Unverified Commit 9f8ab221 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into add_int8_wmma_example_instance

parents 755ace59 b4fc4d0b
......@@ -20,9 +20,11 @@ enum struct ConvLayout
enum struct ConvDataType
{
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_F32_BF16, // 2
F32_F32_F32, // 0
F16_F16_F16, // 1
BF16_F32_BF16, // 2
F16_F16_F16_BF8_F8, // 3
I8_I8_I8 // 4
};
#define OP_NAME "grouped_conv_bwd_weight"
......@@ -33,7 +35,9 @@ static void print_helper_msg()
std::cout << "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight fp32, Output bf16)\n"
<< " 2: Input bf16, Weight fp32, Output bf16\n"
<< " 3: Input fp16, Weight fp16, Output fp16, Gemm bf8@fp8\n"
<< " 4: Input int8, Weight int8, Output int8)\n"
<< "arg3: tensor layout (0: Input[G, N, C, Hi, Wi], Weight[G, K, C, Y, X], Output[G, "
"N, K, Ho, Wo]\n"
<< " 1: Input[G, N, Hi, Wi, C], Weight[G, K, Y, X, C], Output[G, "
......@@ -82,6 +86,8 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using F8 = ck::f8_t;
using BF8 = ck::bf8_t;
using namespace ck::tensor_layout::convolution;
......@@ -95,7 +101,9 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
auto out_layout,
auto in_type,
auto wei_type,
auto out_type) {
auto out_type,
auto compute_type_a,
auto compute_type_b) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
......@@ -106,13 +114,18 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
using WeiDataType = decltype(wei_type);
using OutDataType = decltype(out_type);
using ComputeTypeA = decltype(compute_type_a);
using ComputeTypeB = decltype(compute_type_b);
bool pass = ck::profiler::profile_grouped_conv_bwd_weight_impl<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType>(
OutDataType,
ComputeTypeA,
ComputeTypeB>(
do_verification, init_method, do_log, time_kernel, params, split_k);
return pass ? 0 : 1;
......@@ -122,80 +135,94 @@ int profile_grouped_conv_bwd_weight(int argc, char* argv[])
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, F32{}, BF16{});
return profile(I1, GNWC{}, GKXC{}, GNWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
if(num_dim_spatial == 2 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{});
return profile(I2, GNHWC{}, GKYXC{}, GNHWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
if(num_dim_spatial == 2 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, F32{}, BF16{});
return profile(I2, NHWGC{}, GKYXC{}, NHWGK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
if(num_dim_spatial == 3 && layout == ConvLayout::GNHWC_GKYXC_GNHWK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{});
return profile(I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
else if(data_type == ConvDataType::I8_I8_I8)
{
return profile(
I3, GNDHWC{}, GKZYXC{}, GNDHWK{}, int8_t{}, int8_t{}, int8_t{}, int8_t{}, int8_t{});
}
}
else if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
if(num_dim_spatial == 3 && layout == ConvLayout::NHWGC_GKYXC_NHWGK)
{
if(data_type == ConvDataType::F32_F32_F32)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F32{}, F32{}, F32{}, F32{}, F32{});
}
else if(data_type == ConvDataType::F16_F16_F16)
if(data_type == ConvDataType::F16_F16_F16)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, F16{}, F16{});
}
else if(data_type == ConvDataType::BF16_F32_BF16)
if(data_type == ConvDataType::BF16_F32_BF16)
{
// fp32 atomic add is used for weight tensor in bf16 kernel
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, F32{}, BF16{});
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, BF16{}, F32{}, BF16{}, BF16{}, BF16{});
}
if(data_type == ConvDataType::F16_F16_F16_BF8_F8)
{
return profile(I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, F16{}, F16{}, F16{}, BF8{}, F8{});
}
else if(data_type == ConvDataType::I8_I8_I8)
{
return profile(
I3, NDHWGC{}, GKZYXC{}, NDHWGK{}, int8_t{}, int8_t{}, int8_t{}, int8_t{}, int8_t{});
}
}
......
......@@ -93,12 +93,12 @@ int profile_groupnorm(int argc, char* argv[])
if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_groupnorm_impl<F32, F32, F32, F32, F32>(
ck::profiler::profile_groupnorm_impl<F32, F32, F32, F32, F32, F32, false>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_groupnorm_impl<F16, F16, F16, F32, F16>(
ck::profiler::profile_groupnorm_impl<F16, F16, F16, F32, F16, F32, false>(
do_verification, init_method, do_log, time_kernel, length);
}
else
......
......@@ -82,12 +82,12 @@ int profile_layernorm(int argc, char* argv[])
if(data_type == ck::DataTypeEnum::Half)
{
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, rank>(
ck::profiler::profile_layernorm_impl<F16, F16, F16, F32, F16, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else if(data_type == ck::DataTypeEnum::Float)
{
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, rank>(
ck::profiler::profile_layernorm_impl<F32, F32, F32, F32, F32, F32, false, rank>(
do_verification, init_method, do_log, time_kernel, length);
}
else
......
......@@ -9,26 +9,121 @@ add_custom_target(tests)
function(add_test_executable TEST_NAME)
message("adding test ${TEST_NAME}")
add_executable(${TEST_NAME} ${ARGN})
add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}>)
add_dependencies(tests ${TEST_NAME})
add_dependencies(check ${TEST_NAME})
rocm_install(TARGETS ${TEST_NAME} COMPONENT tests)
set(result 1)
if(DEFINED DTYPES)
foreach(source IN LISTS ARGN)
set(test 0)
foreach(type IN LISTS DTYPES)
if(type MATCHES "fp16")
set(type1 "_f16")
elseif(type MATCHES "fp32")
set(type1 "_f32")
elseif(type MATCHES "fp8")
set(type1 "_f8")
elseif(type MATCHES "bf16")
set(type1 "_b16")
elseif(type MATCHES "fp64")
set(type1 "_f64")
elseif(type MATCHES "int8")
set(type1 "_i8")
endif()
if("${source}" MATCHES "${type}" OR "${source}" MATCHES "${type1}")
#if filename matches any selected type, exit type loop and do no exclude the file from the list
set(test 0)
break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1)
endif()
endforeach()
if(test EQUAL 1)
message("removing test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
endif()
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
message("removing dl test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
#only continue if there are some source files left on the list
if(ARGN)
add_executable(${TEST_NAME} ${ARGN})
add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}>)
add_dependencies(tests ${TEST_NAME})
add_dependencies(check ${TEST_NAME})
rocm_install(TARGETS ${TEST_NAME} COMPONENT tests)
set(result 0)
endif()
#message("add_test returns ${result}")
set(result ${result} PARENT_SCOPE)
endfunction(add_test_executable TEST_NAME)
include(GoogleTest)
function(add_gtest_executable TEST_NAME)
message("adding gtest ${TEST_NAME}")
add_executable(${TEST_NAME} ${ARGN})
add_dependencies(tests ${TEST_NAME})
add_dependencies(check ${TEST_NAME})
set(result 1)
if(DEFINED DTYPES)
foreach(source IN LISTS ARGN)
set(test 0)
foreach(type IN LISTS DTYPES)
if(type MATCHES "fp16")
set(type1 "_f16")
elseif(type MATCHES "fp32")
set(type1 "_f32")
elseif(type MATCHES "fp8")
set(type1 "_f8")
elseif(type MATCHES "bf16")
set(type1 "_b16")
elseif(type MATCHES "fp64")
set(type1 "_f64")
elseif(type MATCHES "int8")
set(type1 "_i8")
endif()
if("${source}" MATCHES "${type}" OR "${source}" MATCHES "${type1}")
#if filename matches any selected type, exit type loop and do no exclude the file from the list
set(test 0)
break()
elseif((source MATCHES "fp8" OR source MATCHES "fp32" OR source MATCHES "fp64" OR source MATCHES "bf16" OR source MATCHES "int8" OR source MATCHES "fp16" OR
source MATCHES "_f8" OR source MATCHES "_f32" OR source MATCHES "_f64" OR source MATCHES "_i8" OR source MATCHES "_f16" OR source MATCHES "_b16") AND
NOT(source MATCHES type OR source MATCHES type1))
#if filename contains a type which doesn't match any selected type, mark it for removal
set(test 1)
endif()
endforeach()
if(test EQUAL 1)
message("removing gtest ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
endif()
foreach(source IN LISTS ARGN)
if(NOT DEFINED DL_KERNELS AND source MATCHES "_dl")
message("removing dl test ${source} ")
list(REMOVE_ITEM ARGN "${source}")
endif()
endforeach()
#only continue if there are some source files left on the list
if(ARGN)
add_executable(${TEST_NAME} ${ARGN})
add_dependencies(tests ${TEST_NAME})
add_dependencies(check ${TEST_NAME})
# suppress gtest warnings
target_compile_options(${TEST_NAME} PRIVATE -Wno-global-constructors -Wno-undef)
target_link_libraries(${TEST_NAME} PRIVATE gtest_main)
add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}>)
rocm_install(TARGETS ${TEST_NAME} COMPONENT tests)
# suppress gtest warnings
target_compile_options(${TEST_NAME} PRIVATE -Wno-global-constructors -Wno-undef)
target_link_libraries(${TEST_NAME} PRIVATE gtest_main)
add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}>)
rocm_install(TARGETS ${TEST_NAME} COMPONENT tests)
set(result 0)
endif()
#message("add_gtest returns ${result}")
set(result ${result} PARENT_SCOPE)
endfunction(add_gtest_executable TEST_NAME)
add_subdirectory(magic_number_division)
......@@ -60,7 +155,7 @@ add_subdirectory(contraction)
add_subdirectory(pool)
add_subdirectory(batched_gemm_multi_d)
add_subdirectory(grouped_convnd_bwd_data)
add_subdirectory(image_to_column)
add_subdirectory(conv_tensor_rearrange)
if(GPU_TARGETS MATCHES "gfx11")
add_subdirectory(wmma_op)
endif()
......@@ -2,26 +2,8 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_test_executable(test_batched_gemm_fp16 batched_gemm_fp16.cpp)
target_link_libraries(test_batched_gemm_fp16 PRIVATE utility)
target_link_libraries(test_batched_gemm_fp16 PRIVATE device_batched_gemm_instance)
endif()
if(DTYPES MATCHES "fp32" OR NOT DEFINED DTYPES)
add_test_executable(test_batched_gemm_fp32 batched_gemm_fp32.cpp)
target_link_libraries(test_batched_gemm_fp32 PRIVATE utility)
target_link_libraries(test_batched_gemm_fp32 PRIVATE device_batched_gemm_instance)
endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_test_executable(test_batched_gemm_bf16 batched_gemm_bf16.cpp)
target_link_libraries(test_batched_gemm_bf16 PRIVATE utility)
target_link_libraries(test_batched_gemm_bf16 PRIVATE device_batched_gemm_instance)
endif()
if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES)
add_test_executable(test_batched_gemm_int8 batched_gemm_int8.cpp)
target_link_libraries(test_batched_gemm_int8 PRIVATE utility)
target_link_libraries(test_batched_gemm_int8 PRIVATE device_batched_gemm_instance)
endif()
add_gtest_executable(test_batched_gemm test_batched_gemm.cpp)
target_link_libraries(test_batched_gemm PRIVATE utility device_batched_gemm_instance)
set(target 1)
endif()
endforeach()
\ No newline at end of file
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace {
using ADataType = ck::bhalf_t;
using BDataType = ck::bhalf_t;
using CDataType = ck::bhalf_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
} // namespace
int main()
{
int M = 256;
int N = 256;
int K = 128;
int BatchCount = 3;
bool pass = true;
using namespace ck::tensor_operation::device;
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, K, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, K, N, M * K, K * N, M * N, BatchCount);
std::cout << "test BatchedGEMM bf16: " << (pass ? "Pass" : "Fail") << std::endl;
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace {
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
} // namespace
int main()
{
int M = 512;
int N = 256;
int K = 128;
int BatchCount = 3;
bool pass = true;
using namespace ck::tensor_operation::device;
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, K, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, K, N, M * K, K * N, M * N, BatchCount);
std::cout << "test BatchedGEMM fp16: " << (pass ? "Pass" : "Fail") << std::endl;
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace {
using ADataType = float;
using BDataType = float;
using CDataType = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
} // namespace
int main()
{
int M = 256;
int N = 256;
int K = 128;
int BatchCount = 3;
bool pass = true;
using namespace ck::tensor_operation::device;
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, K, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, K, N, M * K, K * N, M * N, BatchCount);
std::cout << "test BatchedGEMM fp32: " << (pass ? "Pass" : "Fail") << std::endl;
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace {
using ADataType = int8_t;
using BDataType = int8_t;
using CDataType = int8_t;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
} // namespace
int main()
{
int M = 256;
int N = 256;
int K = 128;
int BatchCount = 3;
bool pass = true;
using namespace ck::tensor_operation::device;
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Row,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, K, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Row,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, N, N, M * K, K * N, M * N, BatchCount);
pass = pass && ck::profiler::profile_batched_gemm_impl<ADataType,
BDataType,
CDataType,
Col,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Col,
Row,
ADataType,
BDataType,
CDataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, K, N, M * K, K * N, M * N, BatchCount);
std::cout << "test BatchedGEMM int8: " << (pass ? "Pass" : "Fail") << std::endl;
return pass ? 0 : 1;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
struct GemmParams
{
ck::index_t M;
ck::index_t N;
ck::index_t K;
ck::index_t BatchCount;
};
class TestBatchedGemm : public ::testing::Test
{
protected:
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
std::vector<GemmParams> params;
template <typename DataType>
void Run()
{
using namespace ck::tensor_operation::device;
bool pass = true;
for(auto& param : params)
{
const auto M = param.M;
const auto N = param.N;
const auto K = param.K;
const auto BatchCount = param.BatchCount;
pass =
pass && ck::profiler::profile_batched_gemm_impl<DataType,
DataType,
DataType,
Row,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Row,
Row,
DataType,
DataType,
DataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, N, N, M * K, K * N, M * N, BatchCount);
pass =
pass && ck::profiler::profile_batched_gemm_impl<DataType,
DataType,
DataType,
Row,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Row,
Col,
Row,
DataType,
DataType,
DataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, K, K, N, M * K, K * N, M * N, BatchCount);
pass =
pass && ck::profiler::profile_batched_gemm_impl<DataType,
DataType,
DataType,
Col,
Row,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Row,
Row,
DataType,
DataType,
DataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, N, N, M * K, K * N, M * N, BatchCount);
pass =
pass && ck::profiler::profile_batched_gemm_impl<DataType,
DataType,
DataType,
Col,
Col,
Row,
PassThrough,
PassThrough,
PassThrough,
DeviceBatchedGemm<Col,
Col,
Row,
DataType,
DataType,
DataType,
PassThrough,
PassThrough,
PassThrough>>(
true, 1, false, 1, M, N, K, M, K, N, M * K, K * N, M * N, BatchCount);
}
EXPECT_TRUE(pass);
}
};
#ifdef CK_ENABLE_INT8
TEST_F(TestBatchedGemm, i8)
{
this->params.push_back({64, 64, 64, 2});
this->params.push_back({64, 64, 64, 1});
this->params.push_back({60, 60, 60, 2});
this->params.push_back({68, 68, 68, 2});
this->params.push_back({40, 40, 40, 2});
this->params.push_back({256, 256, 128, 3});
this->template Run<int8_t>();
}
#endif
#ifdef CK_ENABLE_BF16
TEST_F(TestBatchedGemm, bf16)
{
this->params.push_back({64, 64, 64, 2});
this->params.push_back({64, 64, 64, 1});
this->params.push_back({60, 60, 60, 2});
this->params.push_back({68, 68, 68, 2});
this->params.push_back({40, 40, 40, 2});
this->params.push_back({256, 256, 128, 3});
this->template Run<ck::bhalf_t>();
}
#endif
#ifdef CK_ENABLE_FP16
TEST_F(TestBatchedGemm, fp16)
{
this->params.push_back({64, 64, 64, 2});
this->params.push_back({64, 64, 64, 1});
this->params.push_back({60, 60, 60, 2});
this->params.push_back({68, 68, 68, 2});
this->params.push_back({40, 40, 40, 2});
this->params.push_back({256, 256, 128, 3});
this->template Run<ck::half_t>();
}
#endif
#ifdef CK_ENABLE_FP32
TEST_F(TestBatchedGemm, fp32)
{
this->params.push_back({64, 64, 64, 2});
this->params.push_back({64, 64, 64, 1});
this->params.push_back({60, 60, 60, 2});
this->params.push_back({68, 68, 68, 2});
this->params.push_back({40, 40, 40, 2});
this->params.push_back({256, 256, 128, 3});
this->template Run<float>();
}
#endif
......@@ -2,12 +2,12 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_custom_target(test_batched_gemm_gemm)
add_gtest_executable(test_batched_gemm_gemm_fp16 test_batched_gemm_gemm_fp16.cpp)
add_custom_target(test_batched_gemm_gemm)
add_gtest_executable(test_batched_gemm_gemm_fp16 test_batched_gemm_gemm_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_gemm_fp16 PRIVATE utility device_batched_gemm_gemm_instance)
add_dependencies(test_batched_gemm_gemm test_batched_gemm_gemm_fp16)
set(target 1)
endif()
endif()
endif()
endforeach()
\ No newline at end of file
if(DL_KERNELS)
add_gtest_executable(test_batched_gemm_multi_d test_batched_gemm_multi_d.cpp)
add_gtest_executable(test_batched_gemm_multi_d test_batched_gemm_multi_d_dl.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_multi_d PRIVATE utility device_batched_gemm_multi_d_instance)
endif()
......@@ -2,10 +2,9 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE utility)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE device_batched_gemm_reduce_instance)
add_test_executable(test_batched_gemm_reduce_fp16 batched_gemm_reduce_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_reduce_fp16 PRIVATE utility device_batched_gemm_reduce_instance)
set(target 1)
endif()
endif()
......
......@@ -2,12 +2,12 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_custom_target(test_batched_gemm_softmax_gemm)
add_gtest_executable(test_batched_gemm_softmax_gemm_fp16 test_batched_gemm_softmax_gemm_fp16.cpp)
target_link_libraries(test_batched_gemm_softmax_gemm_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_instance)
add_dependencies(test_batched_gemm_softmax_gemm test_batched_gemm_softmax_gemm_fp16)
set(target 1)
endif()
add_custom_target(test_batched_gemm_softmax_gemm)
add_gtest_executable(test_batched_gemm_softmax_gemm_fp16 test_batched_gemm_softmax_gemm_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_softmax_gemm_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_instance)
add_dependencies(test_batched_gemm_softmax_gemm test_batched_gemm_softmax_gemm_fp16)
set(target 1)
endif()
endif()
endforeach()
\ No newline at end of file
......@@ -2,25 +2,28 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if(DTYPES MATCHES "fp16" OR DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_custom_target(test_batched_gemm_softmax_gemm_permute)
endif()
if(DTYPES MATCHES "fp16" OR NOT DEFINED DTYPES)
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_fp16 test_batched_gemm_softmax_gemm_permute_fp16.cpp)
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_fp16 test_batched_gemm_bias_softmax_gemm_permute_fp16.cpp)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_fp16)
endif()
if(DTYPES MATCHES "bf16" OR NOT DEFINED DTYPES)
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_bf16 test_batched_gemm_softmax_gemm_permute_bf16.cpp)
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_bf16 test_batched_gemm_bias_softmax_gemm_permute_bf16.cpp)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_bf16)
endif()
add_custom_target(test_batched_gemm_softmax_gemm_permute)
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_fp16 test_batched_gemm_softmax_gemm_permute_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16)
endif()
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_fp16 test_batched_gemm_bias_softmax_gemm_permute_fp16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_fp16)
endif()
add_gtest_executable(test_batched_gemm_softmax_gemm_permute_bf16 test_batched_gemm_softmax_gemm_permute_bf16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16)
endif()
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_bf16 test_batched_gemm_bias_softmax_gemm_permute_bf16.cpp)
if(result EQUAL 0)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_bf16)
endif()
set(target 1)
endif()
endforeach()
\ No newline at end of file
......@@ -70,10 +70,23 @@ class TestBatchNormBwdRank4 : public ::testing::Test
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F32, F32, F32, F16, F32, F32>,
std::tuple<F32, F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, F32, F32, F32, BF16, F32, F32>,
std::tuple<F64, F64, F64, F64, F64, F64, F64>>;
using KernelTypes = ::testing::Types<
#ifdef CK_ENABLE_FP16
std::tuple<F16, F32, F32, F32, F16, F32, F32>
#endif
#ifdef CK_ENABLE_FP32
,
std::tuple<F32, F32, F32, F32, F32, F32, F32>
#endif
#ifdef CK_ENABLE_BF16
,
std::tuple<BF16, F32, F32, F32, BF16, F32, F32>
#endif
#ifdef CK_ENABLE_FP64
,
std::tuple<F64, F64, F64, F64, F64, F64, F64>
#endif
>;
TYPED_TEST_SUITE(TestBatchNormBwdRank4, KernelTypes);
......
......@@ -87,10 +87,23 @@ class TestBatchNormFwdRank4 : public ::testing::Test
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F16, F32, F16, F16, F32>,
std::tuple<F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>,
std::tuple<F64, F64, F64, F64, F64, F64>>;
using KernelTypes = ::testing::Types<
#ifdef CK_ENABLE_FP16
std::tuple<F16, F16, F32, F16, F16, F32>
#endif
#ifdef CK_ENABLE_FP32
,
std::tuple<F32, F32, F32, F32, F32, F32>
#endif
#ifdef CK_ENABLE_BF16
,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>
#endif
#ifdef CK_ENABLE_FP64
,
std::tuple<F64, F64, F64, F64, F64, F64>
#endif
>;
TYPED_TEST_SUITE(TestBatchNormFwdRank4, KernelTypes);
......
......@@ -67,10 +67,23 @@ class TestBatchNormInferRank4 : public ::testing::Test
}
};
using KernelTypes = ::testing::Types<std::tuple<F16, F16, F32, F16, F16, F32>,
std::tuple<F32, F32, F32, F32, F32, F32>,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>,
std::tuple<F64, F64, F64, F64, F64, F64>>;
using KernelTypes = ::testing::Types<
#ifdef CK_ENABLE_FP16
std::tuple<F16, F16, F32, F16, F16, F32>
#endif
#ifdef CK_ENABLE_FP32
,
std::tuple<F32, F32, F32, F32, F32, F32>
#endif
#ifdef CK_ENABLE_BF16
,
std::tuple<BF16, BF16, F32, BF16, BF16, F32>
#endif
#ifdef CK_ENABLE_FP64
,
std::tuple<F64, F64, F64, F64, F64, F64>
#endif
>;
TYPED_TEST_SUITE(TestBatchNormInferRank4, KernelTypes);
......
add_gtest_executable(test_contraction test_contraction.cpp)
target_link_libraries(test_contraction PRIVATE utility device_contraction_bilinear_instance device_contraction_scale_instance)
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_gtest_executable(test_contraction_interface test_contraction_interface.cpp)
target_link_libraries(test_contraction_interface PRIVATE utility device_contraction_bilinear_instance device_contraction_scale_instance)
set(target 1)
endif()
if(gpu IN_LIST gpu_list AND target EQUAL 0)
if((DTYPES MATCHES "fp32" OR DTYPES MATCHES "fp64") OR NOT DEFINED DTYPES)
add_gtest_executable(test_contraction test_contraction.cpp)
target_link_libraries(test_contraction PRIVATE utility device_contraction_bilinear_instance device_contraction_scale_instance)
add_gtest_executable(test_contraction_interface test_contraction_interface.cpp)
target_link_libraries(test_contraction_interface PRIVATE utility device_contraction_bilinear_instance device_contraction_scale_instance)
set(target 1)
endif()
endif()
endforeach()
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment