Commit 9f008852 authored by Bartlomiej Kocot's avatar Bartlomiej Kocot
Browse files

Add image to column kernel

parent d4c84256
list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set(target 0)
foreach(gpu IN LISTS GPU_TARGETS)
if(gpu IN_LIST gpu_list AND target EQUAL 0)
add_custom_target(example_image_to_column)
add_example_executable(example_image_to_column_f32 image_to_column_f32.cpp)
add_dependencies(example_image_to_column example_image_to_column_f32)
set(target 1)
endif()
endforeach()
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include <initializer_list>
#include <iostream>
#include <numeric>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
static inline constexpr ck::index_t NDimSpatial = 2;
using FP32 = float;
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = true;
};
#define DefaultConvParams \
ck::utils::conv::ConvParam \
{ \
NDimSpatial, 1, 32, 1, 1, {4, 4}, {64, 64}, {1, 1}, {1, 1}, {0, 0}, { 0, 0 } \
}
inline void print_help_msg()
{
std::cerr << "arg1: verification (0=no, 1=yes)\n"
<< "arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n"
<< "arg3: time kernel (0=no, 1=yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
}
inline bool parse_cmd_args(int argc,
char* argv[],
ExecutionConfig& config,
ck::utils::conv::ConvParam& conv_params)
{
constexpr int num_execution_config_args =
3; // arguments for do_verification, init_method, time_kernel
constexpr int num_conv_param_leading_args = 5; // arguments for num_dim_spatial_, G_, N_, K_, C_
constexpr int threshold_to_catch_partial_args = 1 + num_execution_config_args;
constexpr int threshold_to_catch_all_args =
threshold_to_catch_partial_args + num_conv_param_leading_args;
if(argc == 1)
{
// use default
config = ExecutionConfig{};
}
// catch only ExecutionConfig arguments
else if(argc == threshold_to_catch_partial_args)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
}
// catch both ExecutionConfig & ConvParam arguments
else if(threshold_to_catch_all_args < argc && ((argc - threshold_to_catch_all_args) % 3 == 0))
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
const ck::index_t num_dim_spatial = std::stoi(argv[4]);
conv_params = ck::utils::conv::parse_conv_param(
num_dim_spatial, threshold_to_catch_partial_args, argv);
}
else
{
print_help_msg();
return false;
}
return true;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
using InDataType = FP32;
using OutDataType = FP32;
using InLayout = ck::tensor_layout::convolution::GNHWC;
// clang-format off
using DeviceImgToColInstance = ck::tensor_operation::device::DeviceImageToColumnImpl
// ######| NDimSpatial| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ######| | | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< NDimSpatial, InLayout, InDataType, OutDataType, 256, 128, 128, S<128, 128>, S<16, 16>, 4>;
// clang-format on
bool RunImageToColumn(const ExecutionConfig& config, const ck::utils::conv::ConvParam& conv_params)
{
const auto N = conv_params.N_;
const auto C = conv_params.C_;
const ck::index_t NDoHoWo =
N * ck::accumulate_n<ck::index_t>(
conv_params.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const ck::index_t CZYX =
C * ck::accumulate_n<ck::index_t>(
conv_params.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const auto in_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<InLayout>(conv_params);
const auto out_desc = HostTensorDescriptor({NDoHoWo, CZYX});
std::array<ck::index_t, NDimSpatial> input_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths{};
std::array<ck::index_t, NDimSpatial> output_spatial_lengths{};
std::array<ck::index_t, NDimSpatial + 3> input_g_n_c_wis_strides{};
std::array<ck::index_t, 2> output_m_k_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_strides{};
std::array<ck::index_t, NDimSpatial> conv_filter_dilations{};
std::array<ck::index_t, NDimSpatial> input_left_pads{};
std::array<ck::index_t, NDimSpatial> input_right_pads{};
auto copy = [](const auto& x, auto& y) { std::copy(x.begin(), x.end(), y.begin()); };
copy(conv_params.input_spatial_lengths_, input_spatial_lengths);
copy(conv_params.filter_spatial_lengths_, filter_spatial_lengths);
copy(conv_params.output_spatial_lengths_, output_spatial_lengths);
copy(in_desc.GetStrides(), input_g_n_c_wis_strides);
copy(out_desc.GetStrides(), output_m_k_strides);
copy(conv_params.conv_filter_strides_, conv_filter_strides);
copy(conv_params.conv_filter_dilations_, conv_filter_dilations);
copy(conv_params.input_left_pads_, input_left_pads);
copy(conv_params.input_right_pads_, input_right_pads);
Tensor<InDataType> in(in_desc);
Tensor<OutDataType> out_device(out_desc);
Tensor<OutDataType> out_host(out_desc);
std::cout << "in: " << in.mDesc << std::endl;
std::cout << "out: " << out_device.mDesc << std::endl;
switch(config.init_method)
{
case 0: break;
case 1: in.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5}); break;
default: in.GenerateTensorValue(GeneratorTensor_3<InDataType>{-0.5, 0.5});
}
DeviceMem in_device_buf(sizeof(InDataType) * in.mDesc.GetElementSpaceSize());
DeviceMem out_device_buf(sizeof(OutDataType) * out_device.mDesc.GetElementSpaceSize());
in_device_buf.ToDevice(in.mData.data());
// reset input to zero
out_device_buf.SetZero();
static_assert(std::is_default_constructible_v<DeviceImgToColInstance>);
// do conv
auto img2col = DeviceImgToColInstance{};
auto invoker = img2col.MakeInvoker();
auto argument = img2col.MakeArgument(in_device_buf.GetDeviceBuffer(),
out_device_buf.GetDeviceBuffer(),
N,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
input_g_n_c_wis_strides,
output_m_k_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
if(!img2col.IsSupportedArgument(argument))
{
std::cerr << "wrong! device_img2col with the specified compilation parameters does "
"not support this img2col problem"
<< std::endl;
return false;
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
std::size_t num_btype = NDoHoWo * CZYX * sizeof(InDataType);
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << gb_per_sec << " GB/s" << std::endl;
if(config.do_verification)
{
auto ref_image_to_column = ck::tensor_operation::host::
ReferenceImageToColumn<NDimSpatial, InLayout, InDataType, OutDataType>();
auto ref_invoker = ref_image_to_column.MakeInvoker();
auto ref_argument = ref_image_to_column.MakeArgument(in,
out_host,
conv_params.filter_spatial_lengths_,
conv_params.conv_filter_strides_,
conv_params.conv_filter_dilations_,
conv_params.input_left_pads_,
conv_params.input_right_pads_);
if(!ref_image_to_column.IsSupportedArgument(&ref_argument))
{
std::cerr << "wrong! ref_img2col with the specified compilation parameters does "
"not support this img2col problem"
<< std::endl;
return false;
}
ref_invoker.Run(ref_argument);
out_device_buf.FromDevice(out_device.mData.data());
return ck::utils::check_err(out_device.mData, out_host.mData);
}
return true;
}
int RunImageToColumnExample(int argc, char* argv[])
{
ExecutionConfig config;
ck::utils::conv::ConvParam conv_params = DefaultConvParams;
if(!parse_cmd_args(argc, argv, config, conv_params))
{
return EXIT_FAILURE;
}
if(conv_params.num_dim_spatial_ != NDimSpatial)
{
std::cerr << "unsupported # of spatials dimensions" << std::endl;
return EXIT_FAILURE;
}
return !RunImageToColumn(config, conv_params);
}
int main(int argc, char* argv[]) { return RunImageToColumnExample(argc, argv); }
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Image to column:
// input : input image [N, Di, Hi, Wi, C],
// output : output image [N * Do * Ho * Wo, Z * Y * X * C]
template <index_t NDimSpatial,
typename InputLayout,
typename InputDataType,
typename OutputDataType>
struct DeviceImageToColumn : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in, // input image
void* p_out, // output image
const ck::index_t N,
const ck::index_t C,
const std::array<index_t, NDimSpatial>& input_spatial_lengths,
const std::array<index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& input_g_n_c_wis_strides,
const std::array<index_t, 2>& output_m_k_strides,
const std::array<index_t, NDimSpatial>& conv_filter_strides,
const std::array<index_t, NDimSpatial>& conv_filter_dilations,
const std::array<index_t, NDimSpatial>& input_left_pads,
const std::array<index_t, NDimSpatial>& input_right_pads) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v7.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace ck {
template <typename InputGridDesc,
typename InputDataType,
typename OutputGridDesc,
typename OutputDataType,
index_t BlockSize,
index_t MPerBlock,
index_t KPerBlock,
typename SliceLengths,
typename ThreadClusterLengths,
index_t ScalarPerVector,
typename Block2ETileMap>
struct GridwiseImageToColumn
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
__device__ static void Run(const InputGridDesc& in_grid_desc,
const InputDataType* __restrict__ p_in_global,
const OutputGridDesc& out_grid_desc,
OutputDataType* __restrict__ p_out_global,
const Block2ETileMap& block_2_tile_map)
{
const auto block_work_idx =
block_2_tile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t k_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * KPerBlock);
// Global Memory
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global, in_grid_desc.GetElementSpaceSize());
auto out_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_out_global, out_grid_desc.GetElementSpaceSize());
auto copy_global_to_global = ThreadGroupTensorSliceTransfer_v7<
ThisThreadBlock,
Tuple<InputDataType>,
Tuple<OutputDataType>,
decltype(tie(in_grid_desc)),
decltype(tie(out_grid_desc)),
tensor_operation::element_wise::PassThrough,
Sequence<static_cast<index_t>(InMemoryDataOperationEnum::Set)>,
SliceLengths,
ThreadClusterLengths,
Sequence<0, 1>,
Sequence<0, 1>,
I1,
ScalarPerVector,
Sequence<true>,
Sequence<true>>{
in_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
out_grid_desc,
make_tuple(make_multi_index(m_block_data_idx_on_grid, k_block_data_idx_on_grid)),
tensor_operation::element_wise::PassThrough{}};
copy_global_to_global.Run(
tie(in_grid_desc), tie(in_global_buf), tie(out_grid_desc), tie(out_global_buf));
}
// template <typename... TsIn, typename... TsOut>
__host__ static constexpr bool CheckValidity(const InputGridDesc& in_grid_desc,
const OutputGridDesc& out_grid_desc)
{
if(in_grid_desc.GetLength(I0) % MPerBlock != 0 ||
in_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
if(out_grid_desc.GetLength(I0) % MPerBlock != 0 ||
out_grid_desc.GetLength(I1) % KPerBlock != 0)
return false;
return true;
}
};
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <type_traits>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
//
// @brief Reference implementation for image to column.
//
// @paragraph
// Tensor descriptor in NCHW dimensional order
//
// @tparam InDataType Input tensor data type.
// @tparam OutDataType Output tensor data type.
// @tparam NDimSpatial Number of spatial dimensions.
//
// input descriptor in [N, C, Di, Hi, Wi] order
// output descriptor in [N * Do * Ho * Wo, C * Z * Y * X] order
// phyiscal layout is [N, Di, Hi, Wi, C]
template <ck::index_t NDimSpatial,
typename InputLayout,
typename InDataType,
typename OutDataType,
typename std::enable_if<NDimSpatial >= 1 && NDimSpatial <= 3, bool>::type = false>
struct ReferenceImageToColumn : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
public:
Argument(const Tensor<InDataType>& input,
Tensor<OutDataType>& output,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
: input_{input},
output_{output},
conv_strides_{conv_filter_strides},
conv_dilations_{conv_filter_dilations},
in_left_pads_{input_left_pads},
in_right_pads_{input_right_pads},
filter_spatial_lengths_{filter_spatial_lengths}
{
initOutputSpatialLengths();
}
const Tensor<InDataType>& input_;
Tensor<OutDataType>& output_;
std::vector<index_t> conv_strides_;
std::vector<index_t> conv_dilations_;
std::vector<index_t> in_left_pads_;
std::vector<index_t> in_right_pads_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> output_spatial_lengths_;
private:
void initOutputSpatialLengths()
{
constexpr auto input_offset_to_spatial = 3;
for(ck::index_t i = 0; i < NDimSpatial; ++i)
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const ck::index_t x_eff = (filter_spatial_lengths_[i] - 1) * conv_dilations_[i] + 1;
output_spatial_lengths_.push_back(
(input_.GetLengths()[i + input_offset_to_spatial] + in_left_pads_[i] +
in_right_pads_[i] - x_eff) /
conv_strides_[i] +
1);
}
}
};
struct Invoker : public device::BaseInvoker
{
using Argument = ReferenceImageToColumn::Argument;
float Run(const Argument& arg)
{
if(!(arg.input_.GetNumOfDimension() == NDimSpatial + 3 &&
arg.output_.GetNumOfDimension() == 2))
{
throw std::runtime_error("wrong! inconsistent dimension");
}
const index_t N = arg.input_.GetLengths()[1];
const index_t C = arg.input_.GetLengths()[2];
if constexpr(NDimSpatial == 1)
{
const index_t Wo = arg.output_spatial_lengths_[0];
auto func = [&](auto n, auto wo) {
index_t row = n * Wo + wo;
index_t column = 0;
for(index_t x = 0; x < arg.filter_spatial_lengths_[0]; ++x)
{
auto wi = static_cast<ck::long_index_t>(wo * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
if(wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[3])
{
for(index_t c = 0; c < C; ++c)
{
column++;
InDataType v_in = arg.input_(0, n, c, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
}
}
}
};
make_ParallelTensorFunctor(func, N, Wo)(std::thread::hardware_concurrency());
return 0;
}
else if constexpr(NDimSpatial == 2)
{
const index_t Ho = arg.output_spatial_lengths_[0];
const index_t Wo = arg.output_spatial_lengths_[1];
auto func = [&](auto n, auto ho, auto wo) {
index_t row = n * Ho * Wo + ho * Wo + wo;
index_t column = 0;
for(index_t y = 0; y < arg.filter_spatial_lengths_[0]; ++y)
{
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(index_t x = 0; x < arg.filter_spatial_lengths_[1]; ++x)
{
auto wi = static_cast<ck::long_index_t>(wo * arg.conv_strides_[1]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[1]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[1]);
if(hi >= 0 &&
ck::type_convert<std::size_t>(hi) < arg.input_.GetLengths()[3] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[4])
{
for(index_t c = 0; c < C; ++c)
{
InDataType v_in = arg.input_(0, n, c, hi, wi);
arg.output_(row, column) = ck::type_convert<OutDataType>(v_in);
column++;
}
}
}
}
};
make_ParallelTensorFunctor(func, N, Ho, Wo)(std::thread::hardware_concurrency());
return 0;
}
else if constexpr(NDimSpatial == 3)
{
const index_t Do = arg.output_spatial_lengths_[0];
const index_t Ho = arg.output_spatial_lengths_[1];
const index_t Wo = arg.output_spatial_lengths_[2];
auto func = [&](auto n, auto d_o, auto ho, auto wo) {
index_t row = n * Do * Ho * Wo + d_o * Ho * Wo + ho * Wo + wo;
index_t column = 0;
for(index_t z = 0; z < arg.filter_spatial_lengths_[0]; ++z)
{
auto di = static_cast<ck::long_index_t>(d_o * arg.conv_strides_[0]) +
static_cast<ck::long_index_t>(z * arg.conv_dilations_[0]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[0]);
for(index_t y = 0; y < arg.filter_spatial_lengths_[1]; ++y)
{
auto hi = static_cast<ck::long_index_t>(ho * arg.conv_strides_[1]) +
static_cast<ck::long_index_t>(y * arg.conv_dilations_[1]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[1]);
for(index_t x = 0; x < arg.filter_spatial_lengths_[2]; ++x)
{
auto wi =
static_cast<ck::long_index_t>(wo * arg.conv_strides_[2]) +
static_cast<ck::long_index_t>(x * arg.conv_dilations_[2]) -
static_cast<ck::long_index_t>(arg.in_left_pads_[2]);
if(di >= 0 &&
ck::type_convert<std::size_t>(di) < arg.input_.GetLengths()[3] &&
hi >= 0 &&
ck::type_convert<std::size_t>(hi) < arg.input_.GetLengths()[4] &&
wi >= 0 &&
ck::type_convert<std::size_t>(wi) < arg.input_.GetLengths()[5])
{
for(index_t c = 0; c < C; ++c)
{
InDataType v_in = arg.input_(0, n, c, di, hi, wi);
arg.output_(row, column) =
ck::type_convert<OutDataType>(v_in);
column++;
}
}
}
}
}
};
make_ParallelTensorFunctor(func, N, Do, Ho, Wo)(
std::thread::hardware_concurrency());
return 0;
}
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /*stream_config*/ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
static constexpr bool IsValidCompilationParameter()
{
using namespace tensor_layout::convolution;
if(!(std::is_same_v<InputLayout, GNWC> || std::is_same_v<InputLayout, GNHWC> ||
std::is_same_v<InputLayout, GNDHWC>))
{
return false;
}
if(!(NDimSpatial >= 1 && NDimSpatial <= 3))
{
return false;
}
return true;
}
bool IsSupportedArgument(const Argument& arg)
{
const ck::index_t G = arg.input_.GetLengths()[0];
const ck::index_t N = arg.input_.GetLengths()[1];
const ck::index_t C = arg.input_.GetLengths()[2];
const index_t NDoHoWo =
N * ck::accumulate_n<index_t>(
arg.output_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
const index_t CZYX =
C * ck::accumulate_n<index_t>(
arg.filter_spatial_lengths_.begin(), NDimSpatial, 1, std::multiplies<>());
if(!(arg.output_.GetLengths()[0] == static_cast<std::size_t>(NDoHoWo) &&
arg.output_.GetLengths()[1] == static_cast<std::size_t>(CZYX)))
{
return false;
}
if(G != 1)
{
return false;
}
return true;
}
bool IsSupportedArgument(const device::BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const Tensor<InDataType>& input,
Tensor<OutDataType>& output,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
return Argument{input,
output,
filter_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceImageToColumn"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_image_to_column.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// nhwc, 1d
void add_device_image_to_column_nhwc_1d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, BF16, BF16>>>& instances);
void add_device_image_to_column_nhwc_1d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, F16, F16>>>& instances);
void add_device_image_to_column_nhwc_1d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, F32, F32>>>& instances);
void add_device_image_to_column_nhwc_1d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, int8_t, int8_t>>>& instances);
// nhwc, 2d
void add_device_image_to_column_nhwc_2d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, BF16, BF16>>>& instances);
void add_device_image_to_column_nhwc_2d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, F16, F16>>>& instances);
void add_device_image_to_column_nhwc_2d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, F32, F32>>>& instances);
void add_device_image_to_column_nhwc_2d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, int8_t, int8_t>>>& instances);
// nhwc, 3d
void add_device_image_to_column_nhwc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, BF16, BF16>>>& instances);
void add_device_image_to_column_nhwc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, F16, F16>>>& instances);
void add_device_image_to_column_nhwc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, F32, F32>>>& instances);
void add_device_image_to_column_nhwc_3d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, int8_t, int8_t>>>& instances);
template <ck::index_t NumDimSpatial, typename InLayout, typename InDataType, typename OutDataType>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::
DeviceImageToColumn<NumDimSpatial, InLayout, InDataType, OutDataType>>
{
using DeviceOp = DeviceImageToColumn<NumDimSpatial, InLayout, InDataType, OutDataType>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 1 && is_same_v<InLayout, GNWC>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<OutDataType, float>)
{
add_device_image_to_column_nhwc_1d_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<OutDataType, half_t>)
{
add_device_image_to_column_nhwc_1d_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_image_to_column_nhwc_1d_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<OutDataType, int8_t>)
{
add_device_image_to_column_nhwc_1d_i8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<OutDataType, float>)
{
add_device_image_to_column_nhwc_2d_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<OutDataType, half_t>)
{
add_device_image_to_column_nhwc_2d_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_image_to_column_nhwc_2d_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<OutDataType, int8_t>)
{
add_device_image_to_column_nhwc_2d_i8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC>)
{
if constexpr(is_same_v<InDataType, float> && is_same_v<OutDataType, float>)
{
add_device_image_to_column_nhwc_3d_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<OutDataType, half_t>)
{
add_device_image_to_column_nhwc_3d_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
add_device_image_to_column_nhwc_3d_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<OutDataType, int8_t>)
{
add_device_image_to_column_nhwc_3d_i8_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_image_to_column_impl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using namespace ck::tensor_layout::convolution;
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
template <ck::index_t NDimSpatial, typename InLayout>
using device_image_to_column_bf16_instances = std::tuple<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl<NDimSpatial, InLayout, BF16, BF16, 256, 128, 128, S<128, 128>, S<16, 16>, 8>
// clang-format on
>;
template <ck::index_t NDimSpatial, typename InLayout>
using device_image_to_column_f16_instances = std::tuple<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl<NDimSpatial, InLayout, F16, F16, 256, 128, 128, S<128, 128>, S<16, 16>, 8>
// clang-format on
>;
template <ck::index_t NDimSpatial, typename InLayout>
using device_image_to_column_f32_instances = std::tuple<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl<NDimSpatial, InLayout, F32, F32, 256, 128, 128, S<128, 128>, S<16, 16>, 4>
// clang-format on
>;
template <ck::index_t NDimSpatial, typename InLayout>
using device_image_to_column_i8_instances = std::tuple<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Slice| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Lengths| Cluster| Per|
//#####################| Spatial| | | | | | | | Lengths| Vector|
//#####################| | | | | | | | | | |
DeviceImageToColumnImpl<NDimSpatial, InLayout, int8_t, int8_t, 256, 256, 256, S<256, 256>, S<16, 16>, 16>
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/image_to_column/device_image_to_column_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_image_to_column_nhwc_1d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, BF16, BF16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_bf16_instances<1, GNWC>{});
}
void add_device_image_to_column_nhwc_1d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, F16, F16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f16_instances<1, GNWC>{});
}
void add_device_image_to_column_nhwc_1d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, F32, F32>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f32_instances<1, GNWC>{});
}
void add_device_image_to_column_nhwc_1d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<1, GNWC, int8_t, int8_t>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_i8_instances<1, GNWC>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/image_to_column/device_image_to_column_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_image_to_column_nhwc_2d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, BF16, BF16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_bf16_instances<2, GNHWC>{});
}
void add_device_image_to_column_nhwc_2d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, F16, F16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f16_instances<2, GNHWC>{});
}
void add_device_image_to_column_nhwc_2d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, F32, F32>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f32_instances<2, GNHWC>{});
}
void add_device_image_to_column_nhwc_2d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<2, GNHWC, int8_t, int8_t>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_i8_instances<2, GNHWC>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/gpu/image_to_column/device_image_to_column_instance.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_image_to_column_nhwc_3d_bf16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, BF16, BF16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_bf16_instances<3, GNDHWC>{});
}
void add_device_image_to_column_nhwc_3d_f16_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, F16, F16>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f16_instances<3, GNDHWC>{});
}
void add_device_image_to_column_nhwc_3d_f32_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, F32, F32>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_f32_instances<3, GNDHWC>{});
}
void add_device_image_to_column_nhwc_3d_i8_instances(
std::vector<std::unique_ptr<DeviceImageToColumn<3, GNDHWC, int8_t, int8_t>>>& instances)
{
add_device_operation_instances(instances, device_image_to_column_i8_instances<3, GNDHWC>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "profiler/profile_image_to_column_impl.hpp"
#include "profiler_operation_registry.hpp"
namespace {
enum struct ConvLayout
{
NHWC, // 0
};
enum struct DataType
{
F32_F32, // 0
F16_F16, // 1
BF16_BF16, // 2
INT8_INT8, // 3
};
#define OP_NAME "image_to_column"
#define OP_DESC "Image To Column"
static void print_helper_msg()
{
std::cout
// clang-format off
<< "arg1: tensor operation (" OP_NAME ": " OP_DESC ")\n"
<< "arg2: data type (0: Input fp32, Weight fp32, Output fp32\n"
<< " 1: Input fp16, Weight fp16, Output fp16\n"
<< " 2: Input bf16, Weight bf16, Output bf16\n"
<< " 3: Input int8, Weight int8, Output int8)\n"
<< "arg3: tensor layout (0: Input[N, Hi, Wi, C], Output[N * Ho * Wo, Y * X * C])\n"
<< "arg4: verification (0: no, 1: yes)\n"
<< "arg5: initialization (0: no init, 1: integer value, 2: decimal value)\n"
<< "arg6: print tensor value (0: no; 1: yes)\n"
<< "arg7: time kernel (0: no, 1: yes)\n"
<< ck::utils::conv::get_conv_param_parser_helper_msg() << std::endl;
// clang-format on
}
} // namespace
int profile_grouped_conv_fwd(int argc, char* argv[])
{
// 8 for control, 1 for num_dim_spatial
if(argc < 9)
{
print_helper_msg();
return 1;
}
const auto data_type = static_cast<DataType>(std::stoi(argv[2]));
const auto layout = static_cast<ConvLayout>(std::stoi(argv[3]));
const bool do_verification = std::stoi(argv[4]);
const int init_method = std::stoi(argv[5]);
const bool do_log = std::stoi(argv[6]);
const bool time_kernel = std::stoi(argv[7]);
const int num_dim_spatial = std::stoi(argv[8]);
// 8 for control, 1 for num_dim_spatial, 4 for G/N/K/C, and 6 * num_dim_spatial
if(argc != 8 + 1 + 4 + 6 * num_dim_spatial)
{
print_helper_msg();
return 1;
}
const auto params = ck::utils::conv::parse_conv_param(num_dim_spatial, 9, argv);
using F32 = float;
using F16 = ck::half_t;
using BF16 = ck::bhalf_t;
using INT8 = int8_t;
using namespace ck::tensor_layout::convolution;
constexpr auto I1 = ck::Number<1>{};
constexpr auto I2 = ck::Number<2>{};
constexpr auto I3 = ck::Number<3>{};
auto profile = [&](auto num_dim_spatial_tmp, auto in_layout, auto in_type, auto out_type) {
constexpr ck::index_t NDimSpatial = num_dim_spatial_tmp.value;
using InLayout = decltype(in_layout);
using InDataType = decltype(in_type);
using OutDataType = decltype(out_type);
bool pass = ck::profiler::
profile_image_to_column_impl<NDimSpatial, InLayout, InDataType, OutDataType>(
do_verification, init_method, do_log, time_kernel, params);
return pass ? 0 : 1;
};
// NHWC
if(layout == ConvLayout::NHWC)
{
if(num_dim_spatial == 1)
{
if(data_type == DataType::F32_F32)
{
return profile(I1, GNWC{}, F32{}, F32{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I1, GNWC{}, F16{}, F16{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I1, GNWC{}, BF16{}, BF16{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I1, GNWC{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 2)
{
if(data_type == DataType::F32_F32)
{
return profile(I2, GNHWC{}, F32{}, F32{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I2, GNHWC{}, F16{}, F16{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I2, GNHWC{}, BF16{}, BF16{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I2, GNHWC{}, INT8{}, INT8{});
}
}
else if(num_dim_spatial == 3)
{
if(data_type == DataType::F32_F32)
{
return profile(I3, GNDHWC{}, F32{}, F32{});
}
else if(data_type == DataType::F16_F16)
{
return profile(I3, GNDHWC{}, F16{}, F16{});
}
else if(data_type == DataType::BF16_BF16)
{
return profile(I3, GNDHWC{}, BF16{}, BF16{});
}
else if(data_type == DataType::INT8_INT8)
{
return profile(I3, GNDHWC{}, INT8{}, INT8{});
}
}
}
std::cout << "this data_type & layout is not implemented" << std::endl;
return 1;
}
REGISTER_PROFILER_OPERATION(OP_NAME, OP_DESC, profile_grouped_conv_fwd);
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment