Commit a3b86965 authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into lds_bypass_spilling
parents bdd0f64e fe96e8fb
......@@ -669,7 +669,15 @@ struct DeviceGemmMultipleDMultipleR_Xdl_CShuffle
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< getGemmSpecializationString(GemmSpec)
<< getGemmSpecializationString(GemmSpec) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -86,38 +86,30 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
// K1 = Max Vector Access Pixels
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
static constexpr auto matrix_padder =
MatrixPadder<GemmSpec, index_t, index_t, index_t>{MPerBlock, NPerBlock, K0PerBlock* K1};
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
static auto MakeAGridDescriptor_K0_M_K1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
#ifdef ENABLE_COLMAJOR
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
#endif
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto a_grid_desc_m_k = matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
const auto M = a_grid_desc_m_k.GetLength(I0);
const auto K = a_grid_desc_m_k.GetLength(I1);
assert(K % K1 == 0);
const index_t K0 = K / K1;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
......@@ -125,81 +117,53 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
static auto MakeBGridDescriptor_K0_N_K1(index_t KRaw, index_t NRaw, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, BLayout>)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
const auto b_grid_desc_n_k = matrix_padder.PadBDescriptor_N_K(b_grid_desc_nraw_kraw);
const auto N = b_grid_desc_n_k.GetLength(I0);
const auto K = b_grid_desc_n_k.GetLength(I1);
assert(K % K1 == 0);
const index_t K0 = K / K1;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
template <typename ELayout_>
static auto MakeEGridDescriptor_M_N(index_t M, index_t N, index_t StrideE)
static auto MakeEGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto e_grid_desc_m_n = [&]() {
const auto e_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELayout_>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideE, I1));
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELayout_>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideE));
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
e_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
return matrix_padder.PadCDescriptor_M_N(e_grid_desc_mraw_nraw);
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& Ms,
......@@ -512,7 +476,8 @@ struct DeviceGemmMultipleD_Wmma_CShuffle : public DeviceGemmMultipleD<ALayout,
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx1100")
if(ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
......
......@@ -680,6 +680,14 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< ">"
<< " LoopScheduler: "
......
......@@ -822,7 +822,15 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<0, ReduceOperatio
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -102,12 +103,11 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
return matrix_padder.PadADescriptor_M_K(a_grid_desc_mraw_kraw);
}
#ifdef ENABLE_COLMAJOR
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
#endif
}();
const auto M = a_grid_desc_m_k.GetLength(I0);
......@@ -150,7 +150,7 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, BLayout>)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
......@@ -445,7 +445,8 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
static bool IsSupportedArgument(const Argument& arg)
{
if(ck::get_device_name() == "gfx1100")
if(ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
......
......@@ -77,8 +77,6 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
......@@ -116,8 +114,6 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
......@@ -551,7 +547,11 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1
<< ">"
<< " NumPrefetch: "
<< NumPrefetch << ", "
......
......@@ -682,7 +682,15 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">"
<< " LoopScheduler: "
<< LoopSchedToString[LoopSched] << ", "
......
......@@ -760,7 +760,15 @@ struct DeviceGemmLayerNorm_Xdl_CShuffle : public BaseOperator
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -640,7 +640,16 @@ struct DeviceGemmXdlSplitKCShuffle : public DeviceGemmSplitK<ALayout,
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< K0PerBlock << ", "
<< K1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1
<< ">";
// clang-format on
......
......@@ -1003,7 +1003,15 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< getConvBackwardDataSpecializationString(ConvBackwardDataSpecialization)
<< getConvBackwardDataSpecializationString(ConvBackwardDataSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
return str.str();
......
......@@ -1203,7 +1203,8 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization)
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1
<< ">";
// clang-format on
......
......@@ -1231,7 +1231,17 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization)
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1 << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1 << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< CBlockTransferScalarPerVector_NWaveNPerXdl
<< ">";
// clang-format on
......
......@@ -1092,7 +1092,15 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -579,7 +579,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
namespace ctc = tensor_layout::convolution;
// check device
if(get_device_name() == "gfx1100")
if(get_device_name() == "gfx1100" || get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
......@@ -837,7 +838,10 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< K1 << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector
<< ">";
// clang-format on
......
......@@ -939,7 +939,15 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -381,6 +381,9 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
a_mtx_mraw_kraw_.emplace_back(M, K);
b_mtx_nraw_kraw_.emplace_back(N, K);
if(M == 0)
{
skipped_group_count_++;
......@@ -485,6 +488,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
CDEElementwiseOperation c_element_op_;
std::vector<GemmBiasTransKernelArg> gemm_desc_kernel_arg_;
std::vector<Tuple<index_t, index_t>> a_mtx_mraw_kraw_;
std::vector<Tuple<index_t, index_t>> b_mtx_nraw_kraw_;
index_t grid_size_;
};
......@@ -599,7 +604,28 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
return false;
}
return true;
bool supported = true;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if constexpr(GemmSpec != GemmSpecialization::Default)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const auto a_raw_vector_dim = ABlockTransferSrcVectorDim != 1 ? 1 : 0;
const auto b_raw_vector_dim = BBlockTransferSrcVectorDim != 1 ? 1 : 0;
for(index_t i = 0; i < arg.group_count_; ++i)
{
const auto a_vector_dim = arg.a_mtx_mraw_kraw_[i].At(Number<a_raw_vector_dim>{});
const auto b_vector_dim = arg.b_mtx_nraw_kraw_[i].At(Number<b_raw_vector_dim>{});
supported = supported & (a_vector_dim % ABlockTransferSrcScalarPerVector == 0);
supported = supported & (b_vector_dim % BBlockTransferSrcScalarPerVector == 0);
}
}
return supported;
}
// polymorphic
......@@ -661,7 +687,12 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
......
#pragma once
#include "ck/utility/data_type.hpp"
// #include "ck/utility/get_id.hpp"
namespace ck {
namespace tensor_operation {
......@@ -17,18 +18,27 @@ struct Activation_Mul_Clamp
__host__ __device__ constexpr void operator()(int8_t& y, const int32_t& x) const
{
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
float y_fp32 = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void operator()(float& y, const int32_t& x) const
__device__ constexpr void operator()(int32_t& y, const int32_t& x) const
{
// We might type_convert to int8 after lambda in someplace
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
y = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
__host__ constexpr void operator()(float& y, const float& x) const
{
// CAUSION - We might float in & float out in reference code
activationOp_(y, x);
y = math::clamp(requantScale_ * y, -128.f, 127.f);
}
float requantScale_;
......@@ -51,6 +61,17 @@ struct Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__device__ constexpr void
operator()(int32_t& y, const int32_t& x, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......@@ -72,6 +93,17 @@ struct Add_Activation_Mul_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
float requantScale_;
Activation activationOp_;
};
......@@ -92,6 +124,17 @@ struct Add_Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......
......@@ -18,6 +18,10 @@
namespace ck {
/**
* @brief Gridwise gemm + softmax + gemm fusion
*
*/
template <typename FloatAB,
typename FloatGemmAcc,
typename FloatCShuffle,
......
......@@ -185,8 +185,10 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
return b_grid_desc_k0_n0_n1_k1;
}
// E desc for destination in blockwise copy
template <typename CGridDesc_M_N_>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N_& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
......@@ -238,19 +240,19 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
using BGridDesc_K0_N0_N1_K1 = decltype(MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename DsGridDesc_M0_M10_M11_N0_N10_N11,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
bool HasDoubleTailKBlockLoop,
typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
void* __restrict__ p_shared_block,
const AElementwiseOperation&,
const BElementwiseOperation&,
const CDEElementwiseOperation& cde_element_op,
......@@ -399,8 +401,9 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_aligned_space_size;
FloatAB* p_a_block_double = static_cast<FloatAB*>(p_shared_block);
FloatAB* p_b_block_double =
static_cast<FloatAB*>(p_shared_block) + 2 * a_block_aligned_space_size;
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment