Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
a1841d55
Commit
a1841d55
authored
Aug 01, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into lwpck-367
parents
127bf7f4
500fa995
Changes
373
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2773 additions
and
510 deletions
+2773
-510
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
...eration/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk.hpp
...ck/tensor_operation/gpu/device/device_gemm_xdl_splitk.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp
...operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
...eration/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
+63
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
...evice/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
+1813
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
+4
-22
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
+179
-332
include/ck/tensor_operation/gpu/device/device_layernorm.hpp
include/ck/tensor_operation/gpu/device/device_layernorm.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
...nsor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp
.../tensor_operation/gpu/device/device_reduce_multiblock.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
.../tensor_operation/gpu/device/device_reduce_threadwise.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_softmax.hpp
include/ck/tensor_operation/gpu/device/device_softmax.hpp
+2
-2
include/ck/tensor_operation/gpu/device/device_unary_elementwise.hpp
.../tensor_operation/gpu/device/device_unary_elementwise.hpp
+2
-2
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
+184
-0
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
+242
-29
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+20
-5
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+56
-7
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
...ration/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
+173
-89
include/ck/utility/tuple.hpp
include/ck/utility/tuple.hpp
+21
-7
library/CMakeLists.txt
library/CMakeLists.txt
+0
-1
No files found.
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
View file @
a1841d55
...
...
@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk.hpp
View file @
a1841d55
...
...
@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_gemm_xdl_splitk_c_shuffle.hpp
View file @
a1841d55
...
...
@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_gemm_splitk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Convolution Forward:
// input : input image A[G, N, C, Hi, Wi],
// input : weight B[G, K, C, Y, X],
// input : D0[G, N, K, Ho, Wo], D1[G, N, K, Ho, Wo], ...
// output : output image E[G, N, K, Ho, Wo]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
>
struct
DeviceGroupedConvFwdMultipleD
:
public
BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batch_gemm_multiple_d_xdl_cshuffle
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDesc_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
const
Block2ETileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if 1
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
e_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
e_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
);
#else
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map
);
#endif
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
#endif
}
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
1
&&
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
GNWC
>,
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* a_g_n_c_wis_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
in_gemmmraw_gemmk_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NWo
,
C
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
X
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_merge_transform
(
make_tuple
(
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
GNHWC
>,
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* a_g_n_c_wis_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Hi
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
4
];
const
index_t
Ho
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
4
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NHoWo
,
C
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
Y
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
X
=
b_g_k_c_xs_lengths
[
4
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
3
&&
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
GNDHWC
>,
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* a_g_n_c_wis_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Di
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Hi
=
a_g_n_c_wis_lengths
[
4
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
5
];
const
index_t
Do
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
Ho
=
e_g_n_k_wos_lengths
[
4
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
5
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NDoHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NDoHoWo
,
C
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_do_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Do
),
make_tuple
(
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_do_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
Z
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
Y
=
b_g_k_c_xs_lengths
[
4
];
const
index_t
X
=
b_g_k_c_xs_lengths
[
5
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
// TODO: implement ck::tensor_layout::convolution that describe packed/strided dimemsion as
// properties
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
1
&&
(
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
G_NW_C
>
||
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
NWGC
>
),
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
// This is different
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
2
+
NDimSpatial
];
const
auto
CStride
=
I1
;
const
auto
in_gemmmraw_gemmk_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NHoWo
,
C
),
make_tuple
(
WiStride
,
CStride
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
3
];
const
auto
CStride
=
I1
;
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Wi
,
C
),
make_tuple
(
NStride
,
WiStride
,
CStride
));
const
auto
in_n_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
X
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
3
];
const
auto
CStride
=
I1
;
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Wi
,
C
),
make_tuple
(
NStride
,
WiStride
,
CStride
));
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Wo
)),
make_merge_transform
(
make_tuple
(
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
2
&&
(
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
G_NHW_C
>
||
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
NHWGC
>
),
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Hi
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
4
];
const
index_t
Ho
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
4
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
// This is different
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
2
+
NDimSpatial
];
const
auto
CStride
=
I1
;
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NHoWo
,
C
),
make_tuple
(
WiStride
,
CStride
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
HiStride
=
a_g_n_c_wis_strides
[
3
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
4
];
const
auto
CStride
=
I1
;
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
const
auto
in_n_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
Y
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
X
=
b_g_k_c_xs_lengths
[
4
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
HiStride
=
a_g_n_c_wis_strides
[
3
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
4
];
const
auto
CStride
=
I1
;
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
HiStride
,
WiStride
,
CStride
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmmraw_gemmk_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
1
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmk_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
template
<
typename
ALay
,
typename
std
::
enable_if
<
NDimSpatial
==
3
&&
(
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
G_NDHW_C
>
||
is_same_v
<
ALay
,
tensor_layout
::
convolution
::
NDHWGC
>
),
bool
>::
type
=
false
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
index_t
N
=
a_g_n_c_wis_lengths
[
1
];
const
index_t
C
=
a_g_n_c_wis_lengths
[
2
];
const
index_t
Di
=
a_g_n_c_wis_lengths
[
3
];
const
index_t
Hi
=
a_g_n_c_wis_lengths
[
4
];
const
index_t
Wi
=
a_g_n_c_wis_lengths
[
5
];
const
index_t
Do
=
e_g_n_k_wos_lengths
[
3
];
const
index_t
Ho
=
e_g_n_k_wos_lengths
[
4
];
const
index_t
Wo
=
e_g_n_k_wos_lengths
[
5
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
const
index_t
NDoHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
// This is different
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
2
+
NDimSpatial
];
const
auto
CStride
=
I1
;
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NDoHoWo
,
C
),
make_tuple
(
WiStride
,
CStride
));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
DiStride
=
a_g_n_c_wis_strides
[
3
];
const
index_t
HiStride
=
a_g_n_c_wis_strides
[
4
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
5
];
const
auto
CStride
=
I1
;
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
DiStride
,
HiStride
,
WiStride
,
CStride
));
const
auto
in_n_do_ho_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Do
),
make_tuple
(
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Ho
),
make_tuple
(
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
Wo
),
make_tuple
(
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_do_ho_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
else
{
const
index_t
Z
=
b_g_k_c_xs_lengths
[
3
];
const
index_t
Y
=
b_g_k_c_xs_lengths
[
4
];
const
index_t
X
=
b_g_k_c_xs_lengths
[
5
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
// This is different
const
index_t
NStride
=
a_g_n_c_wis_strides
[
1
];
const
index_t
DiStride
=
a_g_n_c_wis_strides
[
3
];
const
index_t
HiStride
=
a_g_n_c_wis_strides
[
4
];
const
index_t
WiStride
=
a_g_n_c_wis_strides
[
5
];
const
auto
CStride
=
I1
;
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
),
make_tuple
(
NStride
,
DiStride
,
HiStride
,
WiStride
,
CStride
));
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemmmraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
)),
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
))),
make_tuple
(
Sequence
<
0
,
2
,
4
,
6
>
{},
Sequence
<
1
,
3
,
5
,
7
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmm_gemmk_grid_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_grid_desc
);
return
in_gemmm_gemmk_grid_desc
;
}
}
template
<
typename
BLay
,
typename
std
::
enable_if
<
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
GKXC
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
GKYXC
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
GKZYXC
>
,
bool
>::
type
=
false
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* b_g_k_c_xs_strides */
)
{
const
index_t
K
=
b_g_k_c_xs_lengths
[
1
];
const
index_t
C
=
b_g_k_c_xs_lengths
[
2
];
const
index_t
YX
=
std
::
accumulate
(
b_g_k_c_xs_lengths
.
begin
()
+
3
,
b_g_k_c_xs_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
wei_k_yxc_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
YX
*
C
));
const
auto
wei_gemmn_gemmk_grid_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_k_yxc_grid_desc
);
return
wei_gemmn_gemmk_grid_desc
;
}
template
<
typename
BLay
,
typename
std
::
enable_if
<
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
G_K_X_C
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
G_K_YX_C
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
G_K_ZYX_C
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
KXGC
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
KYXGC
>
||
is_same_v
<
BLay
,
tensor_layout
::
convolution
::
KZYXGC
>
,
bool
>::
type
=
false
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
index_t
K
=
b_g_k_c_xs_lengths
[
1
];
const
index_t
C
=
b_g_k_c_xs_lengths
[
2
];
const
index_t
YX
=
std
::
accumulate
(
b_g_k_c_xs_lengths
.
begin
()
+
3
,
b_g_k_c_xs_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
index_t
KStride
=
b_g_k_c_xs_strides
[
1
];
const
index_t
XStride
=
b_g_k_c_xs_strides
[
2
+
NDimSpatial
];
const
auto
CStride
=
I1
;
const
auto
wei_k_yx_c_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
K
,
YX
,
C
),
make_tuple
(
KStride
,
XStride
,
CStride
));
const
auto
wei_gemmnraw_gemmkraw_grid_desc
=
transform_tensor_descriptor
(
wei_k_yx_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
YX
,
C
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
wei_gemmn_gemmk_grid_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_grid_desc
);
return
wei_gemmn_gemmk_grid_desc
;
}
template
<
typename
ELay
,
typename
std
::
enable_if
<
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
GNWK
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
GNHWK
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
GNDHWK
>
,
bool
>::
type
=
false
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
/* e_g_n_k_wos_strides */
)
{
const
index_t
N
=
e_g_n_k_wos_lengths
[
1
];
const
index_t
K
=
e_g_n_k_wos_lengths
[
2
];
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
out_gemmmraw_gemmnraw_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NHoWo
,
K
));
const
auto
out_gemmm_gemmn_grid_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_grid_desc
);
return
out_gemmm_gemmn_grid_desc
;
}
template
<
typename
ELay
,
typename
std
::
enable_if
<
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
G_NW_K
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
G_NHW_K
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
G_NDHW_K
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
NWGK
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
NHWGK
>
||
is_same_v
<
ELay
,
tensor_layout
::
convolution
::
NDHWGK
>
,
bool
>::
type
=
false
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
index_t
N
=
e_g_n_k_wos_lengths
[
1
];
const
index_t
K
=
e_g_n_k_wos_lengths
[
2
];
const
auto
KStride
=
I1
;
const
index_t
WoStride
=
e_g_n_k_wos_strides
[
NDimSpatial
+
2
];
const
index_t
NHoWo
=
N
*
std
::
accumulate
(
e_g_n_k_wos_lengths
.
begin
()
+
3
,
e_g_n_k_wos_lengths
.
begin
()
+
3
+
NDimSpatial
,
index_t
{
1
},
std
::
multiplies
<
index_t
>
());
const
auto
out_gemmmraw_gemmnraw_grid_desc
=
make_naive_tensor_descriptor
(
make_tuple
(
NHoWo
,
K
),
make_tuple
(
WoStride
,
KStride
));
const
auto
out_gemmm_gemmn_grid_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_grid_desc
);
return
out_gemmm_gemmn_grid_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
});
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 1
arg
.
Print
();
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmMultipleD_xdl_cshuffle has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
a_g_n_c_wis_lengths_
[
0
];
// Group count
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_batch_gemm_multiple_d_xdl_cshuffle
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
Block2ETileMap
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx908"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
if
(
get_device_name
()
==
"gfx90a"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
||
is_same_v
<
AccDataType
,
double
>
))
{
return
false
;
}
}
else
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of Ds
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
// FIXME: layout
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid
=
false
;
}
}
else
{
valid
=
false
;
}
});
if
(
!
valid
)
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm.hpp
View file @
a1841d55
...
...
@@ -18,7 +18,8 @@ struct GemmDesc
template
<
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
...
...
@@ -30,6 +31,8 @@ struct DeviceGroupedGemm : public BaseOperator
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
DsLayout
::
Size
()
==
DsDataType
::
Size
(),
"wrong! inconsisiten NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
const
void
*>&
p_a
,
std
::
vector
<
const
void
*>&
p_b
,
...
...
@@ -43,27 +46,6 @@ struct DeviceGroupedGemm : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
using
DeviceGroupedGemmPtr
=
std
::
unique_ptr
<
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
View file @
a1841d55
...
...
@@ -13,9 +13,10 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -72,11 +73,11 @@ __global__ void
a_element_op
,
b_element_op
,
c_element_op
,
gemm_desc_ptr
[
group_id
].
a_grid_desc_k0_m_k1_
,
gemm_desc_ptr
[
group_id
].
b_grid_desc_k0_n_k1_
,
gemm_desc_ptr
[
group_id
].
a_grid_desc_
a
k0_m_
a
k1_
,
gemm_desc_ptr
[
group_id
].
b_grid_desc_
b
k0_n_
b
k1_
,
gemm_desc_ptr
[
group_id
].
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
gemm_desc_ptr
[
group_id
].
block_2_
c
tile_map_
);
gemm_desc_ptr
[
group_id
].
block_2_
e
tile_map_
);
#else
ignore
=
gemm_descs_const
;
ignore
=
group_count
;
...
...
@@ -88,10 +89,11 @@ __global__ void
template
<
typename
ALayout
,
typename
BLayout
,
typename
DELayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
Gemm
AccDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
...
...
@@ -116,37 +118,43 @@ template <typename ALayout,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLds
Add
ExtraM
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLds
Add
ExtraN
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemmXdl
:
public
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
struct
DeviceGroupedGemm_Xdl
:
public
DeviceGroupedGemm
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
...
...
@@ -161,95 +169,10 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_
BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
static
auto
MakeBGridDescriptor_
N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
...
...
@@ -264,160 +187,50 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
}
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
const
auto
c
_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
D
ELay
out
>::
value
)
const
auto
e
_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
D
ELay
out
>::
value
)
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELay
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
)
;
}
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
MRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
NRaws
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
MRaws
[
i
],
NRaws
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
1
,
1
,
1
));
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_
k0mk1_k0nk1_mn_
xdl_cshuffle
<
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
Gemm
AccDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
...
...
@@ -425,8 +238,9 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
AGridDesc_M_K
,
BGridDesc_N_K
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
NumPrefetch
,
// NumGemmKPrefetchStage
BlockSize
,
...
...
@@ -446,7 +260,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLds
Add
ExtraM
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
...
...
@@ -454,76 +268,87 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLds
Add
ExtraN
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
struct
GroupedGemmBlock2ETileMap
{
using
UnderlyingBlock2CTileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
using
UnderlyingBlock2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
static_assert
(
std
::
is_same
<
decltype
(
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{})),
typename
GridwiseGemm
::
DefaultBlock2ETileMap
>::
value
,
"Wrong! Should be the same type name"
);
GroupedGemmBlock2ETileMap
()
{
block_2_
c
tile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{});
block_2_
e
tile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{});
BlockStart_
=
-
1
;
}
GroupedGemmBlock2ETileMap
(
const
EGridDesc_M_N
&
c
_grid_desc_m_n
,
ck
::
index_t
BlockStart
)
GroupedGemmBlock2ETileMap
(
const
EGridDesc_M_N
&
e
_grid_desc_m_n
,
ck
::
index_t
BlockStart
)
{
block_2_
c
tile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
c
_grid_desc_m_n
);
block_2_
e
tile_map_
=
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e
_grid_desc_m_n
);
BlockStart_
=
BlockStart
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
return
block_2_
c
tile_map_
.
CalculateBottomIndex
(
return
block_2_
e
tile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
I0
]
-
BlockStart_
));
}
// it's actually E-Tile
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_2_
c
tile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
return
block_2_
e
tile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
__host__
bool
CheckValidity
(
const
EGridDesc_M_N
&
c
_grid_desc_m_n
)
const
__host__
bool
CheckValidity
(
const
EGridDesc_M_N
&
e
_grid_desc_m_n
)
const
{
return
block_2_
c
tile_map_
.
CheckValidity
(
c
_grid_desc_m_n
);
return
block_2_
e
tile_map_
.
CheckValidity
(
e
_grid_desc_m_n
);
}
typename
GridwiseGemm
::
DefaultBlock2ETileMap
block_2_
c
tile_map_
;
typename
GridwiseGemm
::
DefaultBlock2ETileMap
block_2_
e
tile_map_
;
ck
::
index_t
BlockStart_
;
};
struct
GemmBiasTransKernelArg
{
AGridDesc_AK0_M_AK1
a_grid_desc_k0_m_k1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_k0_n_k1_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of different
GroupedGemmBlock2ETileMap
block_2_ctile_map_
;
// pointers
const
ADataType
*
a_ptr_
;
const
BDataType
*
b_ptr_
;
typename
GridwiseGemm
::
DsGridPointer
ds_ptr_
;
EDataType
*
e_ptr_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
GroupedGemmBlock2ETileMap
block_2_etile_map_
;
ck
::
index_t
BlockStart_
,
BlockEnd_
;
};
...
...
@@ -563,66 +388,85 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
const
auto
a_grid_desc_k0_m_k1_
=
DeviceGroupedGemmXdl
::
MakeAGridDescriptor_AK0_M_AK1
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_k0_n_k1_
=
DeviceGroupedGemmXdl
::
MakeBGridDescriptor_BK0_N_BK1
(
K
,
N
,
StrideB
);
// pointer
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid
{};
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
});
const
auto
e_grid_desc_m_n_
=
DeviceGroupedGemmXdl
::
MakeEGridDescriptor_M_N
(
M
,
N
,
StrideC
);
// tensor descriptors for problem definiton
const
auto
a_grid_desc_m_k
=
DeviceOp
::
MakeAGridDescriptor_M_K
(
M
,
K
,
StrideA
);
const
auto
b_grid_desc_n_k
=
DeviceOp
::
MakeBGridDescriptor_N_K
(
K
,
N
,
StrideB
);
DsGridDesc_M_N
ds_grid_desc_m_n
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsLayout
>>
;
ds_grid_desc_m_n
(
j
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
});
const
auto
e_grid_desc_m_n
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideC
);
// tensor descriptors for block/thread-wise copy
const
auto
a_grid_desc_ak0_m_ak1
=
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k
);
const
auto
b_grid_desc_bk0_n_bk1
=
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k
);
const
index_t
grid_size_grp
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
_
,
0
)
.
block_2_
c
tile_map_
.
CalculateGridSize
(
e_grid_desc_m_n
_
);
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
0
)
.
block_2_
e
tile_map_
.
CalculateGridSize
(
e_grid_desc_m_n
);
const
index_t
BlockStart
=
grid_size_
;
const
index_t
BlockEnd
=
grid_size_
+
grid_size_grp
;
grid_size_
+=
grid_size_grp
;
const
auto
block_2_ctile_map_
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n_
,
BlockStart
);
// block-to-e-tile map
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
e_grid_desc_m_n
,
BlockStart
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
e_grid_desc_m_n_
,
block_2_ctile_map_
))
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
block_2_etile_map
))
{
auto
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
StaticallyIndexedArray
<
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
// FIXME: Ds desc may be of
// different
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
{};
// tensor descriptors for block/thread-wise copy
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
j
.
value
,
DsDataType
>>
;
p_ds_grid_
(
j
)
=
static_cast
<
const
DDataType
*>
(
p_Ds
[
i
][
j
]);
const
auto
d_grid_desc_m_n
=
DeviceGroupedGemmXdl
::
MakeEGridDescriptor_M_N
(
M
,
N
,
gemm_descs
[
i
].
stride_Ds_
[
j
]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
j
)
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
(
j
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
d_grid_desc_m_n
);
d
s
_grid_desc_m_n
[
j
]
);
});
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n
);
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
e_grid_desc_m_n_
,
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
block_2_ctile_map_
,
static_cast
<
const
ADataType
*>
(
p_As
[
i
]),
GemmBiasTransKernelArg
{
static_cast
<
const
ADataType
*>
(
p_As
[
i
]),
static_cast
<
const
BDataType
*>
(
p_Bs
[
i
]),
p_ds_grid
_
,
p_ds_grid
,
static_cast
<
EDataType
*>
(
p_Es
[
i
]),
a_grid_desc_m_k
,
b_grid_desc_n_k
,
ds_grid_desc_m_n
,
e_grid_desc_m_n
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
,
BlockStart
,
BlockEnd
});
}
...
...
@@ -643,7 +487,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
Device
GroupedGemmXdl
::
Argument
;
using
Argument
=
Device
Op
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
...
...
@@ -651,32 +495,39 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
std
::
cout
<<
"group: "
<<
i
<<
" arg.a_grid_desc_k0_m_k1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.b_grid_desc_k0_n_k1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_k0_n_k1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
"group: "
<<
i
<<
" arg.a_grid_desc_ak0_m_ak1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.b_grid_desc_bk0_n_bk1_{"
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_bk0_n_bk1_
.
GetLength
(
I2
)
<<
"}"
;
std
::
cout
<<
", arg.e_grid_desc_m_n_{ "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_k0_n_k1_
,
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_m_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
b_grid_desc_n_k_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
ds_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
e_grid_desc_m_n_
,
arg
.
gemm_desc_kernel_arg_
[
i
].
block_2_
c
tile_map_
))
arg
.
gemm_desc_kernel_arg_
[
i
].
block_2_
e
tile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting"
);
}
const
auto
K
=
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
const
auto
K
=
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_
a
k0_m_
a
k1_
.
GetLength
(
I0
)
*
arg
.
gemm_desc_kernel_arg_
[
i
].
a_grid_desc_
a
k0_m_
a
k1_
.
GetLength
(
I2
);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
)
!=
has_main_k_block_loop
)
{
...
...
@@ -733,18 +584,14 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
else
return
true
;
}
return
true
;
}
// polymorphic
...
...
@@ -795,7 +642,7 @@ struct DeviceGroupedGemmXdl : public DeviceGroupedGemm<ALayout,
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemmXdl"
str
<<
"DeviceGroupedGemm
_
Xdl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
...
...
include/ck/tensor_operation/gpu/device/device_layernorm.hpp
View file @
a1841d55
...
...
@@ -13,8 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_layernorm.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_pool2d_fwd_nhwc_nhwc.hpp
View file @
a1841d55
...
...
@@ -11,8 +11,8 @@
#include "ck/tensor_operation/gpu/device/reduction_operator_mapping.hpp"
#include "ck/tensor_operation/gpu/device/device_pool2d_fwd.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_threadwise.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_reduce_multiblock.hpp
View file @
a1841d55
...
...
@@ -14,8 +14,8 @@
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_reduce_threadwise.hpp
View file @
a1841d55
...
...
@@ -6,8 +6,8 @@
#include <iostream>
#include <sstream>
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_2d_reduction_multiblock.hpp"
...
...
include/ck/tensor_operation/gpu/device/device_softmax.hpp
View file @
a1841d55
...
...
@@ -14,8 +14,8 @@
#include "ck/tensor_operation/gpu/device/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_softmax.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
include/ck/tensor_operation/gpu/device/device_unary_elementwise.hpp
View file @
a1841d55
...
...
@@ -6,8 +6,8 @@
#include <iostream>
#include <vector>
#include "ck/
device
_utility/device_prop.hpp"
#include "ck/
device
_utility/kernel_launch.hpp"
#include "ck/
host
_utility/device_prop.hpp"
#include "ck/
host
_utility/kernel_launch.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
...
...
include/ck/tensor_operation/gpu/device/matrix_padder.hpp
0 → 100644
View file @
a1841d55
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// M/N/KPerTileType could be index_t or Number<>
template
<
GemmSpecialization
GemmSpec
,
typename
MPerTileType
,
typename
NPerTileType
,
typename
KPerTileType
>
struct
MatrixPadder
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
template
<
typename
ADesc_MRaw_KRaw
>
__host__
__device__
constexpr
auto
PadADescriptor_M_K
(
const
ADesc_MRaw_KRaw
&
a_desc_mraw_kraw
)
const
{
const
auto
MRaw
=
a_desc_mraw_kraw
.
GetLength
(
I0
);
const
auto
KRaw
=
a_desc_mraw_kraw
.
GetLength
(
I1
);
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerTile_
)
*
MPerTile_
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerTile_
)
*
KPerTile_
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
return
transform_tensor_descriptor
(
a_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
return
transform_tensor_descriptor
(
a_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
KRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
return
transform_tensor_descriptor
(
a_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or K
return
a_desc_mraw_kraw
;
}
}
template
<
typename
BDesc_NRaw_KRaw
>
__host__
__device__
constexpr
auto
PadBDescriptor_N_K
(
const
BDesc_NRaw_KRaw
&
b_desc_nraw_kraw
)
const
{
const
auto
NRaw
=
b_desc_nraw_kraw
.
GetLength
(
I0
);
const
auto
KRaw
=
b_desc_nraw_kraw
.
GetLength
(
I1
);
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerTile_
)
*
NPerTile_
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerTile_
)
*
KPerTile_
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
return
transform_tensor_descriptor
(
b_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
return
transform_tensor_descriptor
(
b_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_pass_through_transform
(
KRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
return
transform_tensor_descriptor
(
b_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad N or K
return
b_desc_nraw_kraw
;
}
}
template
<
typename
CDesc_MRaw_NRaw
>
__host__
__device__
constexpr
auto
PadCDescriptor_M_N
(
const
CDesc_MRaw_NRaw
&
c_desc_mraw_nraw
)
const
{
const
auto
MRaw
=
c_desc_mraw_nraw
.
GetLength
(
I0
);
const
auto
NRaw
=
c_desc_mraw_nraw
.
GetLength
(
I1
);
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerTile_
)
*
MPerTile_
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerTile_
)
*
NPerTile_
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_desc_mraw_nraw
;
}
}
MPerTileType
MPerTile_
;
NPerTileType
NPerTile_
;
KPerTileType
KPerTile_
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
View file @
a1841d55
...
...
@@ -25,41 +25,146 @@ struct ColumnMajor : public BaseTensorLayout
namespace
convolution
{
// 1D Conv
// input tensor
// packed NCW/NCHW/NCDHW
struct
NCW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NCW"
;
};
struct
NCHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NCHW"
;
};
struct
NCDHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NCDHW"
;
};
// packed GNCW/GNCHW/GNCDHW
struct
GNCW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNCW"
;
};
struct
GNCHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNCHW"
;
};
struct
GNCDHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNCDHW"
;
};
// input tensor
// packed NWC/NHWC/NDHWC
struct
NWC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NWC"
;
};
struct
KX
C
:
public
BaseTensorLayout
struct
NHW
C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
KX
C"
;
static
constexpr
const
char
*
name
=
"
NHW
C"
;
};
struct
N
WK
:
public
BaseTensorLayout
struct
N
DHWC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"N
WK
"
;
static
constexpr
const
char
*
name
=
"N
DHWC
"
;
};
struct
NCW
:
public
BaseTensorLayout
// input tensor
// packed GNWC/GNHWC/GNDHWC
struct
GNWC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NCW"
;
static
constexpr
const
char
*
name
=
"GNWC"
;
};
struct
GNHWC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNHWC"
;
};
struct
GNDHWC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNDHWC"
;
};
// input tensor
// packed GNWC/GNHWC/GNDHWC
struct
NWGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NWGC"
;
};
struct
NHWGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NHWGC"
;
};
struct
NDHWGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NDHWGC"
;
};
// input tensor
// strided layout
struct
G_NW_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NW_C"
;
};
struct
G_NHW_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NHW_C"
;
};
struct
G_NDHW_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NDHW_C"
;
};
// weight tensor
// packed KCX/KCYX/KCZYX
struct
KCX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KCX"
;
};
struct
NKW
:
public
BaseTensorLayout
struct
KCYX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
NKW
"
;
static
constexpr
const
char
*
name
=
"
KCYX
"
;
};
// 2D Conv
struct
NHWC
:
public
BaseTensorLayout
struct
KCZYX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NHWC"
;
static
constexpr
const
char
*
name
=
"KCZYX"
;
};
// weight tensor
// packed KCX/KCYX/KCZYX
struct
GKCX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GKCX"
;
};
struct
GKCYX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GKCYX"
;
};
struct
GKCZYX
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GKCZYX"
;
};
// weight tensor
// packed KXC/KYXC/KZYXC
struct
KXC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KXC"
;
};
struct
KYXC
:
public
BaseTensorLayout
...
...
@@ -67,19 +172,67 @@ struct KYXC : public BaseTensorLayout
static
constexpr
const
char
*
name
=
"KYXC"
;
};
struct
NHWK
:
public
BaseTensorLayout
struct
KZYXC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
NHWK
"
;
static
constexpr
const
char
*
name
=
"
KZYXC
"
;
};
struct
NCHW
:
public
BaseTensorLayout
// weight tensor
// packed GKXC/GKYXC/GKZYXC
struct
GKXC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
NCHW
"
;
static
constexpr
const
char
*
name
=
"
GKXC
"
;
};
struct
K
C
YX
:
public
BaseTensorLayout
struct
G
KYX
C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KCYX"
;
static
constexpr
const
char
*
name
=
"GKYXC"
;
};
struct
GKZYXC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GKZYXC"
;
};
// weight tensor
// packed KXGC/KYXGC/KZYXGC
struct
KXGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KXGC"
;
};
struct
KYXGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KYXGC"
;
};
struct
KZYXGC
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KZYXGC"
;
};
// weight tensor
// strided
struct
G_K_X_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_K_X_C"
;
};
struct
G_K_YX_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_K_YX_C"
;
};
struct
G_K_ZYX_C
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_K_ZYX_C"
;
};
// output tensor
// packed NKW/NKHW/NKDHW
struct
NKW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NKW"
;
};
struct
NKHW
:
public
BaseTensorLayout
...
...
@@ -87,34 +240,94 @@ struct NKHW : public BaseTensorLayout
static
constexpr
const
char
*
name
=
"NKHW"
;
};
// 3D Conv
struct
NDHWC
:
public
BaseTensorLayout
struct
NKDHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NDHW
C
"
;
static
constexpr
const
char
*
name
=
"N
K
DHW"
;
};
struct
KZYXC
:
public
BaseTensorLayout
// output tensor
// packed GNKW/GNKHW/GNKDHW
struct
GNKW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"KZYXC"
;
static
constexpr
const
char
*
name
=
"GNKW"
;
};
struct
GNKHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNKHW"
;
};
struct
GNKDHW
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"GNKDHW"
;
};
// output tensor
// packed NWK/NHWK/NDHWK
struct
NWK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NWK"
;
};
struct
NHWK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NHWK"
;
};
struct
NDHWK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NDHWK"
;
};
struct
NCDHW
:
public
BaseTensorLayout
// output tensor
// packed GNWK/GNHWK/GNDHWK
struct
GNWK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
NCDHW
"
;
static
constexpr
const
char
*
name
=
"
GNWK
"
;
};
struct
KCZYX
:
public
BaseTensorLayout
struct
GNHWK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"
KCZYX
"
;
static
constexpr
const
char
*
name
=
"
GNHWK
"
;
};
struct
N
K
DHW
:
public
BaseTensorLayout
struct
G
NDHW
K
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NKDHW"
;
static
constexpr
const
char
*
name
=
"GNDHWK"
;
};
// output tensor
// packed NWGK/NHWGK/NDHWGK
struct
NWGK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NWGK"
;
};
struct
NHWGK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NHWGK"
;
};
struct
NDHWGK
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"NDHWGK"
;
};
// output tensor
// strided layout
struct
G_NW_K
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NW_K"
;
};
struct
G_NHW_K
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NHW_K"
;
};
struct
G_NDHW_K
:
public
BaseTensorLayout
{
static
constexpr
const
char
*
name
=
"G_NDHW_K"
;
};
}
// namespace convolution
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
a1841d55
...
...
@@ -104,6 +104,13 @@ struct Bilinear
y
=
alpha_
*
x0
+
beta_
*
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
y
=
type_convert
<
half_t
>
(
alpha_
)
*
x0
+
type_convert
<
half_t
>
(
beta_
)
*
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
...
...
@@ -117,12 +124,12 @@ struct Bilinear
struct
AddRelu
{
template
<
typename
T
>
__host__
__device__
constexpr
void
operator
()(
T
&
y
,
const
T
&
x0
,
const
T
&
x1
)
const
;
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
y
,
const
X0
&
x0
,
const
X1
&
x1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
operator
()
<
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
{
const
float
a
=
x0
+
x1
;
y
=
a
>
0.0
f
?
a
:
0.0
f
;
...
...
@@ -130,7 +137,7 @@ struct AddRelu
template
<
>
__host__
__device__
constexpr
void
operator
()
<
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
operator
()
<
double
,
double
,
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
const
double
a
=
x0
+
x1
;
y
=
a
>
0.0
?
a
:
0.0
;
...
...
@@ -138,11 +145,19 @@ struct AddRelu
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
operator
()
<
half_t
,
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x0
,
const
half_t
&
x1
)
const
{
const
half_t
a
=
x0
+
x1
;
y
=
a
>
type_convert
<
half_t
>
(
0.0
f
)
?
a
:
type_convert
<
half_t
>
(
0.0
f
);
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
>
(
half_t
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
{
const
float
a
=
x0
+
x1
;
y
=
a
>
type_convert
<
half_t
>
(
0.0
f
)
?
a
:
type_convert
<
half_t
>
(
0.0
f
);
};
};
struct
AddHardswish
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
a1841d55
...
...
@@ -12,16 +12,65 @@ namespace element_wise {
struct
PassThrough
{
template
<
typename
T
>
__host__
__device__
void
operator
()(
T
&
y
,
const
T
&
x
)
const
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
double
,
double
>
(
double
&
y
,
const
double
&
x
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
bhalf_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"Data type is not supported by this operation!"
);
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
y
=
x
;
};
}
template
<
>
__host__
__device__
void
operator
()
<
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x
)
const
{
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
bhalf_t
,
bhalf_t
>
(
bhalf_t
&
y
,
const
bhalf_t
&
x
)
const
{
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
int32_t
,
int32_t
>
(
int32_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
bhalf_t
,
float
>
(
bhalf_t
&
y
,
const
float
&
x
)
const
{
y
=
type_convert
<
bhalf_t
>
(
x
);
}
template
<
>
__host__
__device__
void
operator
()
<
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x
)
const
{
y
=
x
;
}
template
<
>
__host__
__device__
void
operator
()
<
int8_t
,
int32_t
>
(
int8_t
&
y
,
const
int32_t
&
x
)
const
{
y
=
type_convert
<
int8_t
>
(
x
);
}
};
struct
UnaryConvert
{
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
{
y
=
type_convert
<
Y
>
(
x
);
}
};
struct
Scale
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp
View file @
a1841d55
...
...
@@ -18,25 +18,26 @@
namespace
ck
{
// GEMM:
// input : A[
AK0, M, AK1
]
// input : B[
AK0, N, AK1
]
// input : A[
M, K
]
// input : B[
N, K
]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// D0, D1, ... and E have the same layout
template
<
typename
FloatAB
,
typename
FloatGemmAcc
,
typename
Float
CShuffle
,
template
<
typename
ABDataType
,
// FIXME: don't assume A/B have same datatype
typename
AccDataType
,
typename
CShuffle
DataType
,
typename
DsDataType
,
typename
FloatE
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
AGridDesc_M_K
,
typename
BGridDesc_N_K
,
typename
DsGridDesc_M_N
,
typename
EGridDesc_M_N
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
...
...
@@ -70,7 +71,7 @@ template <typename FloatAB,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
>
struct
GridwiseGemmMultipleD_
k0mk1_k0nk1_mn_
xdl_cshuffle
struct
GridwiseGemmMultipleD_xdl_cshuffle
{
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
...
...
@@ -84,10 +85,10 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK
0
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK
0
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK
1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK
1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK
1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK
1
=
Number
<
BK1Value
>
{};
static
constexpr
auto
AK
0PerBlock
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK
0PerBlock
=
Number
<
KPerBlock
/
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
...
...
@@ -97,7 +98,7 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
AK0
PerBlock
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
...
...
@@ -105,7 +106,7 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
BK0
PerBlock
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
...
...
@@ -160,31 +161,123 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size
*
sizeof
(
FloatCShuffle
));
sizeof
(
ABDataType
),
c_block_size
*
sizeof
(
CShuffleDataType
));
}
// A desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeDefaultAGridDescriptor_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// B desc for source in blockwise copy
__host__
__device__
static
constexpr
auto
MakeDefaultBGridDescriptor_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// E desc for destination in blockwise copy
template
<
typename
EGridDescriptor_M_N
>
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDescriptor_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// Ds desc for source in blockwise copy
template
<
typename
DsGridDescriptor_M_N
>
__host__
__device__
static
constexpr
auto
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
DsGridDescriptor_M_N
&
ds_grid_desc_m_n
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// return block_id to E matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2ETileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
A
GridDesc_
AK0_M_AK1
&
a
_grid_desc_
ak0_m_ak1
,
const
B
GridDesc_
BK0_N_BK1
&
b
_grid_desc_
bk0_n_bk1
,
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
Block2ETileMap
&
block_2_etile_map
)
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
,
const
B
GridDesc_
N_K
&
b
_grid_desc_
n_k
,
const
Ds
GridDesc_
M_N
&
ds
_grid_desc_
m_n
,
const
EGridDesc_M_N
&
e_grid_desc_m_n
,
const
Block2ETileMap
&
block_2_etile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_
ak0_m_ak1
.
GetLength
(
I
1
);
const
auto
N
=
b_grid_desc_
bk0_n_bk1
.
GetLength
(
I
1
);
const
auto
K
=
a_grid_desc_
ak0_m_ak1
.
GetLength
(
I
0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
);
const
auto
M
=
a_grid_desc_
m_k
.
GetLength
(
I
0
);
const
auto
N
=
b_grid_desc_
n_k
.
GetLength
(
I
0
);
const
auto
K
=
a_grid_desc_
m_k
.
GetLength
(
I
1
);
// check consistency of desc
if
(
!
(
M
==
e_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
e_grid_desc_m_n
.
GetLength
(
I1
)))
{
return
false
;
}
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
valid
=
valid
&&
(
M
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I0
)
&&
N
==
ds_grid_desc_m_n
[
i
].
GetLength
(
I1
));
});
if
(
!
valid
)
{
return
false
;
}
// check tile size
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
))
{
return
false
;
}
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
...
...
@@ -194,12 +287,23 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
return
false
;
}
// check block-to-E-tile
if
(
!
block_2_etile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
// check tensor size: cannot be larger than 2GB each
constexpr
long_index_t
TwoGB
=
(
long_index_t
{
1
}
<<
31
);
if
(
!
(
a_grid_desc_m_k
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
b_grid_desc_n_k
.
GetElementSpaceSize
()
*
sizeof
(
ABDataType
)
<=
TwoGB
&&
e_grid_desc_m_n
.
GetElementSpaceSize
()
*
sizeof
(
EDataType
)
<=
TwoGB
))
{
return
false
;
}
return
true
;
}
...
...
@@ -210,60 +314,39 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
__host__
__device__
static
constexpr
auto
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
const
auto
M
=
e_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
e_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
e_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
e_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
e_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// return block_id to E matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2ETileMap
(
const
EGridDesc_M_N
&
e_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
EGridDesc_M_N
>
(
e_grid_desc_m_n
);
}
using
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
using
DefaultAGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
DefaultBGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
EGridDesc_M_N
{}))
>
;
using
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
DsGridDesc_M_N
{}))
>
;
using
DefaultBlock2ETileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2ETileMap
(
EGridDesc_M_N
{}))
>
;
using
DsGridPointer
=
decltype
(
MakeDsGridPointer
());
template
<
bool
HasMainKBlockLoop
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
DsGridPointer
p_
ds
_grid
,
FloatE
*
__restrict__
p_
e
_grid
,
void
*
__restrict__
p_share
d
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDE
ElementwiseOperation
&
cde
_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
StaticallyIndexedArray
<
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
NumDTensor
>&
ds_g
rid
_d
esc
_mb
lock_
mp
er
b
lock_
nb
lock_
np
er
b
lock
,
// FIXME: Ds desc may be of different
// type from E
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
template
<
bool
HasMainKBlockLoop
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
Block2ETileMap
>
__device__
static
void
Run
(
const
ABDataType
*
__restrict__
p_
a
_grid
,
const
ABDataType
*
__restrict__
p_
b
_grid
,
DsGridPointer
p_ds_gri
d
,
EDataType
*
__restrict__
p_e_grid
,
void
*
__restrict__
p_shared
,
const
A
ElementwiseOperation
&
a
_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
DsG
rid
D
esc
riptor_MB
lock_
MP
er
B
lock_
NB
lock_
NP
er
B
lock
&
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
&
block_2_etile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
...
...
@@ -316,11 +399,11 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0
,
MPerBlock
,
AK1
>
,
Sequence
<
AK0
PerBlock
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
ABDataType
,
ABDataType
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
...
...
@@ -347,11 +430,11 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0
,
NPerBlock
,
BK1
>
,
Sequence
<
BK0
PerBlock
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
ABDataType
,
ABDataType
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
...
...
@@ -379,13 +462,14 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
ABDataType
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
FloatAB
,
FloatGemmAcc
,
ABDataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
...
...
@@ -402,10 +486,10 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
static_cast
<
ABDataType
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
static_cast
<
ABDataType
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
...
...
@@ -466,7 +550,7 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
Float
CShuffle
*>
(
p_shared
),
static_cast
<
CShuffle
DataType
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
...
...
@@ -518,8 +602,8 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
Float
CShuffle
,
ThreadwiseTensorSliceTransfer_v1r3
<
AccDataType
,
CShuffle
DataType
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
...
...
@@ -576,8 +660,8 @@ struct GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle
// blockwise copy C/D/E between LDS and global
auto
cde_block_copy_lds_and_global
=
ThreadGroupTensorSliceTransfer_v7
<
ThisThreadBlock
,
decltype
(
container_concat
(
make_tuple
(
Float
CShuffle
{}),
DsDataType
{})),
Tuple
<
FloatE
>
,
decltype
(
container_concat
(
make_tuple
(
CShuffle
DataType
{}),
DsDataType
{})),
Tuple
<
EDataType
>
,
decltype
(
c_ds_desc_refs
),
decltype
(
tie
(
e_grid_desc_mblock_mperblock_nblock_nperblock
)),
CDEElementwiseOperation
,
...
...
include/ck/utility/tuple.hpp
View file @
a1841d55
...
...
@@ -21,6 +21,8 @@ struct TupleElementKey
template
<
typename
Key
,
typename
Data
>
struct
TupleElementKeyData
{
using
DataType
=
Data
;
#if 0 // workaround compiler complaint about implicitly-deleted default constructor
__host__ __device__ constexpr TupleElementKeyData() = default;
#else
...
...
@@ -34,29 +36,40 @@ struct TupleElementKeyData
{
}
Data
mData
;
Data
Type
mData
;
};
// for read access of tuple element
template
<
typename
Key
,
typename
Data
>
__host__
__device__
constexpr
const
Data
&
get_tuple_element_data
(
const
TupleElementKeyData
<
Key
,
Data
>&
x
)
get_tuple_element_data
_reference
(
const
TupleElementKeyData
<
Key
,
Data
>&
x
)
{
return
static_cast
<
const
Data
&>
(
x
.
mData
);
}
// for write access of tuple element
template
<
typename
Key
,
typename
Data
>
__host__
__device__
constexpr
Data
&
get_tuple_element_data
(
TupleElementKeyData
<
Key
,
Data
>&
x
)
__host__
__device__
constexpr
Data
&
get_tuple_element_data_reference
(
TupleElementKeyData
<
Key
,
Data
>&
x
)
{
return
x
.
mData
;
}
// TODO: not sure the use of reference is correct
template
<
typename
Key
,
typename
Data
>
__host__
__device__
constexpr
Data
&&
get_tuple_element_data
(
TupleElementKeyData
<
Key
,
Data
>&&
x
)
__host__
__device__
constexpr
Data
&&
get_tuple_element_data_reference
(
TupleElementKeyData
<
Key
,
Data
>&&
x
)
{
return
static_cast
<
Data
&&>
(
x
.
mData
);
}
// for infering type of tuple element
template
<
typename
Key
,
typename
Data
>
__host__
__device__
constexpr
Data
get_tuple_element_data
(
const
TupleElementKeyData
<
Key
,
Data
>&
x
)
{
return
std
::
forward
(
x
.
mData
);
}
template
<
typename
Indices
,
typename
...
Xs
>
struct
TupleImpl
;
...
...
@@ -87,13 +100,13 @@ struct TupleImpl<Sequence<Is...>, Xs...> : TupleElementKeyData<TupleElementKey<I
template
<
index_t
I
>
__host__
__device__
constexpr
const
auto
&
GetElementDataByKey
(
TupleElementKey
<
I
>
)
const
{
return
get_tuple_element_data
<
TupleElementKey
<
I
>>
(
*
this
);
return
get_tuple_element_data
_reference
<
TupleElementKey
<
I
>>
(
*
this
);
}
template
<
index_t
I
>
__host__
__device__
constexpr
auto
&
GetElementDataByKey
(
TupleElementKey
<
I
>
)
{
return
get_tuple_element_data
<
TupleElementKey
<
I
>>
(
*
this
);
return
get_tuple_element_data
_reference
<
TupleElementKey
<
I
>>
(
*
this
);
}
};
...
...
@@ -185,7 +198,8 @@ struct Tuple<>
template
<
index_t
I
,
typename
TTuple
>
struct
tuple_element
{
using
type
=
decltype
(
TTuple
{}.
At
(
Number
<
I
>
{}));
// type should keep the cv/ref qualifier of original tuple element
using
type
=
decltype
(
detail
::
get_tuple_element_data
<
detail
::
TupleElementKey
<
I
>>
(
TTuple
{}));
};
template
<
index_t
I
,
typename
TTuple
>
...
...
library/CMakeLists.txt
View file @
a1841d55
add_subdirectory
(
src/tensor_operation_instance/gpu
)
add_subdirectory
(
src/host_tensor
)
add_subdirectory
(
src/utility
)
Prev
1
…
3
4
5
6
7
8
9
10
11
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment