Commit a3b31a92 authored by ltqin's avatar ltqin
Browse files

driver variale name

parent 149296c0
...@@ -168,8 +168,8 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1 ...@@ -168,8 +168,8 @@ struct BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
make_tuple(make_pass_through_transform(G), make_tuple(make_pass_through_transform(G),
make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL)), make_unmerge_transform(make_tuple(MRepeat, MWaves, MPerXDL)),
make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))), make_unmerge_transform(make_tuple(NRepeat, NWaves, NPerXDL))),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0, 2, 4>{}, Sequence<1, 3, 5>{})); make_tuple(Sequence<0>{}, Sequence<1, 3, 5>{}, Sequence<2, 4, 6>{}));
return xdlops_gemm.MakeCGM0N0M1N1M2M3M4N2Descriptor(c_g_m0_n0_m1_n1_m2_n2_grid_desc); return xdlops_gemm.MakeCGM0N0M1N1M2M3M4N2Descriptor(c_g_m0_n0_m1_n1_m2_n2_grid_desc);
} }
......
#ifndef CK_GRIDWISE_GEMM_XDLOPS_V3R1_HPP
#define CK_GRIDWISE_GEMM_XDLOPS_V3R1_HPP
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGK0MK1GridDesc,
typename BGK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v3r1(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGK0MK1GridDesc a_k0_m_k1_grid_desc,
const BGK0NK1GridDesc b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc c_m0_m1_m2_n_grid_desc,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#elif CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VOID_POINTER
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGK0MK1GridDesc,
typename BGK0NK1GridDesc,
typename CM0N0M1N1M2M3M4N2GridDesc,
typename CBlockClusterAdaptor>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v3r1(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const void CONSTANT* p_a_k0_m_k1_grid_desc,
const void CONSTANT* p_b_k0_n_k1_grid_desc,
const void CONSTANT* p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const void CONSTANT* p_c_block_cluster_adaptor)
{
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
const auto a_k0_m_k1_grid_desc = *reinterpret_cast<const AGK0MK1GridDesc*>(
cast_pointer_to_generic_address_space(p_a_k0_m_k1_grid_desc));
const auto b_k0_n_k1_grid_desc = *reinterpret_cast<const BGK0NK1GridDesc*>(
cast_pointer_to_generic_address_space(p_b_k0_n_k1_grid_desc));
const auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
*reinterpret_cast<const CM0N0M1N1M2M3M4N2GridDesc*>(
cast_pointer_to_generic_address_space(p_c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc));
const auto c_block_cluster_adaptor = *reinterpret_cast<const CBlockClusterAdaptor*>(
cast_pointer_to_generic_address_space(p_c_block_cluster_adaptor));
__shared__ FloatAB p_shared_block[shared_block_size];
GridwiseGemm::Run(p_a_grid,
p_b_grid,
p_c_grid,
p_shared_block,
a_k0_m_k1_grid_desc,
b_k0_n_k1_grid_desc,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_block_cluster_adaptor);
}
#endif
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename AGK0MK1GridDesc,
typename BGK0NK1GridDesc,
typename CGMNGridDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerXDL,
index_t NPerXDL,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadSliceLengths_G_K0_M_K1,
typename ABlockTransferThreadClusterLengths_G_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_G_K0_N_K1,
typename BBlockTransferThreadClusterLengths_G_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
typename AGridStepHacks,
typename BGridStepHacks,
typename CGridStepHacks,
typename AGridMoveSliceWindowStepHacks,
typename BGridMoveSliceWindowStepHacks,
bool CAccessOrderMRepeatNRepeat>
struct GridwiseGemm_gk0mk1_gk0nk1_gmn_xdlops_v3r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_k0_n_k1_block_desc.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
__host__ __device__ static constexpr bool
CheckValidity(const AGK0MK1GridDesc& a_g_k0_m_k1_grid_desc,
const BGK0NK1GridDesc& b_g_k0_n_k1_grid_desc,
const CGMNGridDesc& c_g_m_n_grid_desc)
{
// TODO: turn on this
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
const auto M = a_g_k0_m_k1_grid_desc.GetLength(I2);
const auto N = b_g_k0_n_k1_grid_desc.GetLength(I2);
const auto K0 = a_g_k0_m_k1_grid_desc.GetLength(I1);
static_assert((MPerBlock % (MPerXDL * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXDL)) == 0,
"Invalid tuning param!");
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return (M == c_g_m_n_grid_desc.GetLength(I1) && N == c_g_m_n_grid_desc.GetLength(I2) &&
K0 == b_g_k0_n_k1_grid_desc.GetLength(I1) &&
K1 == a_g_k0_m_k1_grid_desc.GetLength(I3) &&
K1 == b_g_k0_n_k1_grid_desc.GetLength(I3)) &&
(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % KPerBlock == 0);
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGMNGridDesc& c_g_m_n_grid_desc)
{
const auto G = c_g_m_n_grid_desc.GetLength(I0);
const auto M = c_g_m_n_grid_desc.GetLength(I1);
const auto N = c_g_m_n_grid_desc.GetLength(I2);
const index_t grid_size = G * (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr auto
MakeCGM0N0M1N1M2M3M4N2GridDescriptor(const CGMNGridDesc& c_g_m_n_grid_desc)
{
constexpr auto max_lds_align = K1;
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
using BlockwiseGemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>;
return BlockwiseGemm::MakeCGM0N0M1N1M2M3M4N2GridDescriptor(c_g_m_n_grid_desc);
}
__host__ __device__ static constexpr auto
MakeCBlockClusterAdaptor(const CGMNGridDesc& c_g_m_n_grid_desc)
{
const auto G = c_g_m_n_grid_desc.GetLength(I0);
const auto M = c_g_m_n_grid_desc.GetLength(I1);
const auto N = c_g_m_n_grid_desc.GetLength(I2);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
#if 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(G, M0, N0))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
#elif 1
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(make_tuple(make_merge_transform(make_tuple(G, N0, M0))),
make_tuple(Sequence<0, 2, 1>{}),
make_tuple(Sequence<0>{}));
#endif
return c_blockid_to_m0_n0_block_cluster_adaptor;
}
using CM0N0M1N1M2M3M4N2GridDesc = decltype(MakeCGM0N0M1N1M2M3M4N2GridDescriptor(CGMNGridDesc{}));
using CBlockClusterAdaptor = decltype(MakeCBlockClusterAdaptor(CGMNGridDesc{}));
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
const AGK0MK1GridDesc& a_k0_m_k1_grid_desc,
const BGK0NK1GridDesc& b_k0_n_k1_grid_desc,
const CM0N0M1N1M2M3M4N2GridDesc& c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
const CBlockClusterAdaptor& c_block_cluster_adaptor)
{
/* const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_a_grid, a_k0_m_k1_grid_desc.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_b_grid, b_k0_n_k1_grid_desc.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c_grid, c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc.GetElementSpaceSize());
const auto K0 = a_k0_m_k1_grid_desc.GetLength(I0);
// divide block work by [M, N]
const auto block_work_idx =
c_block_cluster_adaptor.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k0_m_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_k0_n_k1_block_desc = make_naive_tensor_descriptor_aligned(
make_tuple(Number<KPerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_k0_m_k1_grid_desc),
decltype(a_k0_m_k1_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(a_k0_m_k1_grid_desc,
make_multi_index(0, m_block_data_idx_on_grid,
0), a_k0_m_k1_block_desc, make_multi_index(0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_k0_n_k1_grid_desc),
decltype(b_k0_n_k1_block_desc),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(b_k0_n_k1_grid_desc,
make_multi_index(0, n_block_data_idx_on_grid,
0), b_k0_n_k1_block_desc, make_multi_index(0, 0, 0));
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
const auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>{};
constexpr auto c_mr_nr_blk_desc =
make_naive_tensor_descriptor_packed(make_tuple(Number<MRepeat>{},
Number<NRepeat>{}));
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2ThreadDescriptor();
constexpr auto CBlkSize = c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc.GetElementSpaceSize();
StaticBuffer<AddressSpaceEnum_t::Vgpr,
vector_type<FloatAcc, CBlkSize>,
c_mr_nr_blk_desc.GetElementSpaceSize(),
true>
c_thread_buf;
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k0_m_k1_block_desc.GetElementSpaceSize(),
max_lds_align);
FloatAB* p_a_block = p_shared_block;
FloatAB* p_b_block = p_shared_block + a_block_space_size;
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise
copy constexpr auto a_k0_m_k1_grid_step_hacks = AGridStepHacks{}; constexpr auto
b_k0_n_k1_grid_step_hacks = BGridStepHacks{};
// hack to control index calculation when move slice window for A and B matrix for
// threadwise copy
constexpr auto a_k0_m_k1_grid_move_slice_window_step_hack =
AGridMoveSliceWindowStepHacks{}; constexpr auto
b_k0_n_k1_grid_move_slice_window_step_hack = BGridMoveSliceWindowStepHacks{};
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_a_block, a_k0_m_k1_block_desc.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
// preload data into LDS
{
a_blockwise_copy.RunRead(a_k0_m_k1_grid_desc, a_grid_buf,
a_k0_m_k1_grid_step_hacks); b_blockwise_copy.RunRead(b_k0_n_k1_grid_desc, b_grid_buf,
b_k0_n_k1_grid_step_hacks);
a_blockwise_copy.RunWrite(a_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_k0_n_k1_block_desc, b_block_buf);
}
// main body
index_t k_block_data_begin = 0;
do
{
a_blockwise_copy.MoveSrcSliceWindow(a_k0_m_k1_grid_desc,
a_block_slice_copy_step,
a_k0_m_k1_grid_move_slice_window_step_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_k0_n_k1_grid_desc,
b_block_slice_copy_step,
b_k0_n_k1_grid_move_slice_window_step_hack);
a_blockwise_copy.RunRead(a_k0_m_k1_grid_desc, a_grid_buf,
a_k0_m_k1_grid_step_hacks);
block_sync_lds();
b_blockwise_copy.RunRead(b_k0_n_k1_grid_desc, b_grid_buf,
b_k0_n_k1_grid_step_hacks);
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds();
a_blockwise_copy.RunWrite(a_k0_m_k1_block_desc, a_block_buf);
b_blockwise_copy.RunWrite(b_k0_n_k1_block_desc, b_block_buf);
k_block_data_begin += KPerBlock;
} while(k_block_data_begin < (K0 - KPerBlock));
// tail
{
block_sync_lds();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
// output: register to global memory
{
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc =
blockwise_gemm.GetCM0N0M1N1M2M3M4N2BlockDescriptor();
constexpr auto M2 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I4);
constexpr auto M3 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I5);
constexpr auto M4 = c_m0_n0_m1_n1_m2_m3_m4_n2_block_desc.GetLength(I6);
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_grid =
m_block_data_idx_on_grid + c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_grid =
n_block_data_idx_on_grid + c_thread_mtx_on_block[I1];
constexpr auto c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks = CGridStepHacks{};
auto c_thread_copy =
ThreadwiseTensorSliceTransfer_v1r3<FloatC,
FloatC,
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc),
decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc),
Sequence<I1, I1, I1, I1, M2, I1, M4, I1>,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
CGlobalMemoryDataOperation,
1,
true>{
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
make_multi_index(0,
0,
0,
0,
m_thread_data_on_grid / (M3 * M4),
m_thread_data_on_grid % (M3 * M4) / M4,
m_thread_data_on_grid % M4,
n_thread_data_on_grid)};
auto init_copy = [&](auto c_thread_idx_) {
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
return c_thread_idx_;
};
auto mrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto nrepeat_plus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_plus = make_multi_index(0, 1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
nrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto mrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto mrepeat_step_plus = make_multi_index(-1, 0, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
mrepeat_step_plus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
auto nrepeat_minus_copy = [&](auto c_thread_idx_) {
constexpr auto nrepeat_step_minus = make_multi_index(0, -1, 0, 0, 0, 0, 0, 0);
c_thread_copy.MoveDstSliceWindow(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
nrepeat_step_minus);
constexpr auto blk_off = c_mr_nr_blk_desc.CalculateOffset(c_thread_idx_);
c_thread_copy.Run(c_m0_n0_m1_n1_m2_m3_m4_n2_thread_desc,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
c_thread_buf[Number<blk_off>{}].template AsType<FloatAcc>(),
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc,
c_grid_buf,
c_m0_n0_m1_n1_m2_m3_m4_n2_grid_tensor_step_hacks);
};
static_assert((MRepeat == 4 && NRepeat == 4) or (MRepeat == 4 && NRepeat == 2) or
(MRepeat == 2 && NRepeat == 4) or (MRepeat == 2 && NRepeat == 2)
or (MRepeat == 2 && NRepeat == 1) or (MRepeat == 1 && NRepeat == 2) or (MRepeat == 1 &&
NRepeat == 1), "wrong");
if constexpr(MRepeat == 4 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
nrepeat_plus_copy(make_tuple(I2, I2));
nrepeat_plus_copy(make_tuple(I2, I3));
mrepeat_plus_copy(make_tuple(I3, I3));
nrepeat_minus_copy(make_tuple(I3, I2));
nrepeat_minus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
mrepeat_plus_copy(make_tuple(I2, I2));
mrepeat_plus_copy(make_tuple(I3, I2));
nrepeat_plus_copy(make_tuple(I3, I3));
mrepeat_minus_copy(make_tuple(I2, I3));
mrepeat_minus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 4 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
nrepeat_plus_copy(make_tuple(I2, I1));
mrepeat_plus_copy(make_tuple(I3, I1));
nrepeat_minus_copy(make_tuple(I3, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
mrepeat_plus_copy(make_tuple(I2, I0));
mrepeat_plus_copy(make_tuple(I3, I0));
nrepeat_plus_copy(make_tuple(I3, I1));
mrepeat_minus_copy(make_tuple(I2, I1));
mrepeat_minus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 4)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
nrepeat_plus_copy(make_tuple(I0, I3));
mrepeat_plus_copy(make_tuple(I1, I3));
nrepeat_minus_copy(make_tuple(I1, I2));
nrepeat_minus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
nrepeat_plus_copy(make_tuple(I0, I2));
mrepeat_plus_copy(make_tuple(I1, I2));
nrepeat_plus_copy(make_tuple(I1, I3));
mrepeat_minus_copy(make_tuple(I0, I3));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
if constexpr(CAccessOrderMRepeatNRepeat)
{
nrepeat_plus_copy(make_tuple(I0, I1));
mrepeat_plus_copy(make_tuple(I1, I1));
nrepeat_minus_copy(make_tuple(I1, I0));
}
else
{
mrepeat_plus_copy(make_tuple(I1, I0));
nrepeat_plus_copy(make_tuple(I1, I1));
mrepeat_minus_copy(make_tuple(I0, I1));
}
}
else if constexpr(MRepeat == 2 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
mrepeat_plus_copy(make_tuple(I1, I0));
}
else if constexpr(MRepeat == 1 && NRepeat == 2)
{
init_copy(make_tuple(I0, I0));
nrepeat_plus_copy(make_tuple(I0, I1));
}
else if constexpr(MRepeat == 1 && NRepeat == 1)
{
init_copy(make_tuple(I0, I0));
}
}*/
}
}; // namespace ck
} // namespace ck
#endif
...@@ -11,9 +11,9 @@ template <ck::index_t BlockSize, ...@@ -11,9 +11,9 @@ template <ck::index_t BlockSize,
typename FloatAcc, typename FloatAcc,
typename FloatC, typename FloatC,
ck::InMemoryDataOperationEnum_t CGlobalMemoryDataOperation, ck::InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename AK0MK1GridDesc, typename AGK0MK1GridDesc,
typename BK0NK1GridDesc, typename BGK0NK1GridDesc,
typename CMNGridDesc, typename CGMNGridDesc,
ck::index_t MPerBlock, ck::index_t MPerBlock,
ck::index_t NPerBlock, ck::index_t NPerBlock,
ck::index_t KPerBlock, ck::index_t KPerBlock,
...@@ -50,9 +50,9 @@ template <ck::index_t BlockSize, ...@@ -50,9 +50,9 @@ template <ck::index_t BlockSize,
__host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid, __host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid,
const FloatAB* p_b_grid, const FloatAB* p_b_grid,
FloatC* p_c_grid, FloatC* p_c_grid,
const AK0MK1GridDesc& a_g_k0_m_k1_grid_desc, const AGK0MK1GridDesc& a_g_k0_m_k1_grid_desc,
const BK0NK1GridDesc& b_g_k0_n_k1_grid_desc, const BGK0NK1GridDesc& b_g_k0_n_k1_grid_desc,
const CMNGridDesc& c_g_m_n_grid_desc, const CGMNGridDesc& c_g_m_n_grid_desc,
AGridStepHacks, AGridStepHacks,
BGridStepHacks, BGridStepHacks,
CGridStepHacks, CGridStepHacks,
...@@ -69,14 +69,14 @@ __host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid, ...@@ -69,14 +69,14 @@ __host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid,
constexpr auto I3 = Number<3>{}; constexpr auto I3 = Number<3>{};
using GridwiseGemm = using GridwiseGemm =
GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1<BlockSize, GridwiseGemm_gk0mk1_gk0nk1_gmn_xdlops_v3r1<BlockSize,
FloatAB, FloatAB,
FloatAcc, FloatAcc,
FloatC, FloatC,
CGlobalMemoryDataOperation, CGlobalMemoryDataOperation,
AK0MK1GridDesc, AGK0MK1GridDesc,
BK0NK1GridDesc, BGK0NK1GridDesc,
CMNGridDesc, CGMNGridDesc,
MPerBlock, MPerBlock,
NPerBlock, NPerBlock,
KPerBlock, KPerBlock,
...@@ -134,26 +134,26 @@ __host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid, ...@@ -134,26 +134,26 @@ __host__ float driver_gemm_xdlops_v3r1(const FloatAB* p_a_grid,
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting"); "wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v2r3 has invalid setting");
} }
const auto c_gemmg_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc = const auto c_g_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc =
GridwiseGemm::MakeCM0N0M1N1M2M3M4N2GridDescriptor(c_g_m_n_grid_desc); GridwiseGemm::MakeCGM0N0M1N1M2M3M4N2GridDescriptor(c_g_m_n_grid_desc);
/* using CM0N0M1N1M2M3M4N2GridDesc = decltype(c_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc); using CGM0N0M1N1M2M3M4N2GridDesc = decltype(c_g_m0_n0_m1_n1_m2_m3_m4_n2_grid_desc);
const auto c_block_cluster_adaptor = GridwiseGemm::MakeCBlockClusterAdaptor(c_m_n_grid_desc); const auto c_block_cluster_adaptor = GridwiseGemm::MakeCBlockClusterAdaptor(c_g_m_n_grid_desc);
using CBlockClusterAdaptor = decltype(c_block_cluster_adaptor); using CBlockClusterAdaptor = decltype(c_block_cluster_adaptor);
const index_t grid_size = GridwiseGemm::CalculateGridSize(c_m_n_grid_desc); const index_t grid_size = GridwiseGemm::CalculateGridSize(c_g_m_n_grid_desc);
const auto kernel = kernel_gemm_xdlops_v2r3<GridwiseGemm, const auto kernel = kernel_gemm_xdlops_v3r1<GridwiseGemm,
FloatAB, FloatAB,
FloatC, FloatC,
remove_reference_t<AK0MK1GridDesc>, remove_reference_t<AGK0MK1GridDesc>,
remove_reference_t<BK0NK1GridDesc>, remove_reference_t<BGK0NK1GridDesc>,
remove_reference_t<CM0N0M1N1M2M3M4N2GridDesc>, remove_reference_t<CGM0N0M1N1M2M3M4N2GridDesc>,
remove_reference_t<CBlockClusterAdaptor>>; remove_reference_t<CBlockClusterAdaptor>>;
#if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE /* #if CK_EXPERIMENTAL_PASS_TENSOR_DESCRIPTOR_BY_VALUE
float ave_time = launch_and_time_kernel(kernel, float ave_time = launch_and_time_kernel(kernel,
nrepeat, nrepeat,
dim3(grid_size), dim3(grid_size),
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment