Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a1841d55
Commit
a1841d55
authored
Aug 01, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into lwpck-367
parents
127bf7f4
500fa995
Changes
373
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
979 additions
and
727 deletions
+979
-727
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
...k/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
+30
-19
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+352
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
...ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
+19
-16
library/include/ck/library/utility/check_err.hpp
library/include/ck/library/utility/check_err.hpp
+2
-7
library/include/ck/library/utility/conv_common.hpp
library/include/ck/library/utility/conv_common.hpp
+0
-0
library/include/ck/library/utility/conv_util.hpp
library/include/ck/library/utility/conv_util.hpp
+0
-574
library/include/ck/library/utility/convolution_host_tensor_descriptor_helper.hpp
...ary/utility/convolution_host_tensor_descriptor_helper.hpp
+354
-0
library/include/ck/library/utility/convolution_parameter.hpp
library/include/ck/library/utility/convolution_parameter.hpp
+86
-0
library/include/ck/library/utility/device_memory.hpp
library/include/ck/library/utility/device_memory.hpp
+0
-0
library/include/ck/library/utility/host_common_util.hpp
library/include/ck/library/utility/host_common_util.hpp
+0
-0
library/include/ck/library/utility/host_conv.hpp
library/include/ck/library/utility/host_conv.hpp
+0
-0
library/include/ck/library/utility/host_gemm.hpp
library/include/ck/library/utility/host_gemm.hpp
+0
-0
library/include/ck/library/utility/host_reduction.hpp
library/include/ck/library/utility/host_reduction.hpp
+2
-2
library/include/ck/library/utility/host_tensor.hpp
library/include/ck/library/utility/host_tensor.hpp
+77
-25
library/include/ck/library/utility/host_tensor_generator.hpp
library/include/ck/library/utility/host_tensor_generator.hpp
+0
-0
library/include/ck/library/utility/op_instance_engine.hpp
library/include/ck/library/utility/op_instance_engine.hpp
+5
-5
library/src/host_tensor/CMakeLists.txt
library/src/host_tensor/CMakeLists.txt
+0
-32
library/src/tensor_operation_instance/gpu/CMakeLists.txt
library/src/tensor_operation_instance/gpu/CMakeLists.txt
+19
-14
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
+15
-15
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
..._m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
+18
-18
No files found.
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
View file @
a1841d55
...
...
@@ -19,49 +19,53 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_
f16_
km_kn_mn_
mn_
instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Col
,
Row
,
Row_Tuple
,
Row
,
F16
,
F16
,
F16_T
UPLE
,
F16_T
uple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_
f16_
km_nk_mn_
mn_
instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Col
,
Col
,
Row_Tuple
,
Row
,
F16
,
F16
,
F16_T
UPLE
,
F16_T
uple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_
f16_
mk_kn_mn_
mn_
instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row_Tuple
,
Row
,
F16
,
F16
,
F16_T
UPLE
,
F16_T
uple
,
F16
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_
f16_
mk_nk_mn_
mn_
instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Col
,
Row_Tuple
,
Row
,
F16
,
F16
,
F16_T
UPLE
,
F16_T
uple
,
F16
,
PassThrough
,
PassThrough
,
...
...
@@ -70,7 +74,8 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(
// GEMM + Bilinear
template
<
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
DLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DDataType
,
...
...
@@ -78,7 +83,8 @@ template <typename ALayout,
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DELayout
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
...
...
@@ -89,7 +95,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
{
using
DeviceOp
=
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DELayout
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
DDataType
>
,
...
...
@@ -106,24 +113,28 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
is_same_v
<
DDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
DELayout
,
Row
>
)
is_same_v
<
D
Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_kn_mn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
DELayout
,
Row
>
)
is_same_v
<
D
Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
DELayout
,
Row
>
)
is_same_v
<
D
Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
DELayout
,
Row
>
)
is_same_v
<
D
Layout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_nk_mn_mn_instances
(
op_ptrs
);
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
// grouped conv1d forward, GNWC/GKXC/GNWK
void
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
1
,
GNWC
,
GKXC
,
Empty_Tuple
,
GNWK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
1
,
GNWC
,
GKXC
,
Empty_Tuple
,
GNWK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
1
,
GNWC
,
GKXC
,
Empty_Tuple
,
GNWK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
1
,
GNWC
,
GKXC
,
Empty_Tuple
,
GNWK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
void
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
GNHWC
,
GKYXC
,
Empty_Tuple
,
GNHWK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// grouped conv2d forward, NHWGC/KYXGC/NHWGK
void
add_device_grouped_conv2d_fwd_xdl_nhwgc_kyxgc_nhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
2
,
NHWGC
,
KYXGC
,
Empty_Tuple
,
NHWGK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
GNDHWC
,
GKZYXC
,
Empty_Tuple
,
GNDHWK
,
BF16
,
BF16
,
Empty_Tuple
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
GNDHWC
,
GKZYXC
,
Empty_Tuple
,
GNDHWK
,
F16
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
GNDHWC
,
GKZYXC
,
Empty_Tuple
,
GNDHWK
,
F32
,
F32
,
Empty_Tuple
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
GNDHWC
,
GKZYXC
,
Empty_Tuple
,
GNDHWK
,
int8_t
,
int8_t
,
Empty_Tuple
,
int8_t
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
Empty_Tuple
,
OutLayout
,
InDataType
,
WeiDataType
,
Empty_Tuple
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
Empty_Tuple
,
OutLayout
,
InDataType
,
WeiDataType
,
Empty_Tuple
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
&&
is_same_v
<
InLayout
,
GNWC
>
&&
is_same_v
<
WeiLayout
,
GKXC
>
&&
is_same_v
<
OutLayout
,
GNWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
GNHWC
>
&&
is_same_v
<
WeiLayout
,
GKYXC
>
&&
is_same_v
<
OutLayout
,
GNHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
InLayout
,
NHWGC
>
&&
is_same_v
<
WeiLayout
,
KYXGC
>
&&
is_same_v
<
OutLayout
,
NHWGK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
// no instance
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_kyxgc_nhwgk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
// no instance
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
// no instance
}
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
GNDHWC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
GNDHWK
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
View file @
a1841d55
...
...
@@ -16,15 +16,14 @@ namespace tensor_operation {
namespace
device
{
namespace
instance
{
using
DsType
=
Tuple
<>
;
void
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
DsTyp
e
,
Empty_Tupl
e
,
F16
,
PassThrough
,
PassThrough
,
...
...
@@ -33,10 +32,11 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
void
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
DsTyp
e
,
Empty_Tupl
e
,
F16
,
PassThrough
,
PassThrough
,
...
...
@@ -45,10 +45,11 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(
void
add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Col
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F16
,
DsTyp
e
,
Empty_Tupl
e
,
F16
,
PassThrough
,
PassThrough
,
...
...
@@ -57,10 +58,11 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(
void
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Col
,
Col
,
Empty_Tuple
,
Row
,
F16
,
F16
,
DsTyp
e
,
Empty_Tupl
e
,
F16
,
PassThrough
,
PassThrough
,
...
...
@@ -68,18 +70,18 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
template
<
typename
ALayout
,
typename
BLayout
,
typename
C
Layout
,
typename
E
Layout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm
<
ALayout
,
BLayout
,
CLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
DsDataTyp
e
,
Empty_Tupl
e
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -87,10 +89,11 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
using
DeviceOp
=
DeviceGroupedGemm
<
ALayout
,
BLayout
,
CLayout
,
Empty_Tuple
,
ELayout
,
ADataType
,
BDataType
,
DsDataTyp
e
,
Empty_Tupl
e
,
EDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -104,22 +107,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
C
Layout
,
Row
>
)
is_same_v
<
E
Layout
,
Row
>
)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
C
Layout
,
Row
>
)
is_same_v
<
E
Layout
,
Row
>
)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
C
Layout
,
Row
>
)
is_same_v
<
E
Layout
,
Row
>
)
{
add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
C
Layout
,
Row
>
)
is_same_v
<
E
Layout
,
Row
>
)
{
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
...
...
library/include/ck/library/utility/check_err.hpp
View file @
a1841d55
...
...
@@ -13,7 +13,9 @@
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
utils
{
...
...
@@ -194,10 +196,3 @@ check_err(const std::vector<T>& out,
}
// namespace utils
}
// namespace ck
template
<
typename
T
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
std
::
vector
<
T
>&
v
)
{
std
::
copy
(
std
::
begin
(
v
),
std
::
end
(
v
),
std
::
ostream_iterator
<
T
>
(
os
,
" "
));
return
os
;
}
library/include/ck/library/
host_tensor
/conv_common.hpp
→
library/include/ck/library/
utility
/conv_common.hpp
View file @
a1841d55
File moved
library/include/ck/library/utility/conv_util.hpp
deleted
100644 → 0
View file @
127bf7f4
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <functional>
#include <iterator>
#include <numeric>
#include <sstream>
#include <tuple>
#include <type_traits>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/op_instance_engine.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
using
DeviceConvFwdNoOpPtr
=
DeviceConvFwdPtr
<
element_wise
::
PassThrough
,
element_wise
::
PassThrough
,
element_wise
::
PassThrough
>
;
namespace
instance
{
void
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
}
// namespace instance
namespace
instance
{
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
}
// namespace instance
namespace
instance
{
void
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
void
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
std
::
vector
<
DeviceConvFwdNoOpPtr
>&
);
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
namespace
ck
{
namespace
utils
{
namespace
conv
{
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
/**
* @brief Calculate number of FLOPs for Convolution
*
* @param[in] N Batch size.
* @param[in] C Number of input channels.
* @param[in] K Number of output channels.
* @param[in] filter_spatial_lengths Filter spatial dimensions lengths.
* @param[in] output_spatial_lengths Convolution output spatial dimensions
* lengths.
*
* @return The number of flops.
*/
std
::
size_t
get_flops
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
K
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
);
/**
* @brief Calculate number of bytes read/write by convolution algorithm.
*
* @param[in] N Batch size.
* @param[in] C Number of input channels.
* @param[in] K Number of output channels.
* @param[in] input_spatial_lengths Input spatial dimensions lengths.
* @param[in] filter_spatial_lengths Filter spatial dimensions lengths.
* @param[in] output_spatial_lengths Output spatial dimensions lengths
*
* @tparam InDataType Input tensor data type.
* @tparam WeiDataType Weights tensor data type.
* @tparam OutDataType Output tensor data type.
*
* @return The number of used bytes.
*/
template
<
typename
InDataType
=
float
,
typename
WeiDataType
=
InDataType
,
typename
OutDataType
=
InDataType
>
std
::
size_t
get_btype
(
ck
::
index_t
N
,
ck
::
index_t
C
,
ck
::
index_t
K
,
const
std
::
vector
<
ck
::
index_t
>&
input_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
filter_spatial_lengths
,
const
std
::
vector
<
ck
::
index_t
>&
output_spatial_lengths
)
{
// sizeof(InDataType) * (N * C * <input spatial lengths product>) +
// sizeof(WeiDataType) * (K * C * <filter spatial lengths product>) +
// sizeof(OutDataType) * (N * K * <output spatial lengths product>);
return
sizeof
(
InDataType
)
*
(
N
*
C
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()))
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()))
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()));
}
struct
ConvParams
{
ConvParams
();
ConvParams
(
ck
::
index_t
n_dim
,
ck
::
index_t
n_batch
,
ck
::
index_t
n_out_channels
,
ck
::
index_t
n_in_channels
,
const
std
::
vector
<
ck
::
index_t
>&
filters_len
,
const
std
::
vector
<
ck
::
index_t
>&
input_len
,
const
std
::
vector
<
ck
::
index_t
>&
strides
,
const
std
::
vector
<
ck
::
index_t
>&
dilations
,
const
std
::
vector
<
ck
::
index_t
>&
left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
right_pads
);
ck
::
index_t
num_dim_spatial_
;
ck
::
index_t
N_
;
ck
::
index_t
K_
;
ck
::
index_t
C_
;
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_strides_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations_
;
std
::
vector
<
ck
::
index_t
>
input_left_pads_
;
std
::
vector
<
ck
::
index_t
>
input_right_pads_
;
std
::
vector
<
ck
::
index_t
>
GetOutputSpatialLengths
()
const
;
};
ConvParams
parse_conv_params
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[]);
/**
* @brief Gets the host tensor descriptor.
*
* @param[in] dims The tensor dimensions lengths. Always in NCHW format.
* @param[in] layout The tensor data layout.
*
* @tparam TensorLayout Layout type.
*
* @return The host tensor descriptor object.
*/
template
<
typename
TensorLayout
>
HostTensorDescriptor
get_host_tensor_descriptor
(
const
std
::
vector
<
std
::
size_t
>&
dims
,
const
TensorLayout
&
layout
)
{
std
::
size_t
C
=
dims
[
1
];
// 1D
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NCW
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KCX
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NKW
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
],
dims
[
2
],
1
});
}
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NWC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KXC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NWK
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
],
1
,
C
});
}
// 2D
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
],
dims
[
2
]
*
dims
[
3
],
dims
[
3
],
1
});
}
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
],
1
,
dims
[
3
]
*
C
,
C
});
}
// 3D
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NCDHW
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KCZYX
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NKDHW
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
dims
[
3
]
*
dims
[
4
],
dims
[
4
],
1
});
}
else
if
constexpr
(
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXC
>::
value
||
std
::
is_same
<
TensorLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWK
>::
value
)
{
return
HostTensorDescriptor
(
dims
,
std
::
vector
<
std
::
size_t
>
{
C
*
dims
[
2
]
*
dims
[
3
]
*
dims
[
4
],
1
,
C
*
dims
[
3
]
*
dims
[
4
],
C
*
dims
[
4
],
C
});
}
std
::
stringstream
err_msg
;
err_msg
<<
"Unsupported data layout provided: "
<<
layout
<<
"!"
;
throw
std
::
runtime_error
(
err_msg
.
str
());
}
HostTensorDescriptor
get_output_host_tensor_descriptor
(
const
std
::
vector
<
std
::
size_t
>&
dims
,
int
num_dim_spatial
=
2
);
HostTensorDescriptor
get_filters_host_tensor_descriptor
(
const
std
::
vector
<
std
::
size_t
>&
dims
,
int
num_dim_spatial
=
2
);
HostTensorDescriptor
get_input_host_tensor_descriptor
(
const
std
::
vector
<
std
::
size_t
>&
dims
,
int
num_dim_spatial
=
2
);
template
<
ck
::
index_t
NDim
,
typename
InDataType
=
float
,
typename
WeiDataType
=
float
,
typename
OutDataType
=
float
>
void
run_reference_convolution_forward
(
const
ConvParams
&
params
,
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weights
,
Tensor
<
OutDataType
>&
output
)
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
WeiDataType
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
,
NDim
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
input
,
weights
,
output
,
params
.
conv_filter_strides_
,
params
.
conv_filter_dilations_
,
params
.
input_left_pads_
,
params
.
input_right_pads_
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
}
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
>
struct
ConvolutionFwdInstances
;
template
<
>
struct
ConvolutionFwdInstances
<
float
,
float
,
float
>
{
template
<
int
NumDimSpatial
,
typename
std
::
enable_if
<
NumDimSpatial
>
=
1
&&
NumDimSpatial
<=
3
,
bool
>::
type
=
false
>
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
()
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f32_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
2
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f32_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f32_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionFwdInstances
<
half_t
,
half_t
,
half_t
>
{
template
<
int
NumDimSpatial
,
typename
std
::
enable_if
<
NumDimSpatial
>
=
1
&&
NumDimSpatial
<=
3
,
bool
>::
type
=
false
>
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
()
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_f16_instances
(
conv_ptrs
);
return
conv_ptrs
;
}
else
if
constexpr
(
NumDimSpatial
==
2
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv2d_fwd_xdl_c_shuffle_nhwc_kyxc_nhwk_f16_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_f16_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionFwdInstances
<
bhalf_t
,
bhalf_t
,
bhalf_t
>
{
template
<
int
NumDimSpatial
,
typename
std
::
enable_if
<
NumDimSpatial
>
=
1
&&
NumDimSpatial
<=
3
,
bool
>::
type
=
false
>
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
()
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_bf16_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
2
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_bf16_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_bf16_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
>
struct
ConvolutionFwdInstances
<
int8_t
,
int8_t
,
int8_t
>
{
template
<
int
NumDimSpatial
,
typename
std
::
enable_if
<
NumDimSpatial
>
=
1
&&
NumDimSpatial
<=
3
,
bool
>::
type
=
false
>
static
std
::
vector
<
DeviceConvFwdNoOpPtr
>
Get
()
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
if
constexpr
(
NumDimSpatial
==
1
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv1d_fwd_xdl_nwc_kxc_nwk_int8_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
2
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv2d_fwd_xdl_nhwc_kyxc_nhwk_int8_instances
(
conv_ptrs
);
}
else
if
constexpr
(
NumDimSpatial
==
3
)
{
ck
::
tensor_operation
::
device
::
instance
::
add_device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk_int8_instances
(
conv_ptrs
);
}
return
conv_ptrs
;
}
};
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
,
typename
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
,
typename
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
,
typename
InElementwiseOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
typename
WeiElementwiseOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
typename
OutElementwiseOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
typename
InputInitFun
=
FillUniformDistribution
<
InDataType
>,
typename
WeightsInitFun
=
FillUniformDistribution
<
WeiDataType
>>
class
ConvFwdOpInstance
:
public
ck
::
utils
::
OpInstance
<
OutDataType
,
InDataType
,
WeiDataType
>
{
using
DeviceConvFwdOp
=
tensor_operation
::
device
::
DeviceConvFwd
<
InElementwiseOp
,
WeiElementwiseOp
,
OutElementwiseOp
>
;
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
using
DeviceBuffers
=
std
::
vector
<
DeviceMemPtr
>
;
using
BaseType
=
ck
::
utils
::
OpInstance
<
OutDataType
,
InDataType
,
WeiDataType
>
;
template
<
typename
T
>
using
TensorPtr
=
std
::
unique_ptr
<
Tensor
<
T
>>
;
using
InTensorsTuple
=
std
::
tuple
<
TensorPtr
<
InDataType
>
,
TensorPtr
<
WeiDataType
>>
;
public:
ConvFwdOpInstance
()
=
delete
;
ConvFwdOpInstance
(
const
ConvFwdOpInstance
&
)
=
default
;
ConvFwdOpInstance
&
operator
=
(
const
ConvFwdOpInstance
&
)
=
default
;
ConvFwdOpInstance
(
const
ConvParams
&
params
,
bool
do_init
=
true
,
const
InputInitFun
&
input_init_f
=
InputInitFun
(),
const
WeightsInitFun
&
weights_init_f
=
WeightsInitFun
())
:
BaseType
(),
params_
{
params
},
output_spatial_lengths_
{
params
.
GetOutputSpatialLengths
()},
do_init_
{
do_init
},
input_init_f_
{
input_init_f
},
weights_init_f_
{
weights_init_f
}
{
}
virtual
~
ConvFwdOpInstance
()
override
{};
virtual
InTensorsTuple
GetInputTensors
()
const
override
{
std
::
vector
<
std
::
size_t
>
input_dims
{
static_cast
<
std
::
size_t
>
(
params_
.
N_
),
static_cast
<
std
::
size_t
>
(
params_
.
C_
)};
input_dims
.
insert
(
std
::
end
(
input_dims
),
std
::
begin
(
params_
.
input_spatial_lengths_
),
std
::
end
(
params_
.
input_spatial_lengths_
));
std
::
vector
<
std
::
size_t
>
filter_dims
{
static_cast
<
std
::
size_t
>
(
params_
.
K_
),
static_cast
<
std
::
size_t
>
(
params_
.
C_
)};
filter_dims
.
insert
(
std
::
end
(
filter_dims
),
std
::
begin
(
params_
.
filter_spatial_lengths_
),
std
::
end
(
params_
.
filter_spatial_lengths_
));
auto
input
=
std
::
make_unique
<
Tensor
<
InDataType
>>
(
get_host_tensor_descriptor
(
input_dims
,
InLayout
{}));
auto
weights
=
std
::
make_unique
<
Tensor
<
WeiDataType
>>
(
get_host_tensor_descriptor
(
filter_dims
,
WeiLayout
{}));
if
(
do_init_
)
{
input_init_f_
(
input
->
begin
(),
input
->
end
());
weights_init_f_
(
weights
->
begin
(),
weights
->
end
());
}
return
std
::
make_tuple
(
std
::
move
(
input
),
std
::
move
(
weights
));
}
virtual
TensorPtr
<
OutDataType
>
GetOutputTensor
()
const
override
{
std
::
vector
<
std
::
size_t
>
output_dims
{
static_cast
<
std
::
size_t
>
(
params_
.
N_
),
static_cast
<
std
::
size_t
>
(
params_
.
K_
)};
output_dims
.
insert
(
std
::
end
(
output_dims
),
std
::
begin
(
output_spatial_lengths_
),
std
::
end
(
output_spatial_lengths_
));
auto
output
=
std
::
make_unique
<
Tensor
<
OutDataType
>>
(
get_host_tensor_descriptor
(
output_dims
,
OutLayout
{}));
if
(
do_init_
)
{
std
::
fill
(
output
->
begin
(),
output
->
end
(),
OutDataType
(
0.
f
));
}
return
output
;
}
virtual
std
::
unique_ptr
<
tensor_operation
::
device
::
BaseInvoker
>
MakeInvokerPointer
(
tensor_operation
::
device
::
BaseOperator
*
op_ptr
)
const
override
{
static_assert
(
std
::
is_same_v
<
InElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
static_assert
(
std
::
is_same_v
<
OutElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
static_assert
(
std
::
is_same_v
<
WeiElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
auto
conv_ptr
=
dynamic_cast
<
DeviceConvFwdOp
*>
(
op_ptr
);
if
(
!
conv_ptr
)
{
throw
std
::
runtime_error
(
"[ConvFwdOpInstance]: couldn't cast op_ptr to DeviceConvFwdNoOpPtr type!"
);
}
return
conv_ptr
->
MakeInvokerPointer
();
}
virtual
std
::
unique_ptr
<
tensor_operation
::
device
::
BaseArgument
>
MakeArgumentPointer
(
tensor_operation
::
device
::
BaseOperator
*
op_ptr
,
const
DeviceBuffers
&
in_device_buffers
,
const
DeviceMemPtr
&
out_device_buffer
)
const
override
{
static_assert
(
std
::
is_same_v
<
InElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
static_assert
(
std
::
is_same_v
<
OutElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
static_assert
(
std
::
is_same_v
<
WeiElementwiseOp
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
);
auto
conv_ptr
=
dynamic_cast
<
DeviceConvFwdOp
*>
(
op_ptr
);
if
(
!
conv_ptr
)
{
throw
std
::
runtime_error
(
"[ConvFwdOpInstance]: couldn't cast op_ptr to DeviceConvFwdNoOpPtr type!"
);
}
return
conv_ptr
->
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buffers
[
0
]
->
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
in_device_buffers
[
1
]
->
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buffer
->
GetDeviceBuffer
()),
params_
.
N_
,
params_
.
K_
,
params_
.
C_
,
params_
.
input_spatial_lengths_
,
params_
.
filter_spatial_lengths_
,
output_spatial_lengths_
,
params_
.
conv_filter_strides_
,
params_
.
conv_filter_dilations_
,
params_
.
input_left_pads_
,
params_
.
input_right_pads_
,
InElementwiseOp
{},
WeiElementwiseOp
{},
OutElementwiseOp
{});
}
virtual
std
::
size_t
GetFlops
()
const
override
{
return
get_flops
(
params_
.
N_
,
params_
.
C_
,
params_
.
K_
,
params_
.
filter_spatial_lengths_
,
output_spatial_lengths_
);
}
virtual
std
::
size_t
GetBtype
()
const
override
{
return
get_btype
<
InDataType
,
WeiDataType
,
OutDataType
>
(
params_
.
N_
,
params_
.
C_
,
params_
.
K_
,
params_
.
input_spatial_lengths_
,
params_
.
filter_spatial_lengths_
,
output_spatial_lengths_
);
}
private:
const
ConvParams
&
params_
;
const
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths_
;
const
bool
do_init_
;
InputInitFun
input_init_f_
;
WeightsInitFun
weights_init_f_
;
};
}
// namespace conv
}
// namespace utils
}
// namespace ck
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
ck
::
utils
::
conv
::
ConvParams
&
p
);
library/include/ck/library/utility/convolution_host_tensor_descriptor_helper.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
namespace
ck
{
namespace
utils
{
namespace
conv
{
namespace
detail
{
template
<
typename
OldLayout
>
std
::
vector
<
std
::
size_t
>
get_layout_transpose_gnchw_to_old
()
{
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NWK
>
)
{
return
{
0
,
1
,
3
,
2
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NHWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KYXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NHWK
>
)
{
return
{
0
,
1
,
4
,
2
,
3
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWK
>
)
{
return
{
0
,
1
,
5
,
2
,
3
,
4
};
}
// separate from legacy code above
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNCW
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKCX
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNKW
>
)
{
return
{
0
,
1
,
2
,
3
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNCHW
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKCYX
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNKHW
>
)
{
return
{
0
,
1
,
2
,
3
,
4
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNCDHW
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKCZYX
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNKDHW
>
)
{
return
{
0
,
1
,
2
,
3
,
4
,
5
};
}
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNWK
>
)
{
return
{
0
,
1
,
3
,
2
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNHWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKYXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNHWK
>
)
{
return
{
0
,
1
,
4
,
2
,
3
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNDHWC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GKZYXC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
>
)
{
return
{
0
,
1
,
5
,
2
,
3
,
4
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NWGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KXGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NWGK
>
)
{
return
{
2
,
0
,
3
,
1
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NHWGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KYXGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NHWGK
>
)
{
return
{
3
,
0
,
4
,
1
,
2
};
}
else
if
constexpr
(
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXGC
>
||
ck
::
is_same_v
<
OldLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWGK
>
)
{
return
{
4
,
0
,
5
,
1
,
2
,
3
};
}
else
{
printf
(
"%s
\n
"
,
__func__
);
throw
std
::
runtime_error
(
"wrong! unsupported layout"
);
}
}
}
// namespace detail
// make tensor descriptor for packed input tensor, and order the dimension in the order of GNCHW
// regardless of physical layout
template
<
typename
InLayout
>
HostTensorDescriptor
make_input_host_tensor_descriptor_g_n_c_wis_packed
(
const
ck
::
utils
::
conv
::
ConvParam
&
param
)
{
std
::
vector
<
std
::
size_t
>
physical_lengths
;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if
constexpr
(
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NWC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NHWC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWC
>
)
{
if
(
param
.
G_
!=
1
)
{
throw
std
::
runtime_error
(
"wrong! G != 1"
);
}
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
// separate from legacy code above
else
if
constexpr
(
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNCW
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNCHW
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNCDHW
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
end
(),
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNWC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNHWC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
GNDHWC
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NWGC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NHWGC
>
||
ck
::
is_same_v
<
InLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWGC
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
1
,
param
.
input_spatial_lengths_
.
begin
(),
param
.
input_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
{
printf
(
"%s
\n
"
,
__func__
);
printf
(
"%s
\n
"
,
InLayout
::
name
);
throw
std
::
runtime_error
(
"wrong! unsupported layout"
);
}
return
transpose_host_tensor_descriptor_given_new2old
(
HostTensorDescriptor
(
physical_lengths
),
detail
::
get_layout_transpose_gnchw_to_old
<
InLayout
>
());
}
// make tensor descriptor for packed weight tensor, and order the dimension in the order of GKCYX
// regardless of physical layout
template
<
typename
WeiLayout
>
HostTensorDescriptor
make_weight_host_tensor_descriptor_g_k_c_xs_packed
(
const
ck
::
utils
::
conv
::
ConvParam
&
param
)
{
std
::
vector
<
std
::
size_t
>
physical_lengths
;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if
constexpr
(
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KYXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXC
>
)
{
if
(
param
.
G_
!=
1
)
{
throw
std
::
runtime_error
(
"wrong! G != 1"
);
}
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
// separate from legacy code above
else
if
constexpr
(
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KYXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXC
>
)
{
if
(
param
.
G_
!=
1
)
{
throw
std
::
runtime_error
(
"wrong! G != 1"
);
}
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
end
(),
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKCX
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKCYX
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKCZYX
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
end
(),
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKYXC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
GKZYXC
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KXGC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KYXGC
>
||
ck
::
is_same_v
<
WeiLayout
,
ck
::
tensor_layout
::
convolution
::
KZYXGC
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
K_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
C_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
1
,
param
.
filter_spatial_lengths_
.
begin
(),
param
.
filter_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
{
printf
(
"%s
\n
"
,
__func__
);
printf
(
"%s
\n
"
,
WeiLayout
::
name
);
throw
std
::
runtime_error
(
"wrong! unsupported layout"
);
}
return
transpose_host_tensor_descriptor_given_new2old
(
HostTensorDescriptor
(
physical_lengths
),
detail
::
get_layout_transpose_gnchw_to_old
<
WeiLayout
>
());
}
// make tensor descriptor for packed output tensor, and order the dimension in the order of GNKHW
// regardless of physical layout
template
<
typename
OutLayout
>
HostTensorDescriptor
make_output_host_tensor_descriptor_g_n_k_wos_packed
(
const
ck
::
utils
::
conv
::
ConvParam
&
param
)
{
std
::
vector
<
std
::
size_t
>
physical_lengths
;
// HACK: NHWC/KYXC/NHWK, which is treated as GNHWC/GKYXC/GNHWK by this function,
// is used by some legacy kernel. New kernel should use GNHWK/GKYXC/GNHWK
// TODO: remove this branch after removing legacy kernel
if
constexpr
(
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NWK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NHWK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWK
>
)
{
if
(
param
.
G_
!=
1
)
{
throw
std
::
runtime_error
(
"wrong! G != 1"
);
}
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
output_spatial_lengths_
.
begin
(),
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
// separate from legacy code above
else
if
constexpr
(
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNKW
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNKHW
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNKDHW
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
)};
physical_lengths
.
insert
(
physical_lengths
.
end
(),
param
.
output_spatial_lengths_
.
begin
(),
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNWK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNHWK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
2
,
param
.
output_spatial_lengths_
.
begin
(),
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
if
constexpr
(
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NWGK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NHWGK
>
||
ck
::
is_same_v
<
OutLayout
,
ck
::
tensor_layout
::
convolution
::
NDHWGK
>
)
{
physical_lengths
=
std
::
vector
<
std
::
size_t
>
{
static_cast
<
std
::
size_t
>
(
param
.
N_
),
static_cast
<
std
::
size_t
>
(
param
.
G_
),
static_cast
<
std
::
size_t
>
(
param
.
K_
)};
physical_lengths
.
insert
(
physical_lengths
.
begin
()
+
1
,
param
.
output_spatial_lengths_
.
begin
(),
param
.
output_spatial_lengths_
.
begin
()
+
param
.
num_dim_spatial_
);
}
else
{
printf
(
"%s
\n
"
,
__func__
);
printf
(
"%s
\n
"
,
OutLayout
::
name
);
throw
std
::
runtime_error
(
"wrong! unsupported layout"
);
}
return
transpose_host_tensor_descriptor_given_new2old
(
HostTensorDescriptor
(
physical_lengths
),
detail
::
get_layout_transpose_gnchw_to_old
<
OutLayout
>
());
}
}
// namespace conv
}
// namespace utils
}
// namespace ck
library/include/ck/library/utility/convolution_parameter.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <numeric>
#include <iterator>
#include <vector>
#include "ck/ck.hpp"
namespace
ck
{
namespace
utils
{
namespace
conv
{
struct
ConvParam
{
ConvParam
();
ConvParam
(
ck
::
index_t
n_dim
,
ck
::
index_t
group_count
,
ck
::
index_t
n_batch
,
ck
::
index_t
n_out_channels
,
ck
::
index_t
n_in_channels
,
const
std
::
vector
<
ck
::
index_t
>&
filters_len
,
const
std
::
vector
<
ck
::
index_t
>&
input_len
,
const
std
::
vector
<
ck
::
index_t
>&
strides
,
const
std
::
vector
<
ck
::
index_t
>&
dilations
,
const
std
::
vector
<
ck
::
index_t
>&
left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
right_pads
);
ck
::
index_t
num_dim_spatial_
;
ck
::
index_t
G_
;
ck
::
index_t
N_
;
ck
::
index_t
K_
;
ck
::
index_t
C_
;
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_strides_
;
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations_
;
std
::
vector
<
ck
::
index_t
>
input_left_pads_
;
std
::
vector
<
ck
::
index_t
>
input_right_pads_
;
std
::
vector
<
ck
::
index_t
>
GetOutputSpatialLengths
()
const
;
std
::
size_t
GetFlops
()
const
;
template
<
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
>
std
::
size_t
GetByte
()
const
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
InDataType
)
*
(
G_
*
N_
*
C_
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths_
),
std
::
begin
(
input_spatial_lengths_
)
+
num_dim_spatial_
,
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()))
+
sizeof
(
WeiDataType
)
*
(
G_
*
K_
*
C_
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths_
),
std
::
begin
(
filter_spatial_lengths_
)
+
num_dim_spatial_
,
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()))
+
sizeof
(
OutDataType
)
*
(
G_
*
N_
*
K_
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths_
),
std
::
end
(
output_spatial_lengths_
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()));
}
};
std
::
string
get_conv_param_parser_helper_msg
();
ConvParam
parse_conv_param
(
int
num_dim_spatial
,
int
arg_idx
,
char
*
const
argv
[]);
}
// namespace conv
}
// namespace utils
}
// namespace ck
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
ck
::
utils
::
conv
::
ConvParam
&
p
);
library/include/ck/library/
host_tensor
/device_memory.hpp
→
library/include/ck/library/
utility
/device_memory.hpp
View file @
a1841d55
File moved
library/include/ck/library/
host_tensor
/host_common_util.hpp
→
library/include/ck/library/
utility
/host_common_util.hpp
View file @
a1841d55
File moved
library/include/ck/library/
host_tensor
/host_conv.hpp
→
library/include/ck/library/
utility
/host_conv.hpp
View file @
a1841d55
File moved
library/include/ck/library/
host_tensor
/host_gemm.hpp
→
library/include/ck/library/
utility
/host_gemm.hpp
View file @
a1841d55
File moved
library/include/ck/library/
host_tensor
/host_reduction.hpp
→
library/include/ck/library/
utility
/host_reduction.hpp
View file @
a1841d55
...
...
@@ -11,8 +11,8 @@
#include "ck/utility/reduction_enums.hpp"
#include "ck/utility/reduction_common.hpp"
#include "ck/utility/reduction_functions_accumulate.hpp"
#include "ck/library/
host_tensor
/host_common_util.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
utility
/host_common_util.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
template
<
int
NDim
>
static
void
get_all_indexes
(
const
std
::
array
<
size_t
,
NDim
>&
dimLengths
,
...
...
library/include/ck/library/
host_tensor
/host_tensor.hpp
→
library/include/ck/library/
utility
/host_tensor.hpp
View file @
a1841d55
...
...
@@ -73,15 +73,21 @@ auto construct_f_unpack_args(F, T args)
struct
HostTensorDescriptor
{
HostTensorDescriptor
()
=
de
lete
;
HostTensorDescriptor
()
=
de
fault
;
template
<
typename
X
>
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
);
void
CalculateStrides
();
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
,
const
std
::
vector
<
Y
>&
strides
);
template
<
typename
X
>
HostTensorDescriptor
(
const
std
::
initializer_list
<
X
>&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
{
this
->
CalculateStrides
();
}
void
CalculateStrides
();
template
<
typename
X
>
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
{
this
->
CalculateStrides
();
}
template
<
typename
Range
>
HostTensorDescriptor
(
const
Range
&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
...
...
@@ -89,6 +95,19 @@ struct HostTensorDescriptor
this
->
CalculateStrides
();
}
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
(
const
std
::
initializer_list
<
X
>&
lens
,
const
std
::
initializer_list
<
Y
>&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
{
}
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
,
const
std
::
vector
<
Y
>&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
{
}
template
<
typename
Range1
,
typename
Range2
>
HostTensorDescriptor
(
const
Range1
&
lens
,
const
Range2
&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
...
...
@@ -97,7 +116,7 @@ struct HostTensorDescriptor
std
::
size_t
GetNumOfDimension
()
const
;
std
::
size_t
GetElementSize
()
const
;
std
::
size_t
GetElementSpace
()
const
;
std
::
size_t
GetElementSpace
Size
()
const
;
const
std
::
vector
<
std
::
size_t
>&
GetLengths
()
const
;
const
std
::
vector
<
std
::
size_t
>&
GetStrides
()
const
;
...
...
@@ -122,6 +141,22 @@ struct HostTensorDescriptor
std
::
vector
<
std
::
size_t
>
mStrides
;
};
template
<
typename
New2Old
>
HostTensorDescriptor
transpose_host_tensor_descriptor_given_new2old
(
const
HostTensorDescriptor
&
a
,
const
New2Old
&
new2old
)
{
std
::
vector
<
std
::
size_t
>
new_lengths
(
a
.
GetNumOfDimension
());
std
::
vector
<
std
::
size_t
>
new_strides
(
a
.
GetNumOfDimension
());
for
(
std
::
size_t
i
=
0
;
i
<
a
.
GetNumOfDimension
();
i
++
)
{
new_lengths
[
i
]
=
a
.
GetLengths
()[
new2old
[
i
]];
new_strides
[
i
]
=
a
.
GetStrides
()[
new2old
[
i
]];
}
return
HostTensorDescriptor
(
new_lengths
,
new_strides
);
}
struct
joinable_thread
:
std
::
thread
{
template
<
typename
...
Xs
>
...
...
@@ -203,22 +238,22 @@ template <typename T>
struct
Tensor
{
template
<
typename
X
>
Tensor
(
std
::
initializer_list
<
X
>
lens
)
:
mDesc
(
lens
),
mData
(
mDesc
.
GetElementSpace
())
Tensor
(
std
::
initializer_list
<
X
>
lens
)
:
mDesc
(
lens
),
mData
(
mDesc
.
GetElementSpace
Size
())
{
}
template
<
typename
X
>
Tensor
(
std
::
vector
<
X
>
lens
)
:
mDesc
(
lens
),
mData
(
mDesc
.
GetElementSpace
())
Tensor
(
std
::
vector
<
X
>
lens
)
:
mDesc
(
lens
),
mData
(
mDesc
.
GetElementSpace
Size
())
{
}
template
<
typename
X
,
typename
Y
>
Tensor
(
std
::
vector
<
X
>
lens
,
std
::
vector
<
Y
>
strides
)
:
mDesc
(
lens
,
strides
),
mData
(
mDesc
.
GetElementSpace
())
:
mDesc
(
lens
,
strides
),
mData
(
mDesc
.
GetElementSpace
Size
())
{
}
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
Size
())
{}
template
<
typename
OutT
>
Tensor
<
OutT
>
CopyAsType
()
...
...
@@ -240,6 +275,24 @@ struct Tensor
return
*
this
;
}
const
std
::
vector
<
std
::
size_t
>&
GetLengths
()
const
{
return
mDesc
.
GetLengths
();
}
const
std
::
vector
<
std
::
size_t
>&
GetStrides
()
const
{
return
mDesc
.
GetStrides
();
}
std
::
size_t
GetNumOfDimension
()
const
{
return
mDesc
.
GetNumOfDimension
();
}
std
::
size_t
GetElementSize
()
const
{
return
mDesc
.
GetElementSize
();
}
std
::
size_t
GetElementSpaceSize
()
const
{
return
mDesc
.
GetElementSpaceSize
();
}
void
SetZero
()
{
for
(
auto
&
v
:
mData
)
{
v
=
T
{
0
};
}
}
template
<
typename
F
>
void
ForEach_impl
(
F
&&
f
,
std
::
vector
<
size_t
>&
idx
,
size_t
rank
)
{
...
...
@@ -330,6 +383,19 @@ struct Tensor
mDesc
.
GetLengths
()[
4
])(
num_thread
);
break
;
}
case
6
:
{
auto
f
=
[
&
](
auto
i0
,
auto
i1
,
auto
i2
,
auto
i3
,
auto
i4
,
auto
i5
)
{
(
*
this
)(
i0
,
i1
,
i2
,
i3
,
i4
)
=
g
(
i0
,
i1
,
i2
,
i3
,
i4
,
i5
);
};
make_ParallelTensorFunctor
(
f
,
mDesc
.
GetLengths
()[
0
],
mDesc
.
GetLengths
()[
1
],
mDesc
.
GetLengths
()[
2
],
mDesc
.
GetLengths
()[
3
],
mDesc
.
GetLengths
()[
4
],
mDesc
.
GetLengths
()[
5
])(
num_thread
);
break
;
}
default:
throw
std
::
runtime_error
(
"unspported dimension"
);
}
}
...
...
@@ -367,17 +433,3 @@ struct Tensor
HostTensorDescriptor
mDesc
;
std
::
vector
<
T
>
mData
;
};
template
<
typename
X
>
HostTensorDescriptor
::
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
)
:
mLens
(
lens
.
begin
(),
lens
.
end
())
{
this
->
CalculateStrides
();
}
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
::
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
,
const
std
::
vector
<
Y
>&
strides
)
:
mLens
(
lens
.
begin
(),
lens
.
end
()),
mStrides
(
strides
.
begin
(),
strides
.
end
())
{
}
library/include/ck/library/
host_tensor
/host_tensor_generator.hpp
→
library/include/ck/library/
utility
/host_tensor_generator.hpp
View file @
a1841d55
File moved
library/include/ck/library/utility/op_instance_engine.hpp
View file @
a1841d55
...
...
@@ -16,8 +16,8 @@
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/
host_tensor
/device_memory.hpp"
#include "ck/library/
host_tensor
/host_tensor.hpp"
#include "ck/library/
utility
/device_memory.hpp"
#include "ck/library/
utility
/host_tensor.hpp"
namespace
ck
{
namespace
utils
{
...
...
@@ -103,8 +103,8 @@ class OpInstanceRunEngine
}
}
AllocateDeviceInputTensors
(
std
::
make_index_sequence
<
kNInArgs_
>
{});
out_device_buffer_
=
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
OutDataType
)
*
out_tensor_
->
mDesc
.
GetElementSpace
());
out_device_buffer_
=
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
OutDataType
)
*
out_tensor_
->
mDesc
.
GetElementSpace
Size
());
out_device_buffer_
->
SetZero
();
}
...
...
@@ -222,7 +222,7 @@ class OpInstanceRunEngine
in_device_buffers_
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
std
::
tuple_element_t
<
Index
,
InArgsTypesTuple
>
)
*
ts
->
mDesc
.
GetElementSpace
()))
ts
->
mDesc
.
GetElementSpace
Size
()))
->
ToDevice
(
ts
->
mData
.
data
());
}
...
...
library/src/host_tensor/CMakeLists.txt
deleted
100644 → 0
View file @
127bf7f4
## host_tensor
set
(
HOST_TENSOR_SOURCE
device_memory.cpp
host_tensor.cpp
)
add_library
(
host_tensor STATIC
${
HOST_TENSOR_SOURCE
}
)
add_library
(
composable_kernel::host_tensor ALIAS host_tensor
)
target_compile_features
(
host_tensor PUBLIC
)
set_target_properties
(
host_tensor PROPERTIES POSITION_INDEPENDENT_CODE ON
)
target_include_directories
(
host_tensor SYSTEM PUBLIC $<BUILD_INTERFACE:
${
HALF_INCLUDE_DIR
}
>
)
target_include_directories
(
host_tensor PUBLIC
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck>"
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/utility>"
"$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/host_tensor>"
)
rocm_install
(
TARGETS host_tensor
EXPORT host_tensorTargets
)
rocm_install
(
EXPORT host_tensorTargets
FILE composable_kernelhost_tensorTargets.cmake
NAMESPACE composable_kernel::
DESTINATION
${
CMAKE_INSTALL_LIBDIR
}
/cmake/composable_kernel
)
clang_tidy_check
(
host_tensor
)
library/src/tensor_operation_instance/gpu/CMakeLists.txt
View file @
a1841d55
...
...
@@ -16,15 +16,18 @@ add_subdirectory(batched_gemm_reduce)
add_subdirectory
(
grouped_gemm
)
add_subdirectory
(
contraction_scale
)
add_subdirectory
(
contraction_bilinear
)
add_subdirectory
(
conv1d_fwd
)
add_subdirectory
(
grouped_conv1d_fwd
)
add_subdirectory
(
grouped_conv2d_fwd
)
add_subdirectory
(
grouped_conv3d_fwd
)
add_subdirectory
(
conv2d_fwd
)
add_subdirectory
(
conv3d_fwd
)
add_subdirectory
(
conv2d_fwd_bias_relu
)
add_subdirectory
(
conv2d_fwd_bias_relu_add
)
add_subdirectory
(
conv1d_bwd_data
)
add_subdirectory
(
conv2d_bwd_data
)
add_subdirectory
(
convnd_bwd_data
)
add_subdirectory
(
conv3d_bwd_data
)
add_subdirectory
(
conv1d_bwd_weight
)
add_subdirectory
(
conv2d_bwd_weight
)
add_subdirectory
(
convnd_bwd_weight
)
add_subdirectory
(
conv3d_bwd_weight
)
add_subdirectory
(
conv2d_fwd_bias_relu
)
add_subdirectory
(
conv2d_fwd_bias_relu_add
)
add_subdirectory
(
reduce
)
add_subdirectory
(
normalization
)
add_subdirectory
(
elementwise
)
...
...
@@ -40,15 +43,17 @@ add_library(device_operations STATIC
$<TARGET_OBJECTS:device_grouped_gemm_instance>
$<TARGET_OBJECTS:device_contraction_scale_instance>
$<TARGET_OBJECTS:device_contraction_bilinear_instance>
$<TARGET_OBJECTS:device_conv1d_fwd_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_instance>
$<TARGET_OBJECTS:device_conv3d_fwd_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_add_instance>
$<TARGET_OBJECTS:device_grouped_conv1d_fwd_instance>
$<TARGET_OBJECTS:device_grouped_conv2d_fwd_instance>
$<TARGET_OBJECTS:device_grouped_conv3d_fwd_instance>
$<TARGET_OBJECTS:device_conv1d_bwd_data_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_data_instance>
$<TARGET_OBJECTS:device_convnd_bwd_data_instance>
$<TARGET_OBJECTS:device_conv3d_bwd_data_instance>
$<TARGET_OBJECTS:device_conv1d_bwd_weight_instance>
$<TARGET_OBJECTS:device_conv2d_bwd_weight_instance>
$<TARGET_OBJECTS:device_convnd_bwd_weight_instance>
$<TARGET_OBJECTS:device_conv3d_bwd_weight_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_instance>
$<TARGET_OBJECTS:device_conv2d_fwd_bias_relu_add_instance>
$<TARGET_OBJECTS:device_reduce_instance>
$<TARGET_OBJECTS:device_normalization_instance>
$<TARGET_OBJECTS:device_elementwise_instance>
...
...
@@ -75,7 +80,7 @@ target_include_directories(device_operations PUBLIC
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/tensor_operation/gpu/warp>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/tensor_operation/gpu/thread>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/tensor_operation/gpu/element>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/
host_tensor
>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/
utility
>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/tensor_operation_instance>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/tensor_operation_instance/gpu>
$<INSTALL_INTERFACE:
${
CMAKE_INSTALL_INCLUDEDIR
}
/ck/library/tensor_operation_instance/gpu/reduce>
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
View file @
a1841d55
...
...
@@ -22,7 +22,7 @@ namespace device {
namespace
instance
{
using
F32
=
float
;
using
F32_T
UPLE
=
ck
::
Tuple
<
F32
>
;
using
F32_T
uple
=
ck
::
Tuple
<
F32
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,19 +40,19 @@ using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_in
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
32
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
64
,
32
,
64
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
4
>
// clang-format on
>
;
...
...
@@ -62,7 +62,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn
2
,
F32
,
F32
,
F32_T
UPLE
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
...
...
library/src/tensor_operation_instance/gpu/contraction_bilinear/device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
View file @
a1841d55
...
...
@@ -22,7 +22,7 @@ namespace device {
namespace
instance
{
using
F32
=
float
;
using
F32_T
UPLE
=
ck
::
Tuple
<
F32
>
;
using
F32_T
uple
=
ck
::
Tuple
<
F32
>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -40,22 +40,22 @@ using device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_in
//#####################################| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################################| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
1
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
1
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
1
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
UPLE
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
1
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
256
,
16
,
4
,
4
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
1
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
1
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
128
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
1
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
128
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
1
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
1
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceContractionMultipleD_Xdl_CShuffle
<
2
,
2
,
2
,
F32
,
F32
,
F32
,
F32
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
Bilinear
,
GemmMNKPadding
,
1
,
256
,
64
,
128
,
16
,
4
,
4
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
...
...
@@ -65,7 +65,7 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn
2
,
F32
,
F32
,
F32_T
UPLE
,
F32_T
uple
,
F32
,
PassThrough
,
PassThrough
,
...
...
Prev
1
…
5
6
7
8
9
10
11
12
13
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment