
KPerBlock
,
// Gemm0KPerBlock
index_t
Gemm1NPerBlock
,
index_t
Gemm1KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
B1K1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
index_t
Gemm1NXdlPerWave
,
index_t
Gemm2NXdlPerWave
,
index_t
DKPerBlock
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
typename
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
B1BlockTransferThreadClusterArrangeOrder
,
typename
B1BlockTransferSrcAccessOrder
,
index_t
B1BlockTransferSrcVectorDim
,
index_t
B1BlockTransferSrcScalarPerVector
,
index_t
B1BlockTransferDstScalarPerVector_BK1
,
bool
B1BlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
MaskingSpecialization
MaskingSpec
,
bool
Deterministic
,
LoopScheduler
LoopSched
=
LoopScheduler
::
Default
>
struct
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
:
public
BaseOperator
// TODO inherit atten bwd op once API stablizes
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
&&
NumDimO
>
0
,
"Number of dimension must be greater than 0"
);
static
constexpr
index_t
NumAcc0Bias
=
Acc0BiasDataType
::
Size
();
static
constexpr
index_t
NumAcc1Bias
=
Acc1BiasDataType
::
Size
();
// TODO: implement bias combination
static_assert
(
NumAcc0Bias
==
0
&&
NumAcc0Bias
==
0
,
"Bias addition is unimplemented"
);
using
DeviceOp
=
DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2
;
struct
ProblemDesc
{
std
::
vector
<
index_t
>
a_gs_ms_ks_lengths
;
std
::
vector
<
index_t
>
a_gs_ms_ks_strides
;
std
::
vector
<
index_t
>
b_gs_ns_ks_lengths
;
std
::
vector
<
index_t
>
b_gs_ns_ks_strides
;
std
::
vector
<
index_t
>
z_gs_ms_ns_lengths
;
std
::
vector
<
index_t
>
z_gs_ms_ns_strides
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_lengths
;
std
::
vector
<
index_t
>
b1_gs_gemm1ns_gemm1ks_strides
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_lengths
;
std
::
vector
<
index_t
>
c_gs_ms_gemm1ns_strides
;
std
::
vector
<
index_t
>
lse_gs_ms_lengths
;
std
::
vector
<
index_t
>
lse_gs_ms_strides
;
std
::
vector
<
index_t
>
d_gs_ms_lengths
;
std
::
vector
<
index_t
>
d_gs_ms_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc0_biases_gs_ms_ns_strides
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_lengths
;
std
::
vector
<
std
::
vector
<
index_t
>>
acc1_biases_gs_ms_os_strides
;
};
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
Q_K1
=
8
;
static
constexpr
index_t
K_K1
=
8
;
static
constexpr
index_t
V_N1
=
2
;
static
constexpr
index_t
Q_M1
=
2
;
static
constexpr
index_t
K_N1
=
2
;
static
constexpr
index_t
V_O1
=
8
;
static
constexpr
index_t
Y_O1
=
8
;
static
constexpr
index_t
Y_M1
=
2
;
static
constexpr
auto
padder
=
GemmGemmPadder
<
GemmSpec
,
Number
<
MPerBlock
>
,
Number
<
NPerBlock
>
,
Number
<
KPerBlock
>
,
Number
<
Gemm1NPerBlock
>>
{};
using
Transform
=
TransformBatchedContractionContractionToBatchedGemmGemm
<
Sequence
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
>
,
Sequence
<
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
>
,
GemmSpec
,
ASpec
,
BSpec
,
B1Spec
,
CSpec
>
;
/*
Descriptors for inputs:
Q, K, V, Y, dY, per-row softmax stats
Descriptors for outputs:
dQ, dK, dV
*/
// Q in Gemm A position
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeAGridDescriptor_AK0_M_AK1
(
Transform
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ks_lengths_vec
,
a_gs_ms_ks_strides_vec
),
Number
<
AK1
>
{});
}
// K in Gemm B0 position
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeB0GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB0GridDescriptor_N_K
(
b_gs_ns_ks_lengths_vec
,
b_gs_ns_ks_strides_vec
),
Number
<
BK1
>
{});
}
// V in Gemm B1 position
static
auto
MakeB1GridDescriptor_BK0_N_BK1
(
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides_vec
)
{
return
Transform
::
MakeB1GridDescriptor_BK0_N_BK1
(
Transform
::
MakeB1GridDescriptor_N_K
(
b1_gs_gemm1ns_gemm1ks_lengths_vec
,
b1_gs_gemm1ns_gemm1ks_strides_vec
),
Number
<
B1K1
>
{});
}
//
// dV = P^T * dY
//
// VGrad in Gemm C position
static
auto
MakeVGradGridDescriptor_N_O
(
const
std
::
vector
<
index_t
>&
v_gs_os_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
v_gs_os_ns_strides_vec
)
{
// v_gs_os_ns -> vgrad_gs_ns_os. O dims last because output is row-major.
// Here directly rearrange lengths/strides before constructing tensor descriptor to reduce
// transformation overhead
// TODO: This will be much easier when inputs are Gs, Ms, Ns, Os. So there's no need to
// extract subsequence and shuffle them.
const
index_t
num_dims
=
NumDimG
+
NumDimN
+
NumDimO
;
// 0, 1, .. NumDimG - 1
std
::
vector
<
index_t
>
gs_ids
(
NumDimG
);
std
::
iota
(
gs_ids
.
begin
(),
gs_ids
.
end
(),
0
);
// NumDimG, NumDimG + 1, ... NumDimG + NumDimO - 1
std
::
vector
<
index_t
>
os_ids
(
NumDimO
);
std
::
iota
(
os_ids
.
begin
(),
os_ids
.
end
(),
NumDimG
);
// NumDimG + NumDimO, NumDimG + NumDimO + 1, ... NumDimG + NumDimO + NumDimN - 1
std
::
vector
<
index_t
>
ns_ids
(
NumDimN
);
std
::
iota
(
ns_ids
.
begin
(),
ns_ids
.
end
(),
NumDimG
+
NumDimO
);
std
::
vector
<
index_t
>
ids_old2new
;
ids_old2new
.
insert
(
ids_old2new
.
end
(),
gs_ids
.
begin
(),
gs_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
ns_ids
.
begin
(),
ns_ids
.
end
());
ids_old2new
.
insert
(
ids_old2new
.
end
(),
os_ids
.
begin
(),
os_ids
.
end
());
std
::
vector
<
index_t
>
v_gs_ns_os_lengths_vec
(
num_dims
),
v_gs_ns_os_strides_vec
(
num_dims
);
for
(
int
i
=
0
;
i
<
num_dims
;
i
++
)
{
index_t
id_new
=
ids_old2new
[
i
];
v_gs_ns_os_lengths_vec
[
i
]
=
v_gs_os_ns_lengths_vec
[
id_new
];
v_gs_ns_os_strides_vec
[
i
]
=
v_gs_os_ns_strides_vec
[
id_new
];
}
const
auto
vgrad_desc_nraw_oraw
=
MakeGridDescriptorPair
<
NumDimG
,
NumDimN
,
NumDimO
,
TensorSpecialization
::
Default
>
(
v_gs_ns_os_lengths_vec
,
v_gs_ns_os_strides_vec
)
.
second
;
return
PadTensorDescriptor
(
vgrad_desc_nraw_oraw
,
make_tuple
(
NPerBlock
,
Gemm1NPerBlock
),
Sequence
<
padder
.
PadN
,
padder
.
PadO
>
{});
}
template
<
typename
YGridDesc_M_O
>
static
auto
MakeYGradGridDescriptor_M0_O_M1
(
const
YGridDesc_M_O
&
ygrad_grid_desc_m_o
)
{
const
auto
M
=
ygrad_grid_desc_m_o
.
GetLength
(
I0
);
const
auto
O
=
ygrad_grid_desc_m_o
.
GetLength
(
I1
);
const
auto
Y_M0
=
M
/
Y_M1
;
return
transform_tensor_descriptor
(
ygrad_grid_desc_m_o
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
Y_M0
,
Y_M1
)),
make_pass_through_transform
(
O
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
//
// dS_i_j = P_i_j .* (dP_i_j - dY_i dot Y_i)
//
//
// dQ = alpha * dS * K
//
// QGrad in Gemm C position
static
auto
MakeQGradGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
q_gs_ms_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
q_gs_ms_ks_lengths_vec
,
q_gs_ms_ks_strides_vec
);
}
//
// dK = alpha * dS^T * Q
//
// KGrad in Gemm C position
static
auto
MakeKGradGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
k_gs_ns_ks_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
k_gs_ns_ks_lengths_vec
,
k_gs_ns_ks_strides_vec
);
}
static
auto
MakeZGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
z_gs_ms_ns_strides_vec
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
z_gs_ms_ns_lengths_vec
,
z_gs_ms_ns_strides_vec
);
}
static
auto
MakeLSEGridDescriptor_M
(
index_t
MRaw
)
{
const
auto
lse_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
MRaw
));
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
lse_grid_desc_mraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
lse_grid_desc_mraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
({},
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
({},
{}));
using
YGridDesc_M_O
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
LSEGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
using
AGridDesc_G_M_K
=
decltype
(
Transform
::
MakeAGridDescriptor_G_M_K
({},
{}));
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
ZGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
KGridDesc_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_N_K
({},
{}));
using
YGradGridDesc_M0_O_M1
=
decltype
(
MakeYGradGridDescriptor_M0_O_M1
(
YGridDesc_M_O
{}));
using
ZGridDesc_M_N
=
decltype
(
MakeZGridDescriptor_M_N
({},
{}));
using
DGridDesc_M
=
decltype
(
MakeLSEGridDescriptor_M
(
1
));
constexpr
static
auto
make_MaskOutPredicate
()
{
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskDisabled
)
{
return
MaskDisabledPredicate
{};
}
else
if
constexpr
(
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
)
{
return
MaskOutUpperTrianglePredicate
{};
}
}
using
C0MatrixMask
=
C0MatrixMask_impl
<
decltype
(
make_MaskOutPredicate
())
>
;
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
ZGridDesc_G_M_N
&
z_grid_desc_g_m_n
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
,
index_t
BatchStrideLSE
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
z_grid_desc_g_m_n_
(
z_grid_desc_g_m_n
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
),
BatchStrideLSE_
(
BatchStrideLSE
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
a_grid_desc_g_m_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
b_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetZBasePtr
(
index_t
g_idx
)
const
{
return
z_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetB1BasePtr
(
index_t
g_idx
)
const
{
return
b1_grid_desc_g_n_k_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
__host__
__device__
constexpr
long_index_t
GetLSEBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideLSE_
);
}
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
ZGridDesc_G_M_N
z_grid_desc_g_m_n_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
BatchStrideLSE_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedMultiheadAttentionBackward_Xdl_CShuffle_V2
<
InputDataType
,
// TODO: distinguish A/B datatype
OutputDataType
,
ZDataType
,
GemmDataType
,
GemmAccDataType
,
CShuffleDataType
,
LSEDataType
,
DDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
KGridDesc_N_K
,
ZGridDesc_M_N
,
B1GridDesc_BK0_N_BK1
,
YGridDesc_M_O
,
LSEGridDesc_M
,
DGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
Gemm1NPerBlock
,
Gemm1KPerBlock
,
AK1
,
BK1
,
B1K1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
Gemm1NXdlPerWave
,
Gemm2NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
true
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
true
,
BBlockLdsExtraN
,
B1BlockTransferThreadClusterLengths_BK0_N_BK1
,
B1BlockTransferThreadClusterArrangeOrder
,
B1BlockTransferSrcAccessOrder
,
B1BlockTransferSrcVectorDim
,
B1BlockTransferSrcScalarPerVector
,
B1BlockTransferDstScalarPerVector_BK1
,
true
,
B1BlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopSched
,
Transform
::
matrix_padder
.
PadN
,
MaskingSpec
==
MaskingSpecialization
::
MaskOutUpperTriangle
,
Deterministic
>
;
using
Block2CTileMap
=
OffsettedBlockToCTileMap
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
;
// GridwiseYDotYGrad
using
GridwiseYDotYGrad
=
GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
<
InputDataType
,
// TODO: distinguish A/B
DDataType
,
// datatype
YGridDesc_M_O
,
DGridDesc_M
,
BlockSize
,
BlockSize
,
DKPerBlock
>
;
struct
GroupKernelArg
{
// pointers
const
InputDataType
*
p_a_grid_
;
const
InputDataType
*
p_b_grid_
;
ZDataType
*
p_z_grid_
;
const
InputDataType
*
p_b1_grid_
;
const
InputDataType
*
p_c_grid_
;
const
LSEDataType
*
p_lse_grid_
;
const
InputDataType
*
p_ygrad_grid_
;
OutputDataType
*
p_qgrad_grid_
;
OutputDataType
*
p_kgrad_grid_
;
OutputDataType
*
p_vgrad_grid_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
ZGridDesc_M_N
z_grid_desc_m_n_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
YGridDesc_M_O
y_grid_desc_m_o_
;
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock_
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3_
;
LSEGridDesc_M
lse_grid_desc_m_
;
KGridDesc_N_K
k_grid_desc_n_k_
;
YGradGridDesc_M0_O_M1
ygrad_grid_desc_m0_o_m1_
;
// block-to-c-tile map
Block2CTileMap
block_2_ctile_map_
;
index_t
num_blocks_per_batch_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
index_t
block_start_
,
block_end_
;
index_t
z_random_matrix_offset_
;
index_t
raw_m_padded_
,
raw_n_padded_
;
// D parameter
DDataType
*
p_d_grid_
;
DGridDesc_M
d_grid_desc_m_
;
typename
GridwiseYDotYGrad
::
DefaultBlock2CTileMap
d_block_2_ctile_map_
;
typename
GridwiseYDotYGrad
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
d_y_grid_desc_mblock_mperblock_oblock_operblock_
;
index_t
d_num_blocks_per_batch_
;
index_t
d_block_start_
,
d_block_end_
;
};
struct
GroupDeviceArg
{
// lengths for the last dimensions of overall problem for sanity check of vector load/store
std
::
vector
<
index_t
>
raw_lengths_mz_nz_kz_gemm1nz_
;
// strides for the last dimensions of each tensor for sanity check of vector load/store
std
::
vector
<
index_t
>
a_mz_kz_strides_
;
std
::
vector
<
index_t
>
b_nz_kz_strides_
;
std
::
vector
<
index_t
>
b1_nz_kz_strides_
;
std
::
vector
<
index_t
>
c_mz_gemm1nz_strides_
;
// for gridwise gemm check
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
index_t
batch_count_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
p_dropout_
{
p_drop
}
{
seed_
=
std
::
get
<
0
>
(
seeds
);
offset_
=
std
::
get
<
1
>
(
seeds
);
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
problem_desc_vec
.
size
());
if
(
!
(
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_As
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Bs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Zs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_B1s
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Cs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ygrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Qgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Kgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Vgrads
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_LSEs
.
size
())
&&
group_count_
==
ck
::
type_convert
<
ck
::
index_t
>
(
p_Ds
.
size
())))
{
throw
std
::
runtime_error
(
"wrong! group_count_ != p_As/b/b1/c.size"
);
}
if
(
!
(
p_acc0_biases
.
size
()
==
p_acc1_biases
.
size
()))
{
throw
std
::
runtime_error
(
"wrong! acc0_bias_vec.size != acc1_bias_vec.size"
);
}
grid_size_
=
0
;
index_t
z_random_matrix_offset
=
0
;
d_grid_size_
=
0
;
for
(
index_t
i
=
0
;
i
<
group_count_
;
i
++
)
{
const
auto
p_a_grid
=
static_cast
<
const
InputDataType
*>
(
p_As
[
i
]);
const
auto
p_b_grid
=
static_cast
<
const
InputDataType
*>
(
p_Bs
[
i
]);
auto
p_z_grid
=
static_cast
<
ZDataType
*>
(
p_Zs
[
i
]);
const
auto
p_b1_grid
=
static_cast
<
const
InputDataType
*>
(
p_B1s
[
i
]);
const
auto
p_c_grid
=
static_cast
<
const
InputDataType
*>
(
p_Cs
[
i
]);
const
auto
p_lse_grid
=
static_cast
<
const
LSEDataType
*>
(
p_LSEs
[
i
]);
const
auto
p_ygrad_grid
=
static_cast
<
const
InputDataType
*>
(
p_Ygrads
[
i
]);
auto
p_qgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Qgrads
[
i
]);
auto
p_kgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Kgrads
[
i
]);
auto
p_vgrad_grid
=
static_cast
<
OutputDataType
*>
(
p_Vgrads
[
i
]);
const
auto
&
problem_desc
=
problem_desc_vec
[
i
];
const
auto
a_grid_desc_ak0_m_ak1
=
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
z_grid_desc_m_n
=
DeviceOp
::
MakeZGridDescriptor_M_N
(
problem_desc
.
z_gs_ms_ns_lengths
,
problem_desc
.
z_gs_ms_ns_strides
);
const
auto
b1_grid_desc_bk0_n_bk1
=
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
y_grid_desc_m_o
=
Transform
::
MakeCGridDescriptor_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
const
auto
lse_grid_desc_m
=
DeviceOp
::
MakeLSEGridDescriptor_M
(
problem_desc
.
lse_gs_ms_lengths
[
NumDimG
]);
const
auto
k_grid_desc_n_k
=
Transform
::
MakeB0GridDescriptor_N_K
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
ygrad_grid_desc_m0_o_m1
=
DeviceOp
::
MakeYGradGridDescriptor_M0_O_M1
(
y_grid_desc_m_o
);
const
auto
a_grid_desc_g_m_k
=
Transform
::
MakeAGridDescriptor_G_M_K
(
problem_desc
.
a_gs_ms_ks_lengths
,
problem_desc
.
a_gs_ms_ks_strides
);
const
auto
b_grid_desc_g_n_k
=
Transform
::
MakeB0GridDescriptor_G_N_K
(
problem_desc
.
b_gs_ns_ks_lengths
,
problem_desc
.
b_gs_ns_ks_strides
);
const
auto
z_grid_desc_g_m_n
=
Transform
::
MakeCGridDescriptor_G_M_N
(
problem_desc
.
z_gs_ms_ns_lengths
,
problem_desc
.
z_gs_ms_ns_strides
);
const
auto
b1_grid_desc_g_n_k
=
Transform
::
MakeB1GridDescriptor_G_N_K
(
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
,
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
);
const
auto
c_grid_desc_g_m_n
=
Transform
::
MakeCGridDescriptor_G_M_N
(
problem_desc
.
c_gs_ms_gemm1ns_lengths
,
problem_desc
.
c_gs_ms_gemm1ns_strides
);
typename
GridwiseGemm
::
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
y_grid_desc_mblock_mperblock_oblock_operblock
;
typename
GridwiseGemm
::
ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_M4_M5_N3
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3
;
const
index_t
BlockStart
=
grid_size_
;
const
auto
block_2_ctile_map
=
Block2CTileMap
(
k_grid_desc_n_k
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
))
{
y_grid_desc_mblock_mperblock_oblock_operblock
=
GridwiseGemm
::
MakeYGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
(
y_grid_desc_m_o
);
}
const
index_t
batch_count
=
c_grid_desc_g_m_n
.
GetLength
(
I0
);
const
index_t
grid_size_grp
=
(
Deterministic
?
1
:
block_2_ctile_map
.
CalculateGridSize
(
k_grid_desc_n_k
))
*
batch_count
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
// batch stride
const
auto
compute_base_ptr_of_batch
=
ComputeBasePtrOfStridedBatch
(
a_grid_desc_g_m_k
,
b_grid_desc_g_n_k
,
z_grid_desc_g_m_n
,
b1_grid_desc_g_n_k
,
c_grid_desc_g_m_n
,
type_convert
<
index_t
>
(
lse_grid_desc_m
.
GetElementSpaceSize
()));
// C0 mask
const
auto
c0_matrix_mask
=
C0MatrixMask
(
b_grid_desc_g_n_k
.
GetLength
(
I1
));
grid_size_
+=
grid_size_grp
;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumAcc0Bias and
// so on
if
(
!
(
problem_desc
.
acc0_biases_gs_ms_ns_lengths
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc0_biases_gs_ms_ns_strides
.
size
()
==
NumAcc0Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_lengths
.
size
()
==
NumAcc1Bias
&&
problem_desc
.
acc1_biases_gs_ms_os_strides
.
size
()
==
NumAcc1Bias
))
{
throw
std
::
runtime_error
(
"wrong! number of biases in function argument does not "
"match that in template argument"
);
}
const
auto
raw_m_padded
=
GridwiseGemm
::
GetPaddedSize
(
problem_desc
.
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
]);
const
auto
raw_n_padded
=
GridwiseGemm
::
GetPaddedSize
(
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
]);
// D parameters
const
auto
p_d_grid
=
static_cast
<
DDataType
*>
(
p_Ds
[
i
]);
const
auto
d_grid_desc_m
=
DeviceOp
::
MakeLSEGridDescriptor_M
(
problem_desc
.
d_gs_ms_lengths
[
NumDimG
]);
const
auto
d_block_2_ctile_map
=
GridwiseYDotYGrad
::
MakeDefaultBlock2CTileMap
(
y_grid_desc_m_o
);
const
auto
d_y_grid_desc_mblock_mperblock_oblock_operblock
=
GridwiseYDotYGrad
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
y_grid_desc_m_o
);
index_t
d_num_blocks_per_batch
=
d_block_2_ctile_map
.
CalculateGridSize
(
y_grid_desc_m_o
);
index_t
d_block_start
=
d_grid_size_
;
index_t
d_block_end
=
d_block_start
+
d_num_blocks_per_batch
*
batch_count
;
d_grid_size_
=
d_block_end
;
group_kernel_args_
.
push_back
({
p_a_grid
,
p_b_grid
,
p_z_grid
,
p_b1_grid
,
p_c_grid
,
p_lse_grid
,
p_ygrad_grid
,
p_qgrad_grid
,
p_kgrad_grid
,
p_vgrad_grid
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
z_grid_desc_m_n
,
b1_grid_desc_bk0_n_bk1
,
y_grid_desc_m_o
,
y_grid_desc_mblock_mperblock_oblock_operblock
,
c_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3
,
lse_grid_desc_m
,
k_grid_desc_n_k
,
ygrad_grid_desc_m0_o_m1
,
block_2_ctile_map
,
block_2_ctile_map
.
CalculateGridSize
(
k_grid_desc_n_k
),
compute_base_ptr_of_batch
,
c0_matrix_mask
,
BlockStart
,
BlockEnd
,
z_random_matrix_offset
,
raw_m_padded
,
raw_n_padded
,
p_d_grid
,
d_grid_desc_m
,
d_block_2_ctile_map
,
d_y_grid_desc_mblock_mperblock_oblock_operblock
,
d_num_blocks_per_batch
,
d_block_start
,
d_block_end
});
z_random_matrix_offset
=
z_random_matrix_offset
+
raw_m_padded
*
raw_n_padded
*
batch_count
;
group_device_args_
.
push_back
(
{{
problem_desc
.
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
+
NumDimK
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_lengths
[
NumDimG
+
NumDimO
-
1
]},
{
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
]},
{
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
],
problem_desc
.
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
]},
{
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
-
1
],
problem_desc
.
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
+
NumDimN
-
1
]},
{
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
-
1
],
problem_desc
.
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
+
NumDimO
-
1
]},
c_grid_desc_g_m_n
,
batch_count
});
}
// TODO: implement bias addition
// ignore = p_acc0_biases;
// ignore = p_acc1_biases;
// ignore = acc0_biases_gs_ms_ns_lengths;
// ignore = acc0_biases_gs_ms_ns_strides;
// ignore = acc1_biases_gs_ms_gemm1ns_lengths;
// ignore = acc1_biases_gs_ms_gemm1ns_strides;
}
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
float
p_dropout_
;
unsigned
long
long
seed_
;
unsigned
long
long
offset_
;
index_t
grid_size_
;
index_t
group_count_
;
std
::
vector
<
GroupKernelArg
>
group_kernel_args_
;
std
::
vector
<
GroupDeviceArg
>
group_device_args_
;
index_t
d_grid_size_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
DeviceOp
::
IsSupportedArgument
(
arg
))
{
throw
std
::
runtime_error
(
"wrong! unsupported argument"
);
}
bool
all_has_main_k_block_loop
=
true
;
bool
some_has_main_k_block_loop
=
false
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
const
auto
K
=
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
group_kernel_args_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
const
bool
y
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
);
all_has_main_k_block_loop
&=
y
;
some_has_main_k_block_loop
|=
y
;
}
hipGetErrorString
(
hipMemcpy
(
arg
.
p_workspace_
,
arg
.
group_kernel_args_
.
data
(),
arg
.
group_kernel_args_
.
size
()
*
sizeof
(
GroupKernelArg
),
hipMemcpyHostToDevice
));
float
ave_time
=
0
;
{
auto
launch_kernel
=
[
&
]()
{
const
auto
kernel
=
kernel_grouped_multihead_attention_backward_ydotygrad_v2
<
GridwiseYDotYGrad
,
GroupKernelArg
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
d_grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
);
};
ave_time
=
launch_kernel
();
}
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
)
{
const
auto
kernel
=
kernel_grouped_multihead_attention_backward_xdl_cshuffle_v2
<
GridwiseGemm
,
GroupKernelArg
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
has_main_k_block_loop_
,
Deterministic
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
p_workspace_
),
arg
.
group_count_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
,
arg
.
p_dropout_
,
arg
.
seed_
,
arg
.
offset_
);
};
// Gemm1_K is split into Gemm1_K0/K1 where K1 is known at compile time, so we only need
// to concern Gemm0's loop
if
(
all_has_main_k_block_loop
)
{
ave_time
+=
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
if
(
!
some_has_main_k_block_loop
)
{
ave_time
+=
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
else
{
throw
std
::
runtime_error
(
"wrong! all gemm problems have to simultaneously meet "
"has_main_k_block_loop or no_main_k_block_loop"
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
i
++
)
{
// TODO: Check if tensor specialization & strides mismatch
const
auto
&
kernel_arg
=
arg
.
group_kernel_args_
[
i
];
const
auto
&
device_arg
=
arg
.
group_device_args_
[
i
];
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
device_arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
kernel_arg
.
y_grid_desc_m_o_
.
GetLength
(
I1
);
const
index_t
a_m
=
kernel_arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
if
(
!
(
c_g
==
device_arg
.
batch_count_
&&
c_m
==
a_m
&&
c_gemm1n
==
b1_gemm1n
))
{
return
false
;
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part
// of vector is out of bounds Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
const
auto
MzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
0
];
const
auto
NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
1
];
const
auto
KzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
2
];
const
auto
Gemm1NzRaw
=
device_arg
.
raw_lengths_mz_nz_kz_gemm1nz_
[
3
];
// Check scalar per vector requirement
const
auto
a_extent_lowest
=
ABlockTransferSrcVectorDim
==
2
?
KzRaw
:
MzRaw
;
const
auto
b_extent_lowest
=
BBlockTransferSrcVectorDim
==
2
?
KzRaw
:
NzRaw
;
const
auto
b1_extent_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
NzRaw
:
Gemm1NzRaw
;
const
auto
c_extent_lowest
=
Gemm1NzRaw
;
if
(
!
(
a_extent_lowest
%
ABlockTransferSrcScalarPerVector
==
0
&&
b_extent_lowest
%
BBlockTransferSrcScalarPerVector
==
0
&&
b1_extent_lowest
%
B1BlockTransferSrcScalarPerVector
==
0
&&
c_extent_lowest
%
CShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
// Check vector load/store requirement
const
auto
a_stride_lowest
=
ABlockTransferSrcVectorDim
==
2
?
device_arg
.
a_mz_kz_strides_
[
1
]
:
device_arg
.
a_mz_kz_strides_
[
0
];
const
auto
b_stride_lowest
=
BBlockTransferSrcVectorDim
==
2
?
device_arg
.
b_nz_kz_strides_
[
1
]
:
device_arg
.
b_nz_kz_strides_
[
0
];
const
auto
b1_stride_lowest
=
B1BlockTransferSrcVectorDim
==
2
?
device_arg
.
b1_nz_kz_strides_
[
1
]
:
device_arg
.
b1_nz_kz_strides_
[
0
];
const
auto
c_stride_lowest
=
device_arg
.
c_mz_gemm1nz_strides_
[
1
];
// cshuffle assumes lowest dim in Gemm1Ns to be
// contiguous
if
(
!
(
a_stride_lowest
==
1
||
b_stride_lowest
==
1
||
b1_stride_lowest
==
1
||
c_stride_lowest
==
1
))
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
kernel_arg
.
a_grid_desc_ak0_m_ak1_
,
kernel_arg
.
b_grid_desc_bk0_n_bk1_
,
kernel_arg
.
b1_grid_desc_bk0_n_bk1_
,
kernel_arg
.
y_grid_desc_m_o_
))
{
return
false
;
}
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
return
dynamic_cast
<
const
Argument
*>
(
p_arg
)
->
group_count_
*
sizeof
(
GroupKernelArg
);
}
static
auto
MakeArgument
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Zs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ds
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
p_acc1_biases
,
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
// FIXME: constness
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
vector
<
const
void
*>&
p_As
,
const
std
::
vector
<
const
void
*>&
p_Bs
,
const
std
::
vector
<
void
*>&
p_Zs
,
const
std
::
vector
<
const
void
*>&
p_B1s
,
const
std
::
vector
<
const
void
*>&
p_Cs
,
// for dS
const
std
::
vector
<
const
void
*>&
p_LSEs
,
const
std
::
vector
<
void
*>&
p_Ds
,
const
std
::
vector
<
const
void
*>&
p_Ygrads
,
std
::
vector
<
void
*>&
p_Qgrads
,
std
::
vector
<
void
*>&
p_Kgrads
,
std
::
vector
<
void
*>&
p_Vgrads
,
const
std
::
array
<
void
*
,
NumAcc0Bias
>&
p_acc0_biases
,
const
std
::
array
<
void
*
,
NumAcc1Bias
>&
p_acc1_biases
,
const
std
::
vector
<
ProblemDesc
>&
problem_desc_vec
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
,
float
p_drop
,
std
::
tuple
<
unsigned
long
long
,
unsigned
long
long
>
seeds
)
// override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Zs
,
p_B1s
,
p_Cs
,
p_LSEs
,
p_Ds
,
p_Ygrads
,
p_Qgrads
,
p_Kgrads
,
p_Vgrads
,
p_acc0_biases
,
// cast in struct Argument
p_acc1_biases
,
// cast in struct Argument
problem_desc_vec
,
a_element_op
,
b_element_op
,
acc_element_op
,
b1_element_op
,
c_element_op
,
p_drop
,
seeds
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
// override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedMultiheadAttentionBackward_Xdl_CShuffle_V2"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerBlock
<<
", "
<<
Gemm1NPerBlock
<<
", "
<<
Gemm1KPerBlock
<<
", "
<<
B1K1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
"ASpec"
<<
getTensorSpecializationString
(
ASpec
)
<<
", "
<<
"B0Spec"
<<
getTensorSpecializationString
(
BSpec
)
<<
", "
<<
"B1Spec"
<<
getTensorSpecializationString
(
B1Spec
)
<<
", "
<<
"CSpec"
<<
getTensorSpecializationString
(
CSpec
)
<<
", "
<<
getMaskingSpecializationString
(
MaskingSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_batched_multihead_attention_bacckward_ydotygrad.hpp
View file @
a71a3f65
...
@@ -135,8 +135,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
...
@@ -135,8 +135,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
return
MPerBlock
*
sizeof
(
FloatD
);
return
MPerBlock
*
sizeof
(
FloatD
);
}
}
__device__
static
void
test
()
{}
template
<
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
InputDataType
*
__restrict__
p_y_grid
,
__device__
static
void
Run
(
const
InputDataType
*
__restrict__
p_y_grid
,
const
InputDataType
*
__restrict__
p_ygrad_grid
,
const
InputDataType
*
__restrict__
p_ygrad_grid
,
FloatD
*
__restrict__
p_d_grid
,
FloatD
*
__restrict__
p_d_grid
,
...
@@ -144,7 +142,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
...
@@ -144,7 +142,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_YDotYGrad
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
&
const
YGridDescriptor_MBlock_MPerBlock_OBlock_OPerBlock
&
y_grid_desc_mblock_mperblock_oblock_operblock
,
y_grid_desc_mblock_mperblock_oblock_operblock
,
const
DGridDesc_M
&
d_grid_desc_m
,
const
DGridDesc_M
&
d_grid_desc_m
,
const
Block2CTileMap
&
block_2_ctile_map
)
const
Default
Block2CTileMap
&
block_2_ctile_map
)
{
{
const
auto
y_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
const
auto
y_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_y_grid
,
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetElementSpaceSize
());
p_y_grid
,
y_grid_desc_mblock_mperblock_oblock_operblock
.
GetElementSpaceSize
());
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment