Commit 9fb64dae authored by aska-0096's avatar aska-0096
Browse files

Merge branch 'develop' of...

Merge branch 'develop' of https://github.com/ROCmSoftwarePlatform/composable_kernel into e2e_kernellib
parents e330961d fe96e8fb
......@@ -1003,7 +1003,15 @@ struct DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< getConvBackwardDataSpecializationString(ConvBackwardDataSpecialization)
<< getConvBackwardDataSpecializationString(ConvBackwardDataSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
return str.str();
......
......@@ -1203,7 +1203,8 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization)
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1
<< ">";
// clang-format on
......
......@@ -1231,7 +1231,17 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization)
<< getConvBackwardWeightSpecializationString(ConvBackwardWeightSpecialization) << ", "
<< K1 << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< ABlockTransferDstScalarPerVector_K1 << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< BBlockTransferDstScalarPerVector_K1 << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< CBlockTransferScalarPerVector_NWaveNPerXdl
<< ">";
// clang-format on
......
......@@ -1092,7 +1092,15 @@ struct DeviceGroupedConvFwdMultipleDMultipleR_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
......@@ -618,7 +618,8 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
namespace ctc = tensor_layout::convolution;
// check device
if(get_device_name() == "gfx1100")
if(get_device_name() == "gfx1100" || get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102")
{
if constexpr(!(is_same_v<AccDataType, float> || is_same_v<AccDataType, int32_t>))
{
......@@ -876,7 +877,10 @@ struct DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< K1 << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector
<< ">";
// clang-format on
......
......@@ -939,7 +939,15 @@ struct DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< getConvForwardSpecializationString(ConvForwardSpecialization)
<< getConvForwardSpecializationString(ConvForwardSpecialization) << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle
<< ">";
// clang-format on
......
#pragma once
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename GemmDesc,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_multiple_d_dl(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
const index_t group_count,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
const index_t block_id = get_block_1d_id();
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].BlockStart_ &&
block_id < gemm_desc_ptr[group_id].BlockEnd_)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].BlockStart_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
GridwiseGemm::Run(gemm_desc_ptr[group_id].a_ptr_,
gemm_desc_ptr[group_id].b_ptr_,
gemm_desc_ptr[group_id].ds_ptr_,
gemm_desc_ptr[group_id].e_ptr_,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
gemm_desc_ptr[group_id].a_grid_desc_k0_m0_m1_k1_,
gemm_desc_ptr[group_id].b_grid_desc_k0_n0_n1_k1_,
gemm_desc_ptr[group_id].ds_grid_desc_m0_m10_m11_n0_n10_n11_,
gemm_desc_ptr[group_id].e_grid_desc_m0_m10_m11_n0_n10_n11_,
gemm_desc_ptr[group_id].block_2_etile_map_,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
#else
ignore = gemm_descs_const;
ignore = group_count;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
#endif
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t K1,
index_t M1PerThread,
index_t N1PerThread,
index_t KPerThread,
typename M1N1ThreadClusterM1Xs,
typename M1N1ThreadClusterN1Xs,
typename ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
typename ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
typename ABlockTransferSrcVectorTensorContiguousDimOrder,
typename ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
typename BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
typename BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
typename BBlockTransferSrcVectorTensorContiguousDimOrder,
typename BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
enable_if_t<
is_same_v<AElementwiseOperation, ck::tensor_operation::element_wise::PassThrough> &&
is_same_v<BElementwiseOperation, ck::tensor_operation::element_wise::PassThrough>,
bool> = false>
struct DeviceGroupedGemmMultipleD_Dl : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGroupedGemmMultipleD_Dl;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static auto MakeAGridDescriptor_K0_M_K1(index_t M, index_t K, index_t StrideA)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto a_grid_desc_m_k = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(StrideA, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ALayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, K), make_tuple(I1, StrideA));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(M, PadM)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
static auto MakeBGridDescriptor_K0_N_K1(index_t K, index_t N, index_t StrideB)
{
assert(K % K1 == 0);
const index_t K0 = K / K1;
const auto b_grid_desc_k_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(StrideB, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(K, N), make_tuple(I1, StrideB));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
b_grid_desc_k_n,
make_tuple(make_unmerge_transform(make_tuple(K0, K1Number)),
make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
}
}
template <typename ELay>
static auto MakeEGridDescriptor_M_N(index_t M, index_t N, index_t StrideE)
{
const auto c_grid_desc_m_n = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, ELay>::value)
{
return make_naive_tensor_descriptor(make_tuple(M, N), make_tuple(I1, StrideE));
}
}();
if constexpr(GemmSpec == GemmSpecialization::MNPadding)
{
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_pass_through_transform(M), make_pass_through_transform(N)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
}
static auto MakeDsGridDescriptor_M_N(const std::array<index_t, NumDTensor>& MRaws,
const std::array<index_t, NumDTensor>& NRaws,
const std::array<index_t, NumDTensor>& DsStride)
{
return generate_tuple(
[&](auto i) {
using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
return DeviceOp::MakeEGridDescriptor_M_N<DLayout>(MRaws[i], NRaws[i], DsStride[i]);
},
Number<NumDTensor>{});
}
using AGridDesc_K0_M_K1 = decltype(MakeAGridDescriptor_K0_M_K1(1, 1, 1));
using BGridDesc_K0_N_K1 = decltype(MakeBGridDescriptor_K0_N_K1(1, 1, 1));
using DsGridDesc_M_N = decltype(MakeDsGridDescriptor_M_N({}, {}, {}));
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
// GridwiseGemm
using GridwiseGemm =
GridwiseGemmDlMultipleD_km_kn_mn<BlockSize,
ADataType,
AccDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
EGridDesc_M_N,
MPerBlock,
NPerBlock,
K0PerBlock,
K1,
M1PerThread,
N1PerThread,
KPerThread,
M1N1ThreadClusterM1Xs,
M1N1ThreadClusterN1Xs,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1,
ABlockTransferSrcVectorTensorContiguousDimOrder,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1,
BBlockTransferSrcVectorTensorContiguousDimOrder,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1,
CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
using AGridDesc_K0_M0_M1_K1 =
decltype(GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(AGridDesc_K0_M_K1{}));
using BGridDesc_K0_N0_N1_K1 =
decltype(GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using DsGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(DsGridDesc_M_N{}));
using EGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(EGridDesc_M_N{}));
struct GroupedGemmBlock2ETileMap
{
using Block2ETileMap =
remove_cvref_t<decltype(GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{}))>;
GroupedGemmBlock2ETileMap()
{
block_2_etile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(EGridDesc_M_N{});
BlockStart_ = -1;
}
GroupedGemmBlock2ETileMap(const EGridDesc_M_N& e_grid_desc_m_n, ck::index_t BlockStart)
{
block_2_etile_map_ = GridwiseGemm::MakeDefaultBlock2CTileMap(e_grid_desc_m_n);
BlockStart_ = BlockStart;
}
template <typename TopIdx>
__host__ __device__ constexpr auto CalculateBottomIndex(const TopIdx& idx_top) const
{
return block_2_etile_map_.CalculateBottomIndex(
make_multi_index(idx_top[I0] - BlockStart_));
}
// it's actually E-Tile
template <typename CTileIdx, typename CTileDim>
__host__ __device__ bool ValidCTileIndex(const CTileIdx& c_tile_idx,
const CTileDim& c_tile_dim) const
{
return block_2_etile_map_.ValidCTileIndex(c_tile_idx, c_tile_dim);
}
__host__ bool CheckValidity(const EGridDesc_M_N& e_grid_desc_m_n) const
{
return block_2_etile_map_.CheckValidity(e_grid_desc_m_n);
}
Block2ETileMap block_2_etile_map_;
ck::index_t BlockStart_;
};
struct GemmKernelArg
{
// pointers
const ADataType* a_ptr_;
const BDataType* b_ptr_;
typename GridwiseGemm::DsGridPointer ds_ptr_;
EDataType* e_ptr_;
// tensor descriptors for problem definiton
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
DsGridDesc_M_N ds_grid_desc_m_n_;
EGridDesc_M_N e_grid_desc_m_n_;
// tensor descriptors for block/thread-wise copy
AGridDesc_K0_M0_M1_K1 a_grid_desc_k0_m0_m1_k1_;
BGridDesc_K0_N0_N1_K1 b_grid_desc_k0_n0_n1_k1_;
DsGridDesc_M0_M10_M11_N0_N10_N11 ds_grid_desc_m0_m10_m11_n0_n10_n11_;
EGridDesc_M0_M10_M11_N0_N10_N11 e_grid_desc_m0_m10_m11_n0_n10_n11_;
// block-to-e-tile map
GroupedGemmBlock2ETileMap block_2_etile_map_;
ck::index_t BlockStart_, BlockEnd_;
};
// Argument
struct Argument : public BaseArgument
{
Argument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
grid_size_ = 0;
group_count_ = ck::type_convert<ck::index_t>(gemm_descs.size());
if(!(group_count_ == ck::type_convert<ck::index_t>(p_As.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Bs.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Es.size())))
{
throw std::runtime_error("wrong! group_count_ != p_As/b/c.size");
}
gemm_desc_kernel_arg_.reserve(group_count_);
skipped_group_count_ = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
const index_t M = gemm_descs[i].M_;
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
a_mtx_mraw_kraw_.emplace_back(M, K);
b_mtx_nraw_kraw_.emplace_back(N, K);
if(M == 0)
{
skipped_group_count_++;
continue;
}
const index_t StrideA = gemm_descs[i].stride_A_;
const index_t StrideB = gemm_descs[i].stride_B_;
const index_t StrideE = gemm_descs[i].stride_C_;
typename GridwiseGemm::DsGridPointer p_ds_grid{};
DsGridDesc_M_N ds_grid_desc_m_n;
static_for<0, NumDTensor, 1>{}([&](auto j) {
using DLayout = remove_cvref_t<tuple_element_t<j.value, DsLayout>>;
using DDataType = remove_cvref_t<tuple_element_t<j.value, DsDataType>>;
p_ds_grid(j) = static_cast<const DDataType*>(p_Ds[i][j]);
ds_grid_desc_m_n(j) = DeviceOp::MakeEGridDescriptor_M_N<DLayout>(
M, N, gemm_descs[i].stride_Ds_[j]);
});
// tensor descriptors for problem definiton
const auto a_grid_desc_k0_m_k1 =
DeviceOp::MakeAGridDescriptor_K0_M_K1(M, K, StrideA);
const auto b_grid_desc_k0_n_k1 =
DeviceOp::MakeBGridDescriptor_K0_N_K1(K, N, StrideB);
const auto e_grid_desc_m_n =
DeviceOp::MakeEGridDescriptor_M_N<ELayout>(M, N, StrideE);
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1, b_grid_desc_k0_n_k1, e_grid_desc_m_n))
{
const index_t grid_size_grp =
GroupedGemmBlock2ETileMap(e_grid_desc_m_n, 0)
.block_2_etile_map_.CalculateGridSize(e_grid_desc_m_n);
const index_t BlockStart = grid_size_;
const index_t BlockEnd = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
// block-to-e-tile map
const auto block_2_etile_map =
GroupedGemmBlock2ETileMap(e_grid_desc_m_n, BlockStart);
// tensor descriptors for block/thread-wise copy
const auto a_grid_desc_k0_m0_m1_k1 =
GridwiseGemm::MakeAGridDescriptor_K0_M0_M1_K1(a_grid_desc_k0_m_k1);
const auto b_grid_desc_k0_n0_n1_k1 =
GridwiseGemm::MakeBGridDescriptor_K0_N0_N1_K1(b_grid_desc_k0_n_k1);
const auto ds_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseGemm::MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11(ds_grid_desc_m_n);
const auto e_grid_desc_m0_m10_m11_n0_n10_n11 =
GridwiseGemm::MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(e_grid_desc_m_n);
gemm_desc_kernel_arg_.push_back(
GemmKernelArg{static_cast<const ADataType*>(p_As[i]),
static_cast<const BDataType*>(p_Bs[i]),
p_ds_grid,
static_cast<EDataType*>(p_Es[i]),
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
ds_grid_desc_m_n,
e_grid_desc_m_n,
a_grid_desc_k0_m0_m1_k1,
b_grid_desc_k0_n0_n1_k1,
ds_grid_desc_m0_m10_m11_n0_n10_n11,
e_grid_desc_m0_m10_m11_n0_n10_n11,
block_2_etile_map,
BlockStart,
BlockEnd});
}
}
}
// private:
index_t group_count_;
index_t skipped_group_count_;
// TODO: A,B element op is unused since gridwise_gemm_dl_v1r3 does NOT support prologue
// for the time being.
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
std::vector<GemmKernelArg> gemm_desc_kernel_arg_;
std::vector<Tuple<index_t, index_t>> a_mtx_mraw_kraw_;
std::vector<Tuple<index_t, index_t>> b_mtx_nraw_kraw_;
index_t grid_size_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
auto K0 = arg.gemm_desc_kernel_arg_[0].a_grid_desc_k0_m_k1_.GetLength(I0);
bool all_has_main_k_block_loop = GridwiseGemm::CalculateHasMainKBlockLoop(K0);
bool all_has_double_tail_k_block_loop =
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
#if DEBUG_LOG
std::cout << "group: " << i << " arg.a_grid_desc_k0_m_k1_{"
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_.GetLength(I2) << "}"
<< std::endl;
std::cout << ", arg.b_grid_desc_k0_n_k1_{"
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_.GetLength(I2) << "}"
<< std::endl;
std::cout << ", arg.e_grid_desc_m_n_{ "
<< arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_.GetLength(I1) << "}"
<< std::endl;
#endif
if(!GridwiseGemm::CheckValidity(arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_,
arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_,
arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_))
{
throw std::runtime_error(
"wrong! GridwiseGemmDlMultipleD_km_kn_mn has invalid setting");
}
K0 = arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m0_m1_k1_.GetLength(I0);
bool not_all_has_main_k_block_loop_same =
all_has_main_k_block_loop xor GridwiseGemm::CalculateHasMainKBlockLoop(K0);
bool not_all_has_double_tail_k_block_loop_same =
all_has_double_tail_k_block_loop xor
GridwiseGemm::CalculateHasDoubleTailKBlockLoop(K0);
if(not_all_has_main_k_block_loop_same or not_all_has_double_tail_k_block_loop_same)
{
std::ostringstream err;
err << "Not all gemms have same value for [main|double_tail]_k_block_loop! in "
<< __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
hipGetErrorString(hipMemcpy(arg.p_workspace_,
arg.gemm_desc_kernel_arg_.data(),
arg.gemm_desc_kernel_arg_.size() * sizeof(GemmKernelArg),
hipMemcpyHostToDevice));
auto launch_kernel = [&](auto has_main_k_block_loop,
auto has_double_tail_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
constexpr bool has_double_loop = has_double_tail_k_block_loop.value;
const auto kernel = kernel_grouped_gemm_multiple_d_dl<GridwiseGemm,
GemmKernelArg,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
has_main_loop,
has_double_loop>;
return launch_and_time_kernel(
stream_config,
kernel,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(arg.p_workspace_),
arg.gemm_desc_kernel_arg_.size(),
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_);
};
if(all_has_main_k_block_loop && all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, true>{});
}
else if(all_has_main_k_block_loop && !all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, true>{},
integral_constant<bool, false>{});
}
else if(!all_has_main_k_block_loop && all_has_double_tail_k_block_loop)
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, true>{});
}
else
{
return launch_kernel(integral_constant<bool, false>{},
integral_constant<bool, false>{});
}
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if((ck::type_convert<ck::index_t>(arg.gemm_desc_kernel_arg_.size()) +
arg.skipped_group_count_) != arg.group_count_)
{
return false;
}
const std::string device_name = ck::get_device_name();
// TODO add newer Navi arch
if(device_name != "gfx906" and device_name != "gfx908" and device_name != "gfx90a" and
device_name != "gfx1030")
{
return false;
}
for(std::size_t i = 0; i < arg.gemm_desc_kernel_arg_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.gemm_desc_kernel_arg_[i].a_grid_desc_k0_m_k1_,
arg.gemm_desc_kernel_arg_[i].b_grid_desc_k0_n_k1_,
arg.gemm_desc_kernel_arg_[i].e_grid_desc_m_n_))
{
return false;
}
}
return true;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc> gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>& p_Ds,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(
p_As, p_Bs, p_Ds, p_Es, gemm_descs, a_element_op, b_element_op, cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemmMultipleD_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock << ", "
<< K1 << ", "
<< M1PerThread << ", "
<< N1PerThread << ", "
<< KPerThread
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
return str.str();
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->group_count_ * sizeof(GemmKernelArg);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -381,6 +381,9 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
a_mtx_mraw_kraw_.emplace_back(M, K);
b_mtx_nraw_kraw_.emplace_back(N, K);
if(M == 0)
{
skipped_group_count_++;
......@@ -485,6 +488,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
CDEElementwiseOperation c_element_op_;
std::vector<GemmBiasTransKernelArg> gemm_desc_kernel_arg_;
std::vector<Tuple<index_t, index_t>> a_mtx_mraw_kraw_;
std::vector<Tuple<index_t, index_t>> b_mtx_nraw_kraw_;
index_t grid_size_;
};
......@@ -599,7 +604,28 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
return false;
}
return true;
bool supported = true;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if constexpr(GemmSpec != GemmSpecialization::Default)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const auto a_raw_vector_dim = ABlockTransferSrcVectorDim != 1 ? 1 : 0;
const auto b_raw_vector_dim = BBlockTransferSrcVectorDim != 1 ? 1 : 0;
for(index_t i = 0; i < arg.group_count_; ++i)
{
const auto a_vector_dim = arg.a_mtx_mraw_kraw_[i].At(Number<a_raw_vector_dim>{});
const auto b_vector_dim = arg.b_mtx_nraw_kraw_[i].At(Number<b_raw_vector_dim>{});
supported = supported & (a_vector_dim % ABlockTransferSrcScalarPerVector == 0);
supported = supported & (b_vector_dim % BBlockTransferSrcScalarPerVector == 0);
}
}
return supported;
}
// polymorphic
......@@ -661,7 +687,12 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
......
#pragma once
#include "ck/utility/data_type.hpp"
// #include "ck/utility/get_id.hpp"
namespace ck {
namespace tensor_operation {
......@@ -17,18 +18,27 @@ struct Activation_Mul_Clamp
__host__ __device__ constexpr void operator()(int8_t& y, const int32_t& x) const
{
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
float y_fp32 = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void operator()(float& y, const int32_t& x) const
__device__ constexpr void operator()(int32_t& y, const int32_t& x) const
{
// We might type_convert to int8 after lambda in someplace
float x_fp32 = ck::type_convert<float>(x);
activationOp_(x_fp32, x_fp32);
y = math::clamp(requantScale_ * x_fp32, -128.f, 127.f);
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
__host__ constexpr void operator()(float& y, const float& x) const
{
// CAUSION - We might float in & float out in reference code
activationOp_(y, x);
y = math::clamp(requantScale_ * y, -128.f, 127.f);
}
float requantScale_;
......@@ -51,6 +61,17 @@ struct Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__device__ constexpr void
operator()(int32_t& y, const int32_t& x, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......@@ -72,6 +93,17 @@ struct Add_Activation_Mul_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale_ * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
float requantScale_;
Activation activationOp_;
};
......@@ -92,6 +124,17 @@ struct Add_Activation_Mul2_Clamp
y = ck::type_convert<int8_t>(y_fp32);
}
__host__ __device__ constexpr void
operator()(int32_t& y, const int32_t& x, const int32_t& bias, const float& requantScale) const
{
// CAUSION - We might type_convert to int8 in threadwise copy
// eg. GridwiseGemmDlMultipleD_km_kn_mn
float y_fp32 = ck::type_convert<float>(x + bias);
activationOp_(y_fp32, y_fp32);
y_fp32 = math::clamp(requantScale * y_fp32, -128.f, 127.f);
y = ck::type_convert<int32_t>(y_fp32);
}
Activation activationOp_;
};
......
......@@ -185,8 +185,10 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
return b_grid_desc_k0_n0_n1_k1;
}
// E desc for destination in blockwise copy
template <typename CGridDesc_M_N_>
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N& c_grid_desc_m_n)
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(const CGridDesc_M_N_& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
......@@ -238,19 +240,19 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
using BGridDesc_K0_N0_N1_K1 = decltype(MakeBGridDescriptor_K0_N0_N1_K1(BGridDesc_K0_N_K1{}));
using CGridDesc_M0_M10_M11_N0_N10_N11 =
decltype(MakeCGridDescriptor_M0_M10_M11_N0_N10_N11(CGridDesc_M_N{}));
using Block2CTileMap = decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}));
using DsGridPointer = decltype(MakeDsGridPointer());
template <typename DsGridDesc_M0_M10_M11_N0_N10_N11,
bool HasMainKBlockLoop,
bool HasDoubleTailKBlockLoop>
bool HasDoubleTailKBlockLoop,
typename Block2CTileMap>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
DsGridPointer p_ds_grid,
FloatC* __restrict__ p_c_grid,
FloatAB* __restrict__ p_shared_block,
void* __restrict__ p_shared_block,
const AElementwiseOperation&,
const BElementwiseOperation&,
const CDEElementwiseOperation& cde_element_op,
......@@ -399,8 +401,9 @@ struct GridwiseGemmDlMultipleD_km_kn_mn
constexpr auto b_block_aligned_space_size = math::integer_least_multiple(
b_block_desc_k0_n0_n1_k1.GetElementSpaceSize(), max_lds_align);
FloatAB* p_a_block_double = p_shared_block;
FloatAB* p_b_block_double = p_shared_block + 2 * a_block_aligned_space_size;
FloatAB* p_a_block_double = static_cast<FloatAB*>(p_shared_block);
FloatAB* p_b_block_double =
static_cast<FloatAB*>(p_shared_block) + 2 * a_block_aligned_space_size;
// register allocation for output
auto c_thread_buf = make_static_buffer<AddressSpaceEnum::Vgpr, FloatAcc>(
......
......@@ -54,7 +54,8 @@ __global__ void
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__) || defined(__gfx1101__) || \
defined(__gfx1102__))
// offset base pointer for each work-group
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -147,8 +148,10 @@ __global__ void
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch,
const Block2CTileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__) || defined(__gfx1101__) || \
defined(__gfx1102__))
// printf("entry kernel launch");
__shared__ char p_shared[GridwiseOp::GetSharedMemoryNumberOfByte()];
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
......@@ -236,8 +239,9 @@ __global__ void
const CDEElementwiseOperation cde_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__ char p_shared[GridwiseOp::SharedMemTrait::lds_size];
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__) || defined(__gfx1101__) || \
defined(__gfx1102__))
__shared__ char p_shared[GridwiseOp::GetSharedMemoryNumberOfByte()];
GridwiseOp::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
......@@ -265,7 +269,7 @@ __global__ void
ignore = b_element_op;
ignore = cde_element_op;
ignore = block_2_ctile_map;
#endif // end of if (defined(__gfx1100__))
#endif // end of if (defined(__gfx1100__ ))
}
template < // DataType Family
......
......@@ -45,8 +45,9 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__ char p_shared[GridwiseGemm::SharedMemTrait::lds_size];
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__) || defined(__gfx1101__) || \
defined(__gfx1102__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
......
......@@ -1030,7 +1030,7 @@ amd_buffer_load_invalid_element_return_zero(const T* p_src_wave,
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK
uint32_t src_addr_shift = src_thread_element_valid ? 0 : 0x7fffffff;
uint32_t src_addr_shift = src_thread_element_valid ? 0 : 0x80000000;
return amd_buffer_load_impl<scalar_t, vector_size>(
src_wave_buffer_resource, src_addr_shift + src_thread_addr_offset, 0);
......@@ -1091,7 +1091,7 @@ __device__ void amd_buffer_store(const typename vector_type_maker<T, N>::type::t
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x7fffffff;
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x80000000;
amd_buffer_store_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_addr_shift + dst_thread_addr_offset, 0);
......@@ -1126,7 +1126,7 @@ amd_buffer_atomic_add(const typename vector_type_maker<T, N>::type::type src_thr
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_ADD_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x7fffffff;
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x80000000;
amd_buffer_atomic_add_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_addr_shift + dst_thread_addr_offset, 0);
......@@ -1161,7 +1161,7 @@ amd_buffer_atomic_max(const typename vector_type_maker<T, N>::type::type src_thr
constexpr index_t vector_size = scalar_type<vector_t>::vector_size;
#if CK_EXPERIMENTAL_USE_BUFFER_ATOMIC_MAX_OOB_CHECK_OFFSET_TRICK
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x7fffffff;
uint32_t dst_addr_shift = dst_thread_element_valid ? 0 : 0x80000000;
amd_buffer_atomic_max_impl<scalar_t, vector_size>(
src_thread_data, dst_wave_buffer_resource, dst_addr_shift + dst_thread_addr_offset, 0);
......
......@@ -220,8 +220,8 @@ amd_assembly_outer_product_1x2(int8x4_t a, int8x4_t b0, int8x4_t b1, int32_t& c0
"0"(c0),
"1"(c1));
#else
c0 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b0), c0, false);
c1 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b1), c1, false);
c0 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b0), c0, false);
c1 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b1), c1, false);
#endif
}
......@@ -257,10 +257,10 @@ __device__ void amd_assembly_outer_product_1x4(int8x4_t a,
"2"(c2),
"3"(c3));
#else
c0 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b0), c0, false);
c1 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b1), c1, false);
c2 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b2), c2, false);
c3 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b3), c3, false);
c0 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b0), c0, false);
c1 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b1), c1, false);
c2 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b2), c2, false);
c3 = __builtin_amdgcn_sdot4(bit_cast<int32_t>(a), bit_cast<int32_t>(b3), c3, false);
#endif
}
......@@ -358,7 +358,13 @@ __device__ void amd_assembly_outer_product_1x4(int8x16_t a,
// Ranged input operand
__device__ void amd_assembly_wmma_f32_16x16x16_f16_w32(half16_t a, half16_t b, float8_t& c)
{
#if defined(__gfx11__)
asm volatile("v_wmma_f32_16x16x16_f16 %0, %1, %2, %0" : "=v"(c) : "v"(a), "v"(b), "0"(c));
#else
ignore = a;
ignore = b;
ignore = c;
#endif
}
} // namespace ck
......
......@@ -21,17 +21,18 @@ struct intrin_wmma_f32_16x16x16_f16_w32<16, 16, AssemblyBackend>
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
if constexpr(AssemblyBackend)
{
amd_assembly_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
}
else
{
reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
}
// * Inline assembly need to elimate the duplicated data load, compiler won't help you
// delete them.
// amd_assembly_wmma_f32_16x16x16_f16_w32(
// reg_a, reg_b, reg_c.template AsType<float8_t>()(Number<0>{}));
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<float8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -45,9 +46,15 @@ struct intrin_wmma_f32_16x16x16_bf16_w32<16, 16>
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<float8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<float8_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -64,8 +71,14 @@ struct intrin_wmma_f16_16x16x16_f16_w32<16, 16, Opsel>
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<half16_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w32(
reg_a, reg_b, reg_c.template AsType<half16_t>()[Number<0>{}], Opsel);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -82,9 +95,15 @@ struct intrin_wmma_bf16_16x16x16_bf16_w32<16, 16, Opsel>
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<bhalf16_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w32(
reg_a, reg_b, reg_c.template AsType<bhalf16_t>()[Number<0>{}], Opsel);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -98,6 +117,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp>
template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<int32x8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w32(
neg_a,
......@@ -106,6 +126,11 @@ struct intrin_wmma_i32_16x16x16_iu8_w32<16, 16, neg_a, neg_b, clamp>
bit_cast<int32x4_t>(reg_b),
reg_c.template AsType<int32x8_t>()[Number<0>{}],
clamp);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -120,8 +145,14 @@ struct intrin_wmma_f32_16x16x16_f16_w64<16, 16>
template <class FloatC>
__device__ static void Run(const half16_t& reg_a, const half16_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<float4_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f32_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -135,9 +166,15 @@ struct intrin_wmma_f32_16x16x16_bf16_w64<16, 16>
template <class FloatC>
__device__ static void Run(const bhalf16_t& reg_a, const bhalf16_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<float4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_f32_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<float4_t>()[Number<0>{}]);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -154,8 +191,14 @@ struct intrin_wmma_f16_16x16x16_f16_w64<16, 16, Opsel>
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<half8_t>()(Number<0>{}) = __builtin_amdgcn_wmma_f16_16x16x16_f16_w64(
reg_a, reg_b, reg_c.template AsType<half8_t>()[Number<0>{}], Opsel);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -172,9 +215,15 @@ struct intrin_wmma_bf16_16x16x16_bf16_w64<16, 16, Opsel>
// opsel usage
// false: D0.[0:15] = result
// true : D0.[16:31]= result
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<bhalf8_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_bf16_16x16x16_bf16_w64(
reg_a, reg_b, reg_c.template AsType<bhalf8_t>()[Number<0>{}], Opsel);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......@@ -188,6 +237,7 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
template <class FloatC>
__device__ static void Run(const int8x16_t& reg_a, const int8x16_t& reg_b, FloatC& reg_c)
{
#if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__)
reg_c.template AsType<int32x4_t>()(Number<0>{}) =
__builtin_amdgcn_wmma_i32_16x16x16_iu8_w64(
neg_a,
......@@ -196,6 +246,11 @@ struct intrin_wmma_i32_16x16x16_iu8_w64<16, 16, neg_a, neg_b, clamp>
bit_cast<int32x4_t>(reg_b),
reg_c.template AsType<int32x4_t>()[Number<0>{}],
clamp);
#else
ignore = reg_a;
ignore = reg_b;
ignore = reg_c;
#endif
}
};
......
......@@ -1022,38 +1022,36 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float
uint32_t int32;
} u = {x};
if(~u.int32 & 0x7f800000)
{
// When the exponent bits are not all 1s, then the value is zero, normal,
// or subnormal. We round the bfloat16 mantissa up by adding 0x7FFF, plus
// 1 if the least significant bit of the bfloat16 mantissa is 1 (odd).
// This causes the bfloat16's mantissa to be incremented by 1 if the 16
// least significant bits of the float mantissa are greater than 0x8000,
// or if they are equal to 0x8000 and the least significant bit of the
// bfloat16 mantissa is 1 (odd). This causes it to be rounded to even when
// the lower 16 bits are exactly 0x8000. If the bfloat16 mantissa already
// has the value 0x7f, then incrementing it causes it to become 0x00 and
// the exponent is incremented by one, which is the next higher FP value
// to the unrounded bfloat16 value. When the bfloat16 value is subnormal
// with an exponent of 0x00 and a mantissa of 0x7F, it may be rounded up
// to a normal value with an exponent of 0x01 and a mantissa of 0x00.
// When the bfloat16 value has an exponent of 0xFE and a mantissa of 0x7F,
// incrementing it causes it to become an exponent of 0xFF and a mantissa
// of 0x00, which is Inf, the next higher value to the unrounded value.
u.int32 += 0x7fff + ((u.int32 >> 16) & 1); // Round to nearest, round to even
}
else if(u.int32 & 0xffff)
{
// When all of the exponent bits are 1, the value is Inf or NaN.
// Inf is indicated by a zero mantissa. NaN is indicated by any nonzero
// mantissa bit. Quiet NaN is indicated by the most significant mantissa
// bit being 1. Signaling NaN is indicated by the most significant
// mantissa bit being 0 but some other bit(s) being 1. If any of the
// lower 16 bits of the mantissa are 1, we set the least significant bit
// of the bfloat16 mantissa, in order to preserve signaling NaN in case
// the bloat16's mantissa bits are all 0.
u.int32 |= 0x10000; // Preserve signaling NaN
}
// When the exponent bits are not all 1s, then the value is zero, normal,
// or subnormal. We round the bfloat16 mantissa up by adding 0x7FFF, plus
// 1 if the least significant bit of the bfloat16 mantissa is 1 (odd).
// This causes the bfloat16's mantissa to be incremented by 1 if the 16
// least significant bits of the float mantissa are greater than 0x8000,
// or if they are equal to 0x8000 and the least significant bit of the
// bfloat16 mantissa is 1 (odd). This causes it to be rounded to even when
// the lower 16 bits are exactly 0x8000. If the bfloat16 mantissa already
// has the value 0x7f, then incrementing it causes it to become 0x00 and
// the exponent is incremented by one, which is the next higher FP value
// to the unrounded bfloat16 value. When the bfloat16 value is subnormal
// with an exponent of 0x00 and a mantissa of 0x7f, it may be rounded up
// to a normal value with an exponent of 0x01 and a mantissa of 0x00.
// When the bfloat16 value has an exponent of 0xFE and a mantissa of 0x7F,
// incrementing it causes it to become an exponent of 0xFF and a mantissa
// of 0x00, which is Inf, the next higher value to the unrounded value.
bool flag0 = ~u.int32 & 0x7f800000;
// When all of the exponent bits are 1, the value is Inf or NaN.
// Inf is indicated by a zero mantissa. NaN is indicated by any nonzero
// mantissa bit. Quiet NaN is indicated by the most significant mantissa
// bit being 1. Signaling NaN is indicated by the most significant
// mantissa bit being 0 but some other bit(s) being 1. If any of the
// lower 16 bits of the mantissa are 1, we set the least significant bit
// of the bfloat16 mantissa, in order to preserve signaling NaN in case
// the bfloat16's mantissa bits are all 0.
bool flag1 = !flag0 && (u.int32 & 0xffff);
u.int32 += flag0 ? 0x7fff + ((u.int32 >> 16) & 1) : 0; // Round to nearest, round to even
u.int32 |= flag1 ? 0x10000 : 0x0; // Preserve signaling NaN
return uint16_t(u.int32 >> 16);
}
......
......@@ -135,6 +135,28 @@ __device__ void inner_product<half8_t, half8_t, float>(const half8_t& a, const h
c);
}
template <>
__device__ void inner_product<int8_t, int8_t, int32_t>(const int8_t& a, const int8_t& b, int32_t& c)
{
c += type_convert<int32_t>(a) * type_convert<int32_t>(b);
}
template <>
__device__ void
inner_product<int8x2_t, int8x2_t, int32_t>(const int8x2_t& a, const int8x2_t& b, int32_t& c)
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I0],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I0],
c);
inner_product(vector_type<int8_t, 2>{a}.AsType<int8_t>()[I1],
vector_type<int8_t, 2>{b}.AsType<int8_t>()[I1],
c);
}
template <>
__device__ void
inner_product<int8x4_t, int8x4_t, int32_t>(const int8x4_t& a, const int8x4_t& b, int32_t& c)
......
......@@ -93,6 +93,7 @@ using AddReluAdd = ck::tensor_operation::element_wise::AddReluAdd;
using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
......@@ -74,18 +74,17 @@ template <typename ALayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedGemm<
ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedGemm<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
PassThrough>>
{
using DeviceOp = DeviceGroupedGemm<ALayout,
BLayout,
......@@ -95,9 +94,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
BDataType,
Empty_Tuple,
EDataType,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough,
ck::tensor_operation::element_wise::PassThrough>;
PassThrough,
PassThrough,
PassThrough>;
static auto GetInstances()
{
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>& instances);
void add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>& instances);
void add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_km_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>& instances);
void add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_km_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Col,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
FastGelu>>>& instances);
// GroupedGEMM + GELU
template <typename ALayout,
typename BLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename EDataType>
struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupedGemm<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
FastGelu>>
{
using DeviceOp = DeviceGroupedGemm<ALayout,
BLayout,
Empty_Tuple,
ELayout,
ADataType,
BDataType,
Empty_Tuple,
EDataType,
PassThrough,
PassThrough,
FastGelu>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<ADataType, half_t> && is_same_v<BDataType, half_t> &&
is_same_v<EDataType, half_t>)
{
if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_km_kn_mn_instances(op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_fastgelu_xdl_f16_f16_f16_km_nk_mn_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment