Unverified Commit 9f453d42 authored by rocking5566's avatar rocking5566 Committed by GitHub
Browse files

Merge branch 'develop' into improve_layernorm

parents 9d2280d6 f7d28f3e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
namespace ck {
namespace profiler {
template <index_t NumDimG,
index_t NumDimM,
index_t NumDimN,
index_t NumDimK,
index_t NumDimO,
typename ADataType,
typename B0DataType,
typename B1DataType,
typename CDataType,
typename Acc0BiasesDataType,
typename Acc1BiasesDataType,
tensor_operation::device::MaskingSpecialization MaskingSpec>
bool profile_batched_gemm_bias_softmax_gemm_permute_impl(bool do_verification,
int init_method,
bool do_log,
bool time_kernel,
int M,
int N,
int K,
int O,
int G0,
int G1,
float alpha = -1.f)
{
using PassThrough = tensor_operation::element_wise::PassThrough;
using ScaleAdd = tensor_operation::element_wise::ScaleAdd;
using AElementOp = PassThrough;
using B0ElementOp = PassThrough;
using C0DEElementOp = ScaleAdd;
using Acc0ElementOp = PassThrough;
using B1ElementOp = PassThrough;
using CElementOp = PassThrough;
using AccDataType = float;
using D0DataType = tuple_element_t<0, Acc0BiasesDataType>;
using tensor_operation::device::MaskingSpecialization;
// Ref Gemm0: various type in, fp32 out
using ReferenceGemm0Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B0DataType,
AccDataType,
AccDataType,
AElementOp,
B0ElementOp,
Acc0ElementOp>;
// Ref Softmax: fp32 in, various type out
using ReferenceSoftmaxInstance =
tensor_operation::host::ReferenceSoftmax<AccDataType, ADataType, AccDataType>;
// Ref Gemm1: various type in, various type out
using ReferenceGemm1Instance = tensor_operation::host::ReferenceBatchedGemm<ADataType,
B1DataType,
CDataType,
AccDataType,
AElementOp,
B1ElementOp,
CElementOp>;
bool pass = true;
// A layout [G0, M, G1, K]
std::vector<ck::index_t> a_gs_ms_ks_lengths{G0, G1, M, K};
std::vector<ck::index_t> a_gs_ms_ks_strides{M * G1 * K, K, G1 * K, 1};
// B0 layout [G0, N, G1, K]
std::vector<ck::index_t> b0_gs_ns_ks_lengths{G0, G1, N, K};
std::vector<ck::index_t> b0_gs_ns_ks_strides{N * G1 * K, K, G1 * K, 1};
// B1 layout [G0, N, G1, O]
std::vector<ck::index_t> b1_gs_os_ns_lengths{G0, G1, O, N};
std::vector<ck::index_t> b1_gs_os_ns_strides{N * G1 * O, O, 1, G1 * O};
// C layout [G0, M, G1, O]
std::vector<ck::index_t> c_gs_ms_os_lengths{G0, G1, M, O};
std::vector<ck::index_t> c_gs_ms_os_strides{M * G1 * O, O, G1 * O, 1};
// D layout [G0, M, G1, N]
std::vector<ck::index_t> d0_gs_ms_ns_lengths{G0, G1, M, N};
std::vector<ck::index_t> d0_gs_ms_ns_strides{M * G1 * N, N, G1 * N, 1};
const int BatchCount = G0 * G1;
Tensor<ADataType> a_gs_ms_ks(a_gs_ms_ks_lengths, a_gs_ms_ks_strides);
Tensor<B0DataType> b0_gs_ns_ks(b0_gs_ns_ks_lengths, b0_gs_ns_ks_strides);
Tensor<D0DataType> d0_gs_ms_ns(d0_gs_ms_ns_lengths, d0_gs_ms_ns_strides);
Tensor<B1DataType> b1_gs_os_ns(b1_gs_os_ns_lengths, b1_gs_os_ns_strides);
Tensor<CDataType> c_gs_ms_os_host_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
Tensor<CDataType> c_gs_ms_os_device_result(c_gs_ms_os_lengths, c_gs_ms_os_strides);
std::cout << "a_gs_ms_ks: " << a_gs_ms_ks.mDesc << std::endl;
std::cout << "b0_gs_ns_ks: " << b0_gs_ns_ks.mDesc << std::endl;
std::cout << "b1_gs_os_ns: " << b1_gs_os_ns.mDesc << std::endl;
std::cout << "c_gs_ms_os: " << c_gs_ms_os_host_result.mDesc << std::endl;
std::srand(1); // work around test flakiness
switch(init_method)
{
case 0: break;
case 1:
// Still unsure whether this kind of deterministic floating point accurary issue is expected
// or not. May want to try exact same approach as the GPU kernel in the host reference
// GEMM+Softmax+GEMM function to see if the accuracy discrepancy goes away. Until then,
// shrink the input value range as it is less likely to produce errors of around ~1e-3.
// a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
// b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-5, 5});
// b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-5, 5});
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-2, 2});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_3<B0DataType>{0.0, 1.0});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_3<B1DataType>{-0.5, 0.5});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_3<D0DataType>{-0.5, 0.5});
break;
case 3:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Diagonal<B0DataType>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
break;
default:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_1<ADataType>{1});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_Sequential<1>{});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_Diagonal<B1DataType>{});
d0_gs_ms_ns.GenerateTensorValue(GeneratorTensor_1<D0DataType>{1});
}
DeviceMem a_device_buf(sizeof(ADataType) * a_gs_ms_ks.mDesc.GetElementSpaceSize());
DeviceMem b0_device_buf(sizeof(B0DataType) * b0_gs_ns_ks.mDesc.GetElementSpaceSize());
DeviceMem d0_device_buf(sizeof(D0DataType) * d0_gs_ms_ns.mDesc.GetElementSpaceSize());
DeviceMem b1_device_buf(sizeof(B1DataType) * b1_gs_os_ns.mDesc.GetElementSpaceSize());
DeviceMem c_device_buf(sizeof(CDataType) *
c_gs_ms_os_device_result.mDesc.GetElementSpaceSize());
a_device_buf.ToDevice(a_gs_ms_ks.mData.data());
b0_device_buf.ToDevice(b0_gs_ns_ks.mData.data());
b1_device_buf.ToDevice(b1_gs_os_ns.mData.data());
d0_device_buf.ToDevice(d0_gs_ms_ns.mData.data());
if(alpha < 0)
{
alpha = 1.f / std::sqrt(K); // usually 1 / sqrt(head_dim)
}
auto a_element_op = AElementOp{};
auto b0_element_op = B0ElementOp{};
auto c0de_element_op = C0DEElementOp{alpha};
auto acc0_element_op = Acc0ElementOp{};
auto b1_element_op = B1ElementOp{};
auto c_element_op = CElementOp{};
using DeviceOp =
tensor_operation::device::DeviceBatchedGemmSoftmaxGemmPermute<2,
1,
1,
1,
1,
ADataType,
B0DataType,
B1DataType,
CDataType,
Acc0BiasesDataType,
ck::Tuple<>,
AElementOp,
B0ElementOp,
C0DEElementOp,
B1ElementOp,
CElementOp,
MaskingSpec>;
// get device op instances
const auto op_ptrs = tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
Tensor<ADataType> a_g_m_k({BatchCount, M, K});
Tensor<B0DataType> b0_g_k_n({BatchCount, K, N});
Tensor<B1DataType> b1_g_n_o({BatchCount, N, O});
Tensor<AccDataType> acc0_g_m_n({BatchCount, M, N}); // scratch object after gemm0
Tensor<ADataType> a1_g_m_n({BatchCount, M, N}); // scratch object after softmax
Tensor<CDataType> c_g_m_o_host_result({BatchCount, M, O}); // scratch object after gemm1
Tensor<D0DataType> d0_g_m_n({BatchCount, M, N});
// permute
a_gs_ms_ks.ForEach([&](auto& self, auto idx) {
a_g_m_k(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
b0_gs_ns_ks.ForEach([&](auto& self, auto idx) {
b0_g_k_n(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
b1_gs_os_ns.ForEach([&](auto& self, auto idx) {
b1_g_n_o(idx[0] * G1 + idx[1], idx[3], idx[2]) = self(idx);
});
d0_gs_ms_ns.ForEach([&](auto& self, auto idx) {
d0_g_m_n(idx[0] * G1 + idx[1], idx[2], idx[3]) = self(idx);
});
auto ref_gemm0 = ReferenceGemm0Instance{};
auto ref_gemm0_invoker = ref_gemm0.MakeInvoker();
auto ref_gemm0_argument = ref_gemm0.MakeArgument(
a_g_m_k, b0_g_k_n, acc0_g_m_n, a_element_op, b0_element_op, acc0_element_op);
ref_gemm0_invoker.Run(ref_gemm0_argument);
acc0_g_m_n.ForEach([&](auto&, auto idx) {
c0de_element_op(acc0_g_m_n(idx), acc0_g_m_n(idx), d0_g_m_n(idx));
});
// mask out upper triangle
acc0_g_m_n.ForEach([&](auto& self, auto idx) {
if(MaskingSpec == MaskingSpecialization::MaskOutUpperTriangle && idx[1] < idx[2])
self(idx) = -ck::NumericLimits<float>::Infinity();
});
auto ref_softmax = ReferenceSoftmaxInstance{};
auto ref_softmax_invoker = ref_softmax.MakeInvoker();
auto ref_softmax_argument = ref_softmax.MakeArgument(acc0_g_m_n, a1_g_m_n, 1, 0, {2});
ref_softmax_invoker.Run(ref_softmax_argument);
auto ref_gemm1 = ReferenceGemm1Instance{};
auto ref_gemm1_invoker = ref_gemm1.MakeInvoker();
auto ref_gemm1_argument = ref_gemm1.MakeArgument(
a1_g_m_n, b1_g_n_o, c_g_m_o_host_result, PassThrough{}, b1_element_op, c_element_op);
ref_gemm1_invoker.Run(ref_gemm1_argument);
// permute
c_gs_ms_os_host_result.ForEach([&](auto& self, auto idx) {
const size_t& g0 = idx[0];
const size_t& g1 = idx[1];
const size_t g = g0 * G1 + g1;
self(idx) = c_g_m_o_host_result(g, idx[2], idx[3]);
});
}
std::string best_op_name;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device op instances
for(auto& op_ptr : op_ptrs)
{
auto argument_ptr = op_ptr->MakeArgumentPointer(
static_cast<ADataType*>(a_device_buf.GetDeviceBuffer()),
static_cast<B0DataType*>(b0_device_buf.GetDeviceBuffer()),
static_cast<B1DataType*>(b1_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{
d0_device_buf.GetDeviceBuffer()}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
b0_gs_ns_ks_strides,
b1_gs_os_ns_lengths,
b1_gs_os_ns_strides,
c_gs_ms_os_lengths,
c_gs_ms_os_strides,
std::array<std::vector<ck::index_t>, 1>{
d0_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{
d0_gs_ms_ns_strides}, // std::array<std::vector<ck::index_t>,
// 1>{acc0_biases_gs_ms_ns_strides},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
a_element_op,
b0_element_op,
c0de_element_op,
b1_element_op,
c_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
std::string op_name = op_ptr->GetTypeString();
float ave_time =
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, time_kernel});
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(D0DataType) * M * N) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
if(do_verification)
{
c_device_buf.FromDevice(c_gs_ms_os_device_result.mData.data());
// default absolute error and relative error is 0.001
double rtol = 1e-3;
double atol = 1e-3;
// when BF16 is taken, set absolute error and relative error to 0.01
if(std::is_same_v<ADataType, ck::bhalf_t> &&
std::is_same_v<B0DataType, ck::bhalf_t> &&
std::is_same_v<B1DataType, ck::bhalf_t> &&
std::is_same_v<CDataType, ck::bhalf_t> &&
std::is_same_v<D0DataType, ck::bhalf_t>)
{
rtol = 1e-2;
atol = 1e-2;
}
pass = pass & ck::utils::check_err(c_gs_ms_os_device_result,
c_gs_ms_os_host_result,
"Error: Incorrect results!",
rtol,
atol);
if(do_log)
{
LogRangeAsType<float>(std::cout << "a_gs_ms_ks: ", a_gs_ms_ks.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b0_gs_ns_ks : ", b0_gs_ns_ks.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "b1_gs_os_ns : ", b1_gs_os_ns.mData, ",")
<< std::endl;
LogRangeAsType<float>(
std::cout << "c_gs_ms_os_host_result : ", c_gs_ms_os_host_result.mData, ",")
<< std::endl;
LogRangeAsType<float>(std::cout << "c_gs_ms_os_device_result : ",
c_gs_ms_os_device_result.mData,
",")
<< std::endl;
}
}
}
else
{
std::cout << op_ptr->GetTypeString() << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return pass;
}
} // namespace profiler
} // namespace ck
...@@ -8,6 +8,7 @@ set(PROFILER_SOURCES ...@@ -8,6 +8,7 @@ set(PROFILER_SOURCES
profile_gemm_add_add_fastgelu.cpp profile_gemm_add_add_fastgelu.cpp
profile_gemm_add_multiply.cpp profile_gemm_add_multiply.cpp
profile_gemm_add_fastgelu.cpp profile_gemm_add_fastgelu.cpp
profile_gemm_add_relu_add_layernorm.cpp
profile_gemm_fastgelu.cpp profile_gemm_fastgelu.cpp
profile_gemm_reduce.cpp profile_gemm_reduce.cpp
profile_batched_gemm.cpp profile_batched_gemm.cpp
...@@ -43,6 +44,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgel ...@@ -43,6 +44,7 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_add_fastgel
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_multiply_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_fastgelu_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_add_relu_add_layernorm_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_gemm_bias_add_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batched_gemm_instance)
...@@ -66,5 +68,4 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan ...@@ -66,5 +68,4 @@ target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_normalization_instan
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_softmax_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_reduce_instance)
target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance) target_link_libraries(${PROFILER_EXECUTABLE} PRIVATE device_batchnorm_instance)
rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler) rocm_install(TARGETS ${PROFILER_EXECUTABLE} COMPONENT profiler)
This diff is collapsed.
...@@ -3,6 +3,7 @@ import os, io, argparse, datetime ...@@ -3,6 +3,7 @@ import os, io, argparse, datetime
#import numpy as np #import numpy as np
import sqlalchemy import sqlalchemy
from sqlalchemy.types import NVARCHAR, Float, Integer from sqlalchemy.types import NVARCHAR, Float, Integer
from sqlalchemy import text
import pymysql import pymysql
import pandas as pd import pandas as pd
from sshtunnel import SSHTunnelForwarder from sshtunnel import SSHTunnelForwarder
...@@ -141,8 +142,8 @@ def parse_logfile(logfile): ...@@ -141,8 +142,8 @@ def parse_logfile(logfile):
def get_baseline(table, connection): def get_baseline(table, connection):
query = '''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''' query = text('''SELECT * from '''+table+''' WHERE Datetime = (SELECT MAX(Datetime) FROM '''+table+''' where Branch_ID='develop' );''')
return pd.read_sql_query(query, connection) return pd.read_sql(query, connection)
def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection): def store_new_test_result(table_name, test_results, testlist, branch_name, node_id, gpu_arch, compute_units, rocm_vers, hip_vers, environment, connection):
params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())] params=[str(branch_name),str(node_id),str(gpu_arch),compute_units,str(rocm_vers),str(hip_vers),str(environment),str(datetime.datetime.now())]
......
...@@ -27,7 +27,7 @@ function(add_gtest_executable TEST_NAME) ...@@ -27,7 +27,7 @@ function(add_gtest_executable TEST_NAME)
# suppress gtest warnings # suppress gtest warnings
target_compile_options(${TEST_NAME} PRIVATE -Wno-global-constructors -Wno-undef) target_compile_options(${TEST_NAME} PRIVATE -Wno-global-constructors -Wno-undef)
target_link_libraries(${TEST_NAME} PRIVATE gtest_main) target_link_libraries(${TEST_NAME} PRIVATE gtest_main)
add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}> ) add_test(NAME ${TEST_NAME} COMMAND $<TARGET_FILE:${TEST_NAME}>)
rocm_install(TARGETS ${TEST_NAME} COMPONENT tests) rocm_install(TARGETS ${TEST_NAME} COMPONENT tests)
endfunction(add_gtest_executable TEST_NAME) endfunction(add_gtest_executable TEST_NAME)
...@@ -36,6 +36,7 @@ add_subdirectory(space_filling_curve) ...@@ -36,6 +36,7 @@ add_subdirectory(space_filling_curve)
add_subdirectory(conv_util) add_subdirectory(conv_util)
add_subdirectory(reference_conv_fwd) add_subdirectory(reference_conv_fwd)
add_subdirectory(gemm) add_subdirectory(gemm)
add_subdirectory(gemm_layernorm)
add_subdirectory(gemm_split_k) add_subdirectory(gemm_split_k)
add_subdirectory(gemm_reduce) add_subdirectory(gemm_reduce)
add_subdirectory(batched_gemm) add_subdirectory(batched_gemm)
......
...@@ -5,4 +5,11 @@ add_gtest_executable(test_batched_gemm_softmax_gemm_permute_bf16 test_batched_ge ...@@ -5,4 +5,11 @@ add_gtest_executable(test_batched_gemm_softmax_gemm_permute_bf16 test_batched_ge
target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance) target_link_libraries(test_batched_gemm_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
target_link_libraries(test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance) target_link_libraries(test_batched_gemm_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16) add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_fp16)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16) add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_softmax_gemm_permute_bf16)
\ No newline at end of file
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_fp16 test_batched_gemm_bias_softmax_gemm_permute_fp16.cpp)
add_gtest_executable(test_batched_gemm_bias_softmax_gemm_permute_bf16 test_batched_gemm_bias_softmax_gemm_permute_bf16.cpp)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_fp16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
target_link_libraries(test_batched_gemm_bias_softmax_gemm_permute_bf16 PRIVATE utility device_batched_gemm_softmax_gemm_permute_instance)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_fp16)
add_dependencies(test_batched_gemm_softmax_gemm_permute test_batched_gemm_bias_softmax_gemm_permute_bf16)
\ No newline at end of file
...@@ -23,7 +23,7 @@ class TestElementwiseLayernorm : public ::testing::Test ...@@ -23,7 +23,7 @@ class TestElementwiseLayernorm : public ::testing::Test
{ {
// M, N // M, N
std::vector<std::vector<ck::index_t>> lengths = { std::vector<std::vector<ck::index_t>> lengths = {
{1, 1}, {25, 16}, {39, 777}, {100, 200}, {1024, 1024}, {48 * 256, 2048}}; {1, 1}, {25, 16}, {39, 777}, {100, 200}, {1024, 1024}, {48 * 256, 2048}, {4096, 8192}};
for(auto length : lengths) for(auto length : lengths)
{ {
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment