Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
9f8ab221
Unverified
Commit
9f8ab221
authored
Oct 19, 2023
by
zjing14
Committed by
GitHub
Oct 19, 2023
Browse files
Merge branch 'develop' into add_int8_wmma_example_instance
parents
755ace59
b4fc4d0b
Changes
490
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1006 additions
and
85 deletions
+1006
-85
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
+11
-6
example/42_groupnorm/groupnorm_splitk_fp16.cpp
example/42_groupnorm/groupnorm_splitk_fp16.cpp
+12
-7
example/42_groupnorm/groupnorm_swish_fp16.cpp
example/42_groupnorm/groupnorm_swish_fp16.cpp
+12
-7
example/42_groupnorm/run_groupnorm_example.inc
example/42_groupnorm/run_groupnorm_example.inc
+44
-9
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
+2
-6
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+2
-4
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
...entwise_normalization/elementwise_layernorm_blockwise.cpp
+14
-3
example/46_gemm_add_multiply/CMakeLists.txt
example/46_gemm_add_multiply/CMakeLists.txt
+2
-6
example/48_pool3d_fwd/CMakeLists.txt
example/48_pool3d_fwd/CMakeLists.txt
+1
-3
example/49_maxpool2d_bwd/CMakeLists.txt
example/49_maxpool2d_bwd/CMakeLists.txt
+3
-9
example/50_put_element/CMakeLists.txt
example/50_put_element/CMakeLists.txt
+1
-3
example/52_im2col_col2im/CMakeLists.txt
example/52_im2col_col2im/CMakeLists.txt
+15
-0
example/52_im2col_col2im/column_to_image_f32.cpp
example/52_im2col_col2im/column_to_image_f32.cpp
+165
-0
example/52_im2col_col2im/common.hpp
example/52_im2col_col2im/common.hpp
+3
-1
example/52_im2col_col2im/image_to_column_f32.cpp
example/52_im2col_col2im/image_to_column_f32.cpp
+12
-11
example/52_image_to_column/CMakeLists.txt
example/52_image_to_column/CMakeLists.txt
+0
-10
example/60_gemm_multi_ABD/CMakeLists.txt
example/60_gemm_multi_ABD/CMakeLists.txt
+8
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
+363
-0
example/61_contraction_multi_ABD/CMakeLists.txt
example/61_contraction_multi_ABD/CMakeLists.txt
+8
-0
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
..._contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
+328
-0
No files found.
example/42_groupnorm/groupnorm_sigmoid_mul_fp16.cpp
View file @
9f8ab221
...
...
@@ -6,11 +6,14 @@
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
#define SAVE_MEAN_INV_STD
struct
YElementOp
{
...
...
@@ -39,6 +42,7 @@ using DeviceInstance =
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
...
...
@@ -53,7 +57,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/groupnorm_splitk_fp16.cpp
View file @
9f8ab221
...
...
@@ -6,12 +6,15 @@
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationSplitKImpl
<
XDataType
,
...
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
...
...
@@ -33,7 +37,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/groupnorm_swish_fp16.cpp
View file @
9f8ab221
...
...
@@ -6,12 +6,15 @@
constexpr
int
Rank
=
5
;
constexpr
int
NumReduceDim
=
3
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
using
XDataType
=
ck
::
half_t
;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
SaveMeanInvStdDataType
=
float
;
using
ComputeDataType
=
float
;
using
YElementOp
=
ck
::
tensor_operation
::
element_wise
::
Swish
;
#define SAVE_MEAN_INV_STD
using
DeviceInstance
=
ck
::
tensor_operation
::
device
::
DeviceNormalizationImpl
<
XDataType
,
...
...
@@ -19,6 +22,7 @@ using DeviceInstance =
BetaDataType
,
ComputeDataType
,
YDataType
,
SaveMeanInvStdDataType
,
YElementOp
,
Rank
,
NumReduceDim
,
...
...
@@ -33,7 +37,8 @@ using DeviceInstance =
2
,
// GammaScalarPerVector
1
,
// BetaVecDim (0=M, 1=K)
2
,
// BetaScalarPerVector
2
>
;
// OutScalarPerVector
2
,
// YScalarPerVector
1
>
;
// SaveMeanInvStdScalarPerVector
#include "run_groupnorm_example.inc"
...
...
example/42_groupnorm/run_groupnorm_example.inc
View file @
9f8ab221
...
...
@@ -34,6 +34,8 @@ int run_groupnorm_example(int argc, char* argv[])
Tensor
<
YDataType
>
y
({
N
,
H
,
W
,
G
,
C
});
Tensor
<
GammaDataType
>
gamma
({
G
,
C
});
Tensor
<
BetaDataType
>
beta
({
G
,
C
});
Tensor
<
SaveMeanInvStdDataType
>
save_mean
({
N
,
G
});
Tensor
<
SaveMeanInvStdDataType
>
save_inv_std
({
N
,
G
});
ck
::
utils
::
FillUniformDistribution
<
XDataType
>
{
0.
f
,
1.
f
}(
x
);
ck
::
utils
::
FillUniformDistribution
<
GammaDataType
>
{
0.
f
,
1.
f
}(
gamma
);
...
...
@@ -43,6 +45,11 @@ int run_groupnorm_example(int argc, char* argv[])
DeviceMem
gamma_dev
(
sizeof
(
GammaDataType
)
*
gamma
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
beta_dev
(
sizeof
(
BetaDataType
)
*
beta
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
y_dev
(
sizeof
(
YDataType
)
*
y
.
mDesc
.
GetElementSpaceSize
());
#ifdef SAVE_MEAN_INV_STD
DeviceMem
save_mean_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_mean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
save_inv_std_dev
(
sizeof
(
SaveMeanInvStdDataType
)
*
save_inv_std
.
mDesc
.
GetElementSpaceSize
());
#endif
x_dev
.
ToDevice
(
x
.
mData
.
data
());
gamma_dev
.
ToDevice
(
gamma
.
mData
.
data
());
...
...
@@ -57,14 +64,23 @@ int run_groupnorm_example(int argc, char* argv[])
{
0
,
0
,
0
,
C
,
1
},
{
0
,
0
,
0
,
C
,
1
},
std
::
vector
<
ck
::
index_t
>
{
y
.
mDesc
.
GetStrides
()
.
begin
(),
y
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
std
::
vector
<
ck
::
index_t
>
{
save_mean
.
mDesc
.
GetStrides
()
.
begin
(),
save_mean
.
mDesc
.
GetStrides
()
.
end
()},
{
1
,
2
,
4
},
// reduction dimension: [H, W, C]
1
e
-
6
,
x_dev
.
GetDeviceBuffer
(),
gamma_dev
.
GetDeviceBuffer
(),
beta_dev
.
GetDeviceBuffer
(),
y_dev
.
GetDeviceBuffer
(),
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
GetDeviceBuffer
(),
save_inv_std_dev
.
GetDeviceBuffer
(),
#else
nullptr
,
nullptr
,
#endif
y_element_op
);
if
(
!
device_instance
.
IsSupportedArgument
(
argument_ptr
.
get
()))
...
...
@@ -92,21 +108,40 @@ int run_groupnorm_example(int argc, char* argv[])
bool
pass
=
true
;
{
Tensor
<
YDataType
>
host_y
({
N
,
H
,
W
,
G
,
C
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementOp
>
;
Tensor
<
SaveMeanInvStdDataType
>
host_save_mean
(
HostTensorDescriptor
{
N
,
G
});
Tensor
<
SaveMeanInvStdDataType
>
host_save_inv_std
(
HostTensorDescriptor
{
N
,
G
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGroupnorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ComputeDataType
,
YElementOp
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
y_element_op
,
{
N
,
H
,
W
,
G
,
C
},
1
e
-
6
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
y_element_op
,
{
N
,
H
,
W
,
G
,
C
},
1
e
-
6
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
y
,
host_y
,
"Error: Incorrect results"
,
1
e
-
3
,
1
e
-
3
);
#ifdef SAVE_MEAN_INV_STD
save_mean_dev
.
FromDevice
(
save_mean
.
mData
.
data
());
save_inv_std_dev
.
FromDevice
(
save_inv_std
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
save_mean
,
host_save_mean
,
"Error: Incorrect results (mean)"
,
1
e
-
3
,
1
e
-
3
);
pass
&=
ck
::
utils
::
check_err
(
save_inv_std
,
host_save_inv_std
,
"Error: Incorrect results (inv_std)"
,
1
e
-
3
,
1
e
-
3
);
#endif
}
return
(
pass
?
0
:
1
);
...
...
example/43_splitk_gemm_bias_e_permute/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
endif
()
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp16 splitk_gemm_bias_e_permute_xdl_fp16.cpp
)
add_example_executable
(
example_splitk_gemm_bias_e_permute_xdl_fp32 splitk_gemm_bias_e_permute_xdl_fp32.cpp
)
example/44_elementwise_permute/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
endif
()
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
example/45_elementwise_normalization/elementwise_layernorm_blockwise.cpp
View file @
9f8ab221
...
...
@@ -167,20 +167,31 @@ int main()
XElementwiseOperation
>
(
x
,
a
,
b
,
mn
,
XElementwiseOperation
{});
Tensor
<
YDataType
>
host_y
(
f_host_tensor_descriptor2d
(
M
,
N
,
Stride
));
Tensor
<
AccDataType
>
host_save_mean
({
M
});
Tensor
<
AccDataType
>
host_save_inv_std
({
M
});
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceLayernorm
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccDataType
,
YElementwiseOperation
,
Rank
,
NumReduceDim
>
;
ReferenceInstance
ref
;
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
auto
ref_argument
=
ref
.
MakeArgument
(
x
,
gamma
,
beta
,
host_y
,
host_save_mean
,
host_save_inv_std
,
YElementwiseOperation
{},
{
M
,
N
},
{
1
},
1e-4
);
auto
ref_invoker
=
ref
.
MakeInvoker
();
ref_invoker
.
Run
(
ref_argument
);
y_dev
.
FromDevice
(
y
.
mData
.
data
());
...
...
example/46_gemm_add_multiply/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
if
(
DL_KERNELS
)
add_example_executable
(
example_gemm_add_multiply_dl_fp16 gemm_add_multiply_dl_fp16.cpp
)
endif
()
add_example_executable
(
example_gemm_add_multiply_xdl_fp16 gemm_add_multiply_xdl_fp16.cpp
)
endif
()
add_example_executable
(
example_gemm_add_multiply_dl_fp16 gemm_add_multiply_dl_fp16.cpp
)
add_example_executable
(
example_gemm_add_multiply_xdl_fp16 gemm_add_multiply_xdl_fp16.cpp
)
example/48_pool3d_fwd/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
endif
()
add_example_executable
(
example_pool3d_fwd_fp16 pool3d_fwd_fp16.cpp
)
example/49_maxpool2d_bwd/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"bf16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
endif
()
if
(
DTYPES MATCHES
"fp32"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
endif
()
add_example_executable
(
example_maxpool2d_bwd_bf16 maxpool2d_bwd_bf16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp16 maxpool2d_bwd_fp16.cpp
)
add_example_executable
(
example_maxpool2d_bwd_fp32 maxpool2d_bwd_fp32.cpp
)
example/50_put_element/CMakeLists.txt
View file @
9f8ab221
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
endif
()
add_example_executable
(
example_put_element_fp16 put_element_fp16.cpp
)
example/52_im2col_col2im/CMakeLists.txt
0 → 100644
View file @
9f8ab221
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_im2col_col2im
)
add_example_executable
(
example_image_to_column_f32 image_to_column_f32.cpp
)
add_example_dependencies
(
example_im2col_col2im example_image_to_column_f32
)
add_example_executable
(
example_column_to_image_f32 column_to_image_f32.cpp
)
add_example_dependencies
(
example_im2col_col2im example_column_to_image_f32
)
set
(
target 1
)
endif
()
endforeach
()
example/52_im2col_col2im/column_to_image_f32.cpp
0 → 100644
View file @
9f8ab221
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using
InDataType
=
FP32
;
// ck::bhalf_t;//FP32;
using
OutDataType
=
FP32
;
// ck::bhalf_t;//FP32;
using
ImLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
ColumnToImageOp
=
ck
::
conv_tensor_rearrange_op
::
ColumnToImage
;
// clang-format off
using
DeviceColToImgInstance
=
ck
::
tensor_operation
::
device
::
DeviceColumnToImageImpl
//#####################| Num| ImLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
// clang-format on
bool
RunColumnToImage
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
{
const
auto
N
=
conv_params
.
N_
;
const
auto
C
=
conv_params
.
C_
;
const
ck
::
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
ck
::
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
ck
::
index_t
>
(
conv_params
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
const
auto
out_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
ImLayout
>
(
conv_params
);
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
image_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
gemm_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
std
::
copy
(
x
.
begin
(),
x
.
end
(),
y
.
begin
());
};
copy
(
conv_params
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_params
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_params
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
gemm_m_k_strides
);
copy
(
out_desc
.
GetStrides
(),
image_g_n_c_wis_strides
);
copy
(
conv_params
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_params
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_params
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_params
.
input_right_pads_
,
input_right_pads
);
Tensor
<
InDataType
>
in
(
in_desc
);
Tensor
<
OutDataType
>
out_device
(
out_desc
);
Tensor
<
OutDataType
>
out_host
(
out_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_device
.
mDesc
<<
std
::
endl
;
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
1
,
2
});
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
// reset input to zero
out_device_buf
.
SetZero
();
static_assert
(
std
::
is_default_constructible_v
<
DeviceColToImgInstance
>
);
// do conv
auto
col2img
=
DeviceColToImgInstance
{};
auto
invoker
=
col2img
.
MakeInvoker
();
auto
argument
=
col2img
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
out_device_buf
.
GetDeviceBuffer
(),
N
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
image_g_n_c_wis_strides
,
gemm_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
if
(
!
col2img
.
IsSupportedArgument
(
argument
))
{
std
::
cerr
<<
"wrong! device_col2img with the specified compilation parameters does "
"not support this col2img problem"
<<
std
::
endl
;
return
false
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
std
::
size_t
num_btype
=
NDoHoWo
*
CZYX
*
(
sizeof
(
OutDataType
)
+
sizeof
(
InDataType
));
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
config
.
do_verification
)
{
auto
ref_column_to_image
=
ck
::
tensor_operation
::
host
::
ReferenceColumnToImage
<
NDimSpatial
,
ImLayout
,
InDataType
,
OutDataType
>
();
auto
ref_invoker
=
ref_column_to_image
.
MakeInvoker
();
auto
ref_argument
=
ref_column_to_image
.
MakeArgument
(
in
,
out_host
,
conv_params
.
filter_spatial_lengths_
,
conv_params
.
conv_filter_strides_
,
conv_params
.
conv_filter_dilations_
,
conv_params
.
input_left_pads_
,
conv_params
.
input_right_pads_
);
if
(
!
ref_column_to_image
.
IsSupportedArgument
(
&
ref_argument
))
{
std
::
cerr
<<
"wrong! ref_col2img with the specified compilation parameters does "
"not support this col2img problem"
<<
std
::
endl
;
return
false
;
}
ref_invoker
.
Run
(
ref_argument
);
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
);
}
return
true
;
}
int
RunColumnToImageExample
(
int
argc
,
char
*
argv
[])
{
ExecutionConfig
config
;
ck
::
utils
::
conv
::
ConvParam
conv_params
=
DefaultConvParams
;
if
(
!
parse_cmd_args
(
argc
,
argv
,
config
,
conv_params
))
{
return
EXIT_FAILURE
;
}
if
(
conv_params
.
num_dim_spatial_
!=
NDimSpatial
)
{
std
::
cerr
<<
"unsupported # of spatial dimensions"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
return
!
RunColumnToImage
(
config
,
conv_params
);
}
int
main
(
int
argc
,
char
*
argv
[])
{
return
RunColumnToImageExample
(
argc
,
argv
);
}
example/52_im
age_to
_col
umn
/common.hpp
→
example/52_im
2col
_col
2im
/common.hpp
View file @
9f8ab221
...
...
@@ -10,6 +10,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/algorithm.hpp"
...
...
@@ -20,6 +21,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
...
...
@@ -32,7 +34,7 @@ struct ExecutionConfig final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
tru
e
;
bool
time_kernel
=
fals
e
;
};
#define DefaultConvParams \
...
...
example/52_im
age_to
_col
umn
/image_to_column_f32.cpp
→
example/52_im
2col
_col
2im
/image_to_column_f32.cpp
View file @
9f8ab221
...
...
@@ -6,15 +6,16 @@
using
InDataType
=
FP32
;
using
OutDataType
=
FP32
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
ImLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
ImageToColumnOp
=
ck
::
conv_tensor_rearrange_op
::
ImageToColumn
;
// clang-format off
using
DeviceImgToColInstance
=
ck
::
tensor_operation
::
device
::
DeviceImageToColumnImpl
//#####################| Num| I
n
Layout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Num| I
m
Layout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
<
NDimSpatial
,
I
n
Layout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
<
NDimSpatial
,
I
m
Layout
,
InDataType
,
OutDataType
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
;
// clang-format on
bool
RunImageToColumn
(
const
ExecutionConfig
&
config
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_params
)
...
...
@@ -31,14 +32,14 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
conv_params
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
auto
in_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
I
n
Layout
>
(
conv_params
);
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
I
m
Layout
>
(
conv_params
);
const
auto
out_desc
=
HostTensorDescriptor
({
NDoHoWo
,
CZYX
});
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
i
nput
_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
output
_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
i
mage
_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
2
>
gemm
_m_k_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
...
...
@@ -49,8 +50,8 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
copy
(
conv_params
.
input_spatial_lengths_
,
input_spatial_lengths
);
copy
(
conv_params
.
filter_spatial_lengths_
,
filter_spatial_lengths
);
copy
(
conv_params
.
output_spatial_lengths_
,
output_spatial_lengths
);
copy
(
in_desc
.
GetStrides
(),
i
nput
_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
output
_m_k_strides
);
copy
(
in_desc
.
GetStrides
(),
i
mage
_g_n_c_wis_strides
);
copy
(
out_desc
.
GetStrides
(),
gemm
_m_k_strides
);
copy
(
conv_params
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_params
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_params
.
input_left_pads_
,
input_left_pads
);
...
...
@@ -90,8 +91,8 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
i
nput
_g_n_c_wis_strides
,
output
_m_k_strides
,
i
mage
_g_n_c_wis_strides
,
gemm
_m_k_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
...
...
@@ -114,7 +115,7 @@ bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::Conv
if
(
config
.
do_verification
)
{
auto
ref_image_to_column
=
ck
::
tensor_operation
::
host
::
ReferenceImageToColumn
<
NDimSpatial
,
I
n
Layout
,
InDataType
,
OutDataType
>
();
ReferenceImageToColumn
<
NDimSpatial
,
I
m
Layout
,
InDataType
,
OutDataType
>
();
auto
ref_invoker
=
ref_image_to_column
.
MakeInvoker
();
...
...
example/52_image_to_column/CMakeLists.txt
deleted
100644 → 0
View file @
755ace59
list
(
APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_custom_target
(
example_image_to_column
)
add_example_executable
(
example_image_to_column_f32 image_to_column_f32.cpp
)
add_dependencies
(
example_image_to_column example_image_to_column_f32
)
set
(
target 1
)
endif
()
endforeach
()
example/60_gemm_multi_ABD/CMakeLists.txt
0 → 100644
View file @
9f8ab221
list
(
APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
0 → 100644
View file @
9f8ab221
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
struct
AddScale
{
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
static
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
static
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
static
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
__host__
__device__
constexpr
void
operator
()(
ck
::
half4_t
&
a
,
const
ck
::
half4_t
&
a0
,
const
ck
::
half4_t
&
a1
)
const
{
const
auto
a0_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a0
};
const
auto
a1_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a1
};
auto
r_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{};
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I0
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I1
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I2
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I3
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]);
a
=
r_v_t
.
AsType
<
ck
::
half4_t
>
()[
I0
];
}
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
ck
::
half_t
&
a1
)
const
{
a
=
scale
*
(
a0
+
a1
);
}
// this attribute controls the copy_function applying element_wise_op with
// pack4_data
constexpr
const
static
bool
is_pack4_invocable
=
true
;
float
scale
=
1.0
;
};
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
<
ck
::
Tuple
<
ALayout
,
ALayout
>
,
ck
::
Tuple
<
BLayout
>
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ck
::
Tuple
<
ADataType
,
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
11
]);
beta
=
std
::
stof
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a1_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_m_k: "
<<
a1_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{
0.2
};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideA
,
StrideA
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
ADataType
>
a_m_k
({
M
,
K
});
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
a_element_op
(
a_m_k
(
m
,
k
),
a0_m_k
(
m
,
k
),
a1_m_k
(
m
,
k
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
example/61_contraction_multi_ABD/CMakeLists.txt
0 → 100644
View file @
9f8ab221
list
(
APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_contraction_multi_ABD_xdl_fp16 contraction_multi_ABD_xdl_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
example/61_contraction_multi_ABD/contraction_multi_ABD_xdl_fp16.cpp
0 → 100644
View file @
9f8ab221
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_contraction_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_contraction.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/numeric.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
A0DataType
=
F16
;
using
A1DataType
=
F32
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
static
constexpr
ck
::
index_t
NumDimM
=
2
;
static
constexpr
ck
::
index_t
NumDimN
=
2
;
static
constexpr
ck
::
index_t
NumDimK
=
2
;
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
struct
Multiply
{
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
float
&
a1
)
const
{
a
=
ck
::
type_convert
<
ck
::
half_t
>
(
ck
::
type_convert
<
float
>
(
a0
)
*
a1
);
}
};
using
AElementOp
=
Multiply
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceContractionMultipleABD_Xdl_CShuffle
<
NumDimM
,
NumDimN
,
NumDimK
,
ck
::
Tuple
<
A0DataType
,
A1DataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
// A0[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a0_ms_ks_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// A1[M1, K1] -> A1[M0, M1, K0, K1]
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
a1_ms_ks_strides
{
0
,
64
,
0
,
1
};
// B[N0, N1, K0, K1]
std
::
vector
<
ck
::
index_t
>
b_ns_ks_lengths
{
32
,
64
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
b_ns_ks_strides
{
64
*
32
*
64
,
32
*
64
,
64
,
1
};
// D[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
d_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
d_ms_ns_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
// E[M0, M1, N0, N1]
std
::
vector
<
ck
::
index_t
>
e_ms_ns_lengths
{
30
,
128
,
32
,
64
};
std
::
vector
<
ck
::
index_t
>
e_ms_ns_strides
{
128
*
32
*
64
,
32
*
64
,
64
,
1
};
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
exit
(
0
);
}
Tensor
<
A0DataType
>
a0_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
Tensor
<
A1DataType
>
a1_ms_ks
(
a1_ms_ks_lengths
,
a1_ms_ks_strides
);
Tensor
<
BDataType
>
b_ns_ks
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
Tensor
<
EDataType
>
d_ms_ns
(
d_ms_ns_lengths
,
d_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
EDataType
>
e_ms_ns_device_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
std
::
cout
<<
"a0_ms_ks: "
<<
a0_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_ms_ks: "
<<
a1_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_ns_ks: "
<<
b_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_ms_ns: "
<<
d_ms_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_ms_ns: "
<<
e_ms_ns_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
A1DataType
>
{
-
5
,
5
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a0_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
a1_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
A1DataType
>
{
0.0
,
1.0
});
b_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a0_device_buf
(
sizeof
(
A0DataType
)
*
a0_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
A1DataType
)
*
a1_ms_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_ns_ks
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_ms_ns
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_ms_ns_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_ms_ks
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_ms_ks
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_ns_ks
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_ms_ns
.
mData
.
data
());
// set zero
e_device_buf
.
SetZero
();
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_lengths
,
a1_ms_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
2
>
{
a0_ms_ks_strides
,
a1_ms_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
b_ns_ks_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
b_ns_ks_strides
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_lengths
},
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d_ms_ns_strides
},
e_ms_ns_lengths
,
e_ms_ns_strides
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_contraction with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
if
(
time_kernel
)
{
ck
::
index_t
M
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
(),
NumDimM
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
N
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
e_ms_ns_lengths
.
begin
()
+
NumDimM
,
NumDimN
,
1
,
std
::
multiplies
<>
{});
ck
::
index_t
K
=
ck
::
accumulate_n
<
ck
::
index_t
>
(
a0_ms_ks_lengths
.
begin
()
+
NumDimM
,
NumDimK
,
1
,
std
::
multiplies
<>
{});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
A0DataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
}
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_ms_ns_host_result
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
Tensor
<
A0DataType
>
a_ms_ks
(
a0_ms_ks_lengths
,
a0_ms_ks_strides
);
for
(
size_t
m0
=
0
;
m0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
k0
=
0
;
k0
<
a_ms_ks
.
mDesc
.
GetLengths
()[
2
];
++
k0
)
{
for
(
size_t
k1
=
0
;
k1
<
a_ms_ks
.
mDesc
.
GetLengths
()[
3
];
++
k1
)
{
a_element_op
(
a_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a0_ms_ks
(
m0
,
m1
,
k0
,
k1
),
a1_ms_ks
(
m0
,
m1
,
k0
,
k1
));
}
}
}
}
using
ReferenceOpInstance
=
ck
::
tensor_operation
::
host
::
ReferenceContraction_M2_N2_K2
<
NumDimM
,
NumDimN
,
NumDimK
,
A0DataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
>
;
auto
ref_op
=
ReferenceOpInstance
{};
auto
ref_invoker
=
ref_op
.
MakeInvoker
();
Tensor
<
float
>
empty_tensor
(
std
::
vector
<
ck
::
index_t
>
{},
std
::
vector
<
ck
::
index_t
>
{});
auto
ref_argument
=
ref_op
.
MakeArgument
(
a_ms_ks
,
b_ns_ks
,
c_ms_ns_host_result
,
PassThrough
{},
b_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
size_t
m0
=
0
;
m0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
0
];
++
m0
)
{
for
(
size_t
m1
=
0
;
m1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
1
];
++
m1
)
{
for
(
size_t
n0
=
0
;
n0
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
2
];
++
n0
)
{
for
(
size_t
n1
=
0
;
n1
<
e_ms_ns_host_result
.
mDesc
.
GetLengths
()[
3
];
++
n1
)
{
cde_element_op
(
e_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
c_ms_ns_host_result
(
m0
,
m1
,
n0
,
n1
),
d_ms_ns
(
m0
,
m1
,
n0
,
n1
));
}
}
}
}
e_device_buf
.
FromDevice
(
e_ms_ns_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_ms_ns_device_result
,
e_ms_ns_host_result
)
?
0
:
1
;
}
return
0
;
}
Prev
1
2
3
4
5
6
7
8
9
…
25
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment