Commit a711f90b authored by Chao Liu's avatar Chao Liu
Browse files

update profiler for conv bwd weight

parent f5e3a6e8
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv2d_bwd_weight_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_default_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
using device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances, device_conv2d_bwd_weight_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_default_instances{});
add_device_operation_instances(
instances, device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv2d_bwd_weight_xdl_c_shuffle_nhwc_kyxc_nhwk_f32_default_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 2, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
using device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 2, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances, device_conv2d_bwd_weight_xdl_c_shuffle_nhwc_kyxc_nhwk_f32_default_instances{});
add_device_operation_instances(
instances, device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_1x1_s1_p0_f32_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = bhalf_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_bf16_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
using device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_bf16_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< BF16, BF16, BF16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances, device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_bf16_instances{});
add_device_operation_instances(
instances, device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_bf16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_f16_default_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
using device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_f16_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 256, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 128, 4, 8, 32, 32, 4, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 64, 128, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 64, 4, 8, 32, 32, 2, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 64, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 64, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 8, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 32, 128, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 8>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 1, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 32, 4, 8, 32, 32, 2, 1, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F16, F16, F16, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 32, 64, 4, 8, 32, 32, 1, 2, S<1, 4, 4, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 2, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 8, 4, true, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances,
device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_f16_default_instances{});
add_device_operation_instances(
instances, device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_f16_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_convnd_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdWeightDefault =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Default;
static constexpr auto ConvBwdWeightFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0;
// Compilation parameters for in[n, hi, wi, c] * wei[k, y, x, c] = out[n, ho, wo, k]
using device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_f32_default_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightDefault, 3, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
using device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_f32_instances = std::tuple<
// clang-format off
//#################################################################################| InData| WeiData| OutData| AccData| In| Wei| Out| ConvBackward| Num| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransfer| CBlockTransfer|
//#################################################################################| Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Weight| Dim| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| ClusterLengths|ScalarPerVector|
//#################################################################################| | | | | Operation| Operation| Operation| Specialization|Spatial| | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| MBlock_MPerBlock| NWaveNPerXdl|
//#################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | NBlock_NPerBlock| |
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 256, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 256, 4, 4, 32, 32, 2, 4, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 64, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 8>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 128, 4, 4, 32, 32, 4, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 64, 128, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 64, 4, 4, 32, 32, 2, 2, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 128, 64, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 256, 64, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 16, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 128, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 128, 32, 128, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 4>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 1, true, S<1, 4, 32, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 32, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 64, 32, 4, 4, 32, 32, 2, 1, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, 1, 1, S<1, 16, 1, 4>, 4>,
DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K< F32, F32, F32, F32, PassThrough, PassThrough, PassThrough, ConvBwdWeightFilter1x1Stride1Pad0, 3, 64, 32, 64, 4, 4, 32, 32, 1, 2, S<1, 4, 8, 2>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 2, true, S<1, 4, 16, 1>, S<0, 3, 1, 2>, S<0, 2, 1, 3>, 2, 4, 4, true, 1, 1, S<1, 16, 1, 4>, 4>
// clang-format on
>;
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<DeviceConvBwdWeightPtr<PassThrough, PassThrough, PassThrough>>& instances)
{
add_device_operation_instances(
instances,
device_conv3d_bwd_weight_xdl_c_shuffle_ndhwc_kzyxc_ndhwk_f32_default_instances{});
add_device_operation_instances(
instances, device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_1x1_s1_p0_f32_instances{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -17,7 +17,7 @@ set(PROFILER_SOURCE
src/profile_conv_fwd.cpp
src/profile_conv_fwd_bias_relu.cpp
src/profile_conv_fwd_bias_relu_add.cpp
src/profile_conv_bwd_data.cpp
# src/profile_conv_bwd_data.cpp
src/profile_conv_bwd_weight.cpp
src/profile_reduce.cpp
src/profile_normalization.cpp
......@@ -40,8 +40,9 @@ target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv3d_fwd_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_fwd_bias_relu_add_instance)
target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
#target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_data_instance)
target_link_libraries(ckProfiler PRIVATE device_conv1d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_conv2d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_convnd_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_conv3d_bwd_weight_instance)
target_link_libraries(ckProfiler PRIVATE device_normalization_instance)
target_link_libraries(ckProfiler PRIVATE device_reduce_instance)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include <iomanip>
#include <iostream>
#include <typeinfo>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/convolution_backward_weight.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_backward_weight.hpp"
using F16 = ck::half_t;
using F32 = float;
using BF16 = ck::bhalf_t;
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using DeviceConvndBwdWeightNoOpPtr =
DeviceConvBwdWeightPtr<ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
void add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(
std::vector<DeviceConvndBwdWeightNoOpPtr>&);
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
namespace ck {
namespace profiler {
using DeviceConvndBwdWeightNoOpPtr =
ck::tensor_operation::device::instance::DeviceConvndBwdWeightNoOpPtr;
template <typename InDataType, typename WeiDataType, typename OutDataType>
void get_device_conv_bwd_weight_op_ptr(
InDataType, WeiDataType, OutDataType, std::vector<DeviceConvndBwdWeightNoOpPtr>&, int)
{
std::cout << "can not find device conv bwd weight" << std::endl;
exit(1);
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F32, F32, F32, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f32_instances(op_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f32_instances(op_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f32_instances(op_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
F16, F16, F16, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_f16_instances(op_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_convnd_bwd_weight_xdl_nhwc_kyxc_nhwk_f16_instances(op_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_f16_instances(op_ptrs);
break;
default: break;
}
}
template <>
void get_device_conv_bwd_weight_op_ptr(
BF16, BF16, BF16, std::vector<DeviceConvndBwdWeightNoOpPtr>& op_ptrs, int num_dim_spatial)
{
switch(num_dim_spatial)
{
case 1:
ck::tensor_operation::device::instance::
add_device_conv1d_bwd_weight_xdl_nwc_kxc_nwk_bf16_instances(op_ptrs);
break;
case 2:
ck::tensor_operation::device::instance::
add_device_conv2d_bwd_weight_xdl_nhwc_kyxc_nhwk_bf16_instances(op_ptrs);
break;
case 3:
ck::tensor_operation::device::instance::
add_device_conv3d_bwd_weight_xdl_ndhwc_kzyxc_ndhwk_bf16_instances(op_ptrs);
break;
default: break;
}
}
template <typename DataType>
void show_data_nhwc_layout(Tensor<DataType>& nhwc)
{
......@@ -307,15 +200,22 @@ bool profile_conv_bwd_weight_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
// add device Conv instances
std::vector<DeviceConvndBwdWeightNoOpPtr> op_ptrs;
get_device_conv_bwd_weight_op_ptr(
InDataType{}, WeiDataType{}, OutDataType{}, op_ptrs, NDimSpatial);
using DeviceOp = ck::tensor_operation::device::DeviceConvBwdWeight<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
if(op_ptrs.size() <= 0)
{
throw std::runtime_error("wrong! no device Conv instance found");
}
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
float best_avg_time = 0;
......@@ -328,10 +228,7 @@ bool profile_conv_bwd_weight_impl(int do_verification,
for(auto& op_ptr : op_ptrs)
{
// using atomic, so need to reset input, setzero is done in invoker
// if(split_k > 1)
//{
// wei_device_buf.SetZero();
//}
wei_device_buf.SetZero();
auto argument_ptr =
op_ptr->MakeArgumentPointer(static_cast<InDataType*>(in_device_buf.GetDeviceBuffer()),
......@@ -352,37 +249,14 @@ bool profile_conv_bwd_weight_impl(int do_verification,
out_element_op,
split_k);
if(!op_ptr->IsSupportedArgument(argument_ptr.get()))
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::cout << "wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<< std::endl;
continue;
}
std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
float avg_time = 0;
if(std::is_same<InDataType, ck::bhalf_t>::value && split_k > 1)
{
// alloc work space
size_t bwd_weight_workspace_size = op_ptr->GetWorkSpaceSize(argument_ptr.get());
if(bwd_weight_workspace_size <= 0)
{
printf("wrong work space size\n");
exit(1);
}
DeviceMem wei_work_space_device_buf(bwd_weight_workspace_size);
wei_work_space_device_buf.SetZero();
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
wei_work_space_device_buf.GetDeviceBuffer());
avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
else
{
avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
}
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = params.GetFlops();
std::size_t num_btype = params.GetByte<InDataType, WeiDataType, OutDataType>();
......@@ -390,8 +264,8 @@ bool profile_conv_bwd_weight_impl(int do_verification,
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_btype / 1.E6 / avg_time;
std::cout << "Perf: " << avg_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s" << std::endl;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
......@@ -405,8 +279,8 @@ bool profile_conv_bwd_weight_impl(int do_verification,
{
wei_device_buf.FromDevice(weight_device_result.mData.data());
pass =
pass & ck::utils::check_err(weight_device_result.mData, weight_host_result.mData);
pass = pass &
ck::utils::check_err(weight_device_result.mData, weight_host_result.mData);
if(do_log)
{
......@@ -428,9 +302,15 @@ bool profile_conv_bwd_weight_impl(int do_verification,
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_avg_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
std::cout << "Best configuration parameters:"
<< "\nname: " << best_op_name << "\navg_time: " << best_avg_time
<< "\ntflops: " << best_tflops << "\nGB/s: " << best_gb_per_sec << std::endl;
return pass;
}
......
......@@ -146,23 +146,6 @@ int profile_conv_fwd_impl(int do_verification,
in_device_buf.ToDevice(input.mData.data());
wei_device_buf.ToDevice(weight.mData.data());
using DeviceOp = ck::tensor_operation::device::DeviceConvFwd<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
// run reference op
if(do_verification)
{
......@@ -195,6 +178,23 @@ int profile_conv_fwd_impl(int do_verification,
ref_invoker.Run(ref_argument);
}
using DeviceOp = ck::tensor_operation::device::DeviceConvFwd<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementOp,
WeiElementOp,
OutElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
float best_avg_time = 0;
float best_tflops = 0;
......@@ -221,8 +221,6 @@ int profile_conv_fwd_impl(int do_verification,
wei_element_op,
out_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
// re-init output to zero before profiling next kernel
......@@ -230,6 +228,8 @@ int profile_conv_fwd_impl(int do_verification,
std::string op_name = op_ptr->GetTypeString();
auto invoker_ptr = op_ptr->MakeInvokerPointer();
float avg_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
......
......@@ -20,19 +20,18 @@ enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_BF16_BF16, // 2
BF16_F32_BF16, // 2
};
static void print_helper_msg()
{
// clang-format-off
std::cout << "arg1: tensor operation (conv_bww: ConvolutionBackwardWeight, Input * d_Output = "
"d_Weight)\n"
<< "arg2: data type (0: fp32; 1: fp16, 2: bf16, 3: int8)\n"
<< "arg3: tensor layout (0: Input[N, C, Hi, Wi] * d_Output[N, K, Ho, Wo] = "
"d_Weight[K, C, Y, X] \n"
<< " 1: Input[N, Hi, Wi, C] * d_Output[N, Ho, Wo, K] = "
"d_Weight[K, Y, X, C] )\n"
std::cout
<< "arg1: tensor operation (conv_bwd_weight: Convolution Backward Weight\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight fp32, Output bf16\n"
<< "arg3: tensor layout (0: Input[N, C, Hi, Wi], Weight[K, C, Y, X], Output[N, K, Ho, Wo]\n"
<< " 1: Input[N, Hi, Wi, C], Weight[K, Y, X, C], Output[N, Ho, Wo, K]\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
......@@ -48,7 +47,6 @@ static void print_helper_msg()
<< " <right padding>, (ie RightPy, RightPx for 2D)\n"
<< " SplitK\n"
<< std::endl;
// clang-format-on
}
ck::tensor_operation::device::ConvParams
......@@ -197,7 +195,7 @@ int profile_conv_bwd_weight(int argc, char* argv[])
{
return profile(I1, NWC{}, KXC{}, NWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
else if(data_type == ConvDataType::BF16_F32_BF16)
{
return profile(I1, NWC{}, KXC{}, NWK{}, BF16{}, BF16{}, BF16{});
}
......@@ -212,7 +210,7 @@ int profile_conv_bwd_weight(int argc, char* argv[])
{
return profile(I2, NHWC{}, KYXC{}, NHWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
else if(data_type == ConvDataType::BF16_F32_BF16)
{
return profile(I2, NHWC{}, KYXC{}, NHWK{}, BF16{}, BF16{}, BF16{});
}
......@@ -227,7 +225,7 @@ int profile_conv_bwd_weight(int argc, char* argv[])
{
return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_BF16_BF16)
else if(data_type == ConvDataType::BF16_F32_BF16)
{
return profile(I3, NDHWC{}, KZYXC{}, NDHWK{}, BF16{}, BF16{}, BF16{});
}
......
......@@ -15,7 +15,7 @@ int profile_grouped_gemm(int, char*[]);
int profile_conv_fwd(int, char*[]);
int profile_conv_fwd_bias_relu(int, char*[]);
int profile_conv_fwd_bias_relu_add(int, char*[]);
int profile_conv_bwd_data(int, char*[]);
// int profile_conv_bwd_data(int, char*[]);
int profile_conv_bwd_weight(int, char*[]);
int profile_normalization(int, char*[]);
int profile_reduce(int, char*[]);
......@@ -98,10 +98,12 @@ int main(int argc, char* argv[])
{
return profile_conv_fwd_bias_relu_add(argc, argv);
}
#if 0
else if(strcmp(argv[1], "conv_bwd_data") == 0)
{
return profile_conv_bwd_data(argc, argv);
}
#endif
else if(strcmp(argv[1], "conv_bwd_weight") == 0)
{
return profile_conv_bwd_weight(argc, argv);
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment