Commit a483948c authored by ltqin's avatar ltqin
Browse files

Merge branch 'lib_gemm_softmax_gemm_type' of...

Merge branch 'lib_gemm_softmax_gemm_type' of https://github.com/ROCmSoftwarePlatform/composable_kernel into lib_gemm_softmax_gemm_type
parents 54e599ca e288457d
......@@ -14,3 +14,8 @@ add_example_executable(example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_in
add_example_executable(example_conv2d_fwd_dl_bias_relu_perchannel_quantization_int8 conv2d_fwd_dl_bias_relu_perchannel_quantization_int8.cpp)
add_example_executable(example_conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp)
# Conv + bias + tanh perlayer quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8 conv2d_fwd_dl_bias_tanh_perlayer_quantization_int8.cpp)
# Conv + bias + tanh perchannel quantization
add_example_executable(example_conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8 conv2d_fwd_dl_bias_tanh_perchannel_quantization_int8.cpp)
......@@ -76,6 +76,10 @@ using DeviceGroupedConvNDFwdInstance =
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_conv2d_fwd_bias_relu_perchannel_quantization_example.inc"
#include "run_conv2d_fwd_bias_perchannel_quantization_example.inc"
int main() { run_conv2d_fwd_bias_relu_perchannel_quantization_example(); };
int main()
{
const auto out_element_op = OutElementOp{ActivationOp{}};
run_conv2d_fwd_bias_perchannel_quantization_example(out_element_op);
};
......@@ -74,6 +74,11 @@ using DeviceGroupedConvNDFwdInstance =
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_conv2d_fwd_bias_relu_perlayer_quantization_example.inc"
#include "run_conv2d_fwd_bias_perlayer_quantization_example.inc"
int main() { run_conv2d_fwd_bias_relu_perlayer_quantization_example(); }
int main()
{
float requant_scale = 0.5f;
const auto out_element_op = OutElementOp{requant_scale, ActivationOp{}};
run_conv2d_fwd_bias_perlayer_quantization_example(out_element_op);
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using RequantScaleDataType = float;
using AccDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp =
ck::tensor_operation::element_wise::Add_Mul2_Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename RequantScaleLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK<
NDimSpatial,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType, RequantScaleDataType>,
OutDataType,
AccDataType,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout, RequantScaleLayout>,
OutLayout,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
16, // K0PerBlock
4, // K1
4, // M1PerThread
4, // N1PerThread
1, // KPerThread
S<8, 2>, // M1N1ThreadClusterM1Xs
S<8, 2>, // M1N1ThreadClusterN1Xs
S<8, 1, 1, 4>, // ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S<2, 1, 128, 1>, // ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S<1, 2, 0, 3>, // ABlockTransferThreadClusterArrangeOrder
S<1, 2, 0, 3>, // ABlockTransferSrcAccessOrder
S<4, 1, 1, 4>, // ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S<1, 2, 0, 3>, // ABlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 4>, // ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S<8, 1, 1, 4>, // BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S<2, 1, 128, 1>, // BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S<1, 2, 0, 3>, // BBlockTransferThreadClusterArrangeOrder
S<1, 2, 0, 3>, // BBlockTransferSrcAccessOrder
S<4, 1, 1, 4>, // BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S<1, 2, 0, 3>, // BBlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 4>, // BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 2, 3, 4, 5>, // CThreadTransferSrcDstAccessOrder
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_conv2d_fwd_bias_perchannel_quantization_example.inc"
int main()
{
float scale_z_inv = 0.5f;
const auto out_element_op = OutElementOp{scale_z_inv, ActivationOp{}};
run_conv2d_fwd_bias_perchannel_quantization_example(out_element_op);
};
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp"
using InDataType = int8_t;
using WeiDataType = int8_t;
using BiasDataType = int32_t;
using AccDataType = int32_t;
using OutDataType = int8_t;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using InElementOp = PassThrough;
using WeiElementOp = PassThrough;
using ActivationOp = ck::tensor_operation::element_wise::TanH;
using OutElementOp = ck::tensor_operation::element_wise::Add_Mul_Activation_Mul_Clamp<ActivationOp>;
static constexpr auto ConvSpec =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename BiasLayout,
typename OutLayout>
using DeviceGroupedConvNDFwdInstance =
ck::tensor_operation::device::DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK<
NDimSpatial,
InDataType,
WeiDataType,
ck::Tuple<BiasDataType>,
OutDataType,
AccDataType,
InLayout,
WeiLayout,
ck::Tuple<BiasLayout>,
OutLayout,
InElementOp,
WeiElementOp,
OutElementOp,
ConvSpec, // ConvForwardSpecialization
GemmSpec, // GemmSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
16, // K0PerBlock
4, // K1
4, // M1PerThread
4, // N1PerThread
1, // KPerThread
S<8, 2>, // M1N1ThreadClusterM1Xs
S<8, 2>, // M1N1ThreadClusterN1Xs
S<8, 1, 1, 4>, // ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S<2, 1, 128, 1>, // ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S<1, 2, 0, 3>, // ABlockTransferThreadClusterArrangeOrder
S<1, 2, 0, 3>, // ABlockTransferSrcAccessOrder
S<4, 1, 1, 4>, // ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S<1, 2, 0, 3>, // ABlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 4>, // ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S<8, 1, 1, 4>, // BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S<2, 1, 128, 1>, // BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S<1, 2, 0, 3>, // BBlockTransferThreadClusterArrangeOrder
S<1, 2, 0, 3>, // BBlockTransferSrcAccessOrder
S<4, 1, 1, 4>, // BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S<1, 2, 0, 3>, // BBlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 4>, // BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 2, 3, 4, 5>, // CThreadTransferSrcDstAccessOrder
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_conv2d_fwd_bias_perlayer_quantization_example.inc"
int main()
{
float scale_acc = 0.5f;
float scale_z_inv = 0.5f;
const auto out_element_op = OutElementOp{scale_z_inv, scale_acc, ActivationOp{}};
run_conv2d_fwd_bias_perlayer_quantization_example(out_element_op);
}
......@@ -76,4 +76,8 @@ using DeviceGroupedConvNDFwdInstance =
#include "run_conv2d_fwd_perchannel_quantization_example.inc"
int main() { run_conv2d_fwd_perchannel_quantization_example(); }
int main()
{
const auto out_element_op = OutElementOp{ActivationOp{}};
run_conv2d_fwd_perchannel_quantization_example(out_element_op);
}
......@@ -71,4 +71,9 @@ using DeviceGroupedConvNDFwdInstance =
#include "run_conv2d_fwd_perlayer_quantization_example.inc"
int main() { run_conv2d_fwd_perlayer_quantization_example(); }
int main()
{
float requant_scale = 0.5f;
const auto out_element_op = OutElementOp{requant_scale, ActivationOp{}};
run_conv2d_fwd_perlayer_quantization_example(out_element_op);
}
......@@ -80,6 +80,10 @@ using DeviceGroupedConvNDFwdInstance =
S<1, 64, 1, 4>,
8>;
#include "run_conv2d_fwd_bias_relu_perchannel_quantization_example.inc"
#include "run_conv2d_fwd_bias_perchannel_quantization_example.inc"
int main() { run_conv2d_fwd_bias_relu_perchannel_quantization_example(); };
int main()
{
const auto out_element_op = OutElementOp{ActivationOp{}};
run_conv2d_fwd_bias_perchannel_quantization_example(out_element_op);
};
......@@ -78,6 +78,11 @@ using DeviceGroupedConvNDFwdInstance =
S<1, 64, 1, 4>,
8>;
#include "run_conv2d_fwd_bias_relu_perlayer_quantization_example.inc"
#include "run_conv2d_fwd_bias_perlayer_quantization_example.inc"
int main() { run_conv2d_fwd_bias_relu_perlayer_quantization_example(); }
int main()
{
float requant_scale = 0.5f;
const auto out_element_op = OutElementOp{requant_scale, ActivationOp{}};
run_conv2d_fwd_bias_perlayer_quantization_example(out_element_op);
}
......@@ -80,4 +80,8 @@ using DeviceGroupedConvNDFwdInstance =
#include "run_conv2d_fwd_perchannel_quantization_example.inc"
int main() { run_conv2d_fwd_perchannel_quantization_example(); }
int main()
{
const auto out_element_op = OutElementOp{ActivationOp{}};
run_conv2d_fwd_perchannel_quantization_example(out_element_op);
}
......@@ -75,4 +75,9 @@ using DeviceGroupedConvNDFwdInstance =
#include "run_conv2d_fwd_perlayer_quantization_example.inc"
int main() { run_conv2d_fwd_perlayer_quantization_example(); }
int main()
{
float requant_scale = 0.5f;
const auto out_element_op = OutElementOp{requant_scale, ActivationOp{}};
run_conv2d_fwd_perlayer_quantization_example(out_element_op);
}
......@@ -167,7 +167,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int run_conv2d_fwd_bias_relu_perchannel_quantization_example()
int run_conv2d_fwd_bias_perchannel_quantization_example(const OutElementOp& out_element_op)
{
bool do_verification = true;
bool time_kernel = true;
......@@ -189,7 +189,6 @@ int run_conv2d_fwd_bias_relu_perchannel_quantization_example()
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
......
......@@ -155,7 +155,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int run_conv2d_fwd_bias_relu_perlayer_quantization_example()
int run_conv2d_fwd_bias_perlayer_quantization_example(const OutElementOp& out_element_op)
{
bool do_verification = true;
bool time_kernel = true;
......@@ -177,7 +177,6 @@ int run_conv2d_fwd_bias_relu_perlayer_quantization_example()
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{0.5f, ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
......
......@@ -157,7 +157,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int run_conv2d_fwd_perchannel_quantization_example()
int run_conv2d_fwd_perchannel_quantization_example(const OutElementOp& out_element_op)
{
bool do_verification = true;
bool time_kernel = true;
......@@ -179,7 +179,6 @@ int run_conv2d_fwd_perchannel_quantization_example()
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
......
......@@ -139,7 +139,7 @@ bool run_grouped_conv_fwd(bool do_verification,
return (pass ? 0 : 1);
}
int run_conv2d_fwd_perlayer_quantization_example()
int run_conv2d_fwd_perlayer_quantization_example(const OutElementOp& out_element_op)
{
bool do_verification = true;
bool time_kernel = false;
......@@ -161,7 +161,6 @@ int run_conv2d_fwd_perlayer_quantization_example()
const auto in_element_op = InElementOp{};
const auto wei_element_op = WeiElementOp{};
const auto out_element_op = OutElementOp{0.5f, ActivationOp{}};
using InLayout = ck::tensor_layout::convolution::GNHWC;
using WeiLayout = ck::tensor_layout::convolution::GKYXC;
......
......@@ -36,7 +36,7 @@
#elif defined(__gfx1030__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x10020000
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31004000
#endif
// FMA instruction
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
......@@ -840,17 +840,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< K1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1 << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< CBlockTransferScalarPerVector_NWaveNPerXdl
<< BBlockTransferSrcScalarPerVector
<< ">";
// clang-format on
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment