Commit 9dce6851 authored by Jing Zhang's avatar Jing Zhang
Browse files

merge develop

parents 3cc57101 5d37d7bf
/*******************************************************************************
*
* MIT License
*
* Copyright (c) 2020 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*
*******************************************************************************/
#ifndef CK_REDUCTION_FUNCTIONS_BLOCKWISE_HPP
#define CK_REDUCTION_FUNCTIONS_BLOCKWISE_HPP
#include "data_type.hpp"
#include "reduction_common.hpp"
#include "reduction_operator.hpp"
#include "reduction_functions_accumulate.hpp"
namespace ck {
template <typename Buffer1dDescType,
typename AccDataType,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
bool ReorderThreadClusters,
typename OpReduce,
bool PropagateNan>
struct PartitionedBlockwiseReductionOn1dBuffer
{
static constexpr auto buffer_1d_desc = Buffer1dDescType{};
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"The product of cluster lengths should be same as BlockSize!");
static_assert(KThreadClusterSize > 1, "Parallel reduction need work on at least two elements");
static_assert(buffer_1d_desc.GetElementSize() == BlockSize,
"The buffer size should be the same as BlockSize!");
using Accumulation = detail::AccumulateWithNanCheck<PropagateNan, OpReduce, AccDataType>;
template <typename BufferType>
__device__ static void Reduce(BufferType& block_buffer,
AccDataType& accuData,
index_t thread_m_cluster_id,
index_t thread_k_cluster_id)
{
constexpr auto cluster_len_shift = get_shift<KThreadClusterSize>();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << (cluster_len_shift - 1 - I());
if(thread_k_cluster_id < indOffset)
{
// consider the thread clusters order, ensure the contiguous locations are accessed
// by contiguous Thread-ID
index_t offset1 =
ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(
thread_k_cluster_id * MThreadClusterSize + thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(make_tuple(
thread_m_cluster_id * KThreadClusterSize + thread_k_cluster_id));
index_t offset2 = ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(
(thread_k_cluster_id + indOffset) * MThreadClusterSize +
thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(
make_tuple(thread_m_cluster_id * KThreadClusterSize +
(thread_k_cluster_id + indOffset)));
AccDataType opData1 = type_convert<AccDataType>(block_buffer[offset1]);
AccDataType opData2 = type_convert<AccDataType>(block_buffer[offset2]);
Accumulation::Calculate(opData1, opData2);
block_buffer(offset1) = type_convert<AccDataType>(opData1);
}
__syncthreads();
});
index_t offset = ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(
make_tuple(thread_m_cluster_id * KThreadClusterSize));
accuData = type_convert<AccDataType>(block_buffer[offset]);
};
};
template <typename Buffer1dDescType,
typename AccDataType,
typename IndexDataType,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
bool ReorderThreadClusters,
typename OpReduce,
bool PropagateNan>
struct PartitionedBlockwiseReductionWithIndexOn1dBuffer
{
static constexpr auto buffer_1d_desc = Buffer1dDescType{};
static_assert(BlockSize == MThreadClusterSize * KThreadClusterSize,
"The product of cluster lengths should be same as BlockSize!");
static_assert(KThreadClusterSize > 1, "Parallel reduction need work on at least two elements");
static_assert(buffer_1d_desc.GetElementSize() == BlockSize,
"The buffer size should be the same as BlockSize!");
using Accumulation =
detail::AccumulateWithIndexAndNanCheck<PropagateNan, OpReduce, AccDataType, IndexDataType>;
// This interface accumulates on both data values and indices
template <typename BufferType, typename IdxBufferType>
__device__ static void Reduce(BufferType& block_val_buffer,
IdxBufferType& block_idx_buffer,
AccDataType& accuData,
IndexDataType& accuIndex,
index_t thread_m_cluster_id,
index_t thread_k_cluster_id)
{
constexpr auto cluster_len_shift = get_shift<KThreadClusterSize>();
static_for<0, cluster_len_shift, 1>{}([&](auto I) {
constexpr index_t indOffset = 1 << I();
if(thread_k_cluster_id % (indOffset * 2) == 0)
{
// consider the thread clusters order, ensure the contiguous locations are accessed
// by contiguous Thread-ID
index_t offset1 =
ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(
thread_k_cluster_id * MThreadClusterSize + thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(make_tuple(
thread_m_cluster_id * KThreadClusterSize + thread_k_cluster_id));
index_t offset2 = ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(
(thread_k_cluster_id + indOffset) * MThreadClusterSize +
thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(
make_tuple(thread_m_cluster_id * KThreadClusterSize +
(thread_k_cluster_id + indOffset)));
AccDataType opData1 = type_convert<AccDataType>(block_val_buffer[offset1]);
AccDataType opData2 = type_convert<AccDataType>(block_val_buffer[offset2]);
IndexDataType currIndex1 = block_idx_buffer[offset1];
IndexDataType currIndex2 = block_idx_buffer[offset2];
Accumulation::Calculate(opData1, opData2, currIndex1, currIndex2);
block_val_buffer(offset1) = type_convert<AccDataType>(opData1);
block_idx_buffer(offset1) = currIndex1;
}
__syncthreads();
});
index_t offset = ReorderThreadClusters
? buffer_1d_desc.CalculateOffset(make_tuple(thread_m_cluster_id))
: buffer_1d_desc.CalculateOffset(
make_tuple(thread_m_cluster_id * KThreadClusterSize));
accuData = type_convert<AccDataType>(block_val_buffer[offset]);
accuIndex = block_idx_buffer[offset];
}
};
}; // end of namespace ck
#endif
#ifndef CONVOLUTION_BACKWARD_DATA_SPECIALIZATION
#define CONVOLUTION_BACKWARD_DATA_SPECIALIZATION
namespace ck {
namespace tensor_operation {
namespace device {
enum ConvolutionBackwardDataSpecialization_t
{
Default,
Filter1x1Stride1Pad0,
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_CONV2D_WRW_XDL_C_SHUFFLE_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV2D_WRW_XDL_C_SHUFFLE_NHWC_KYXC_NHWK_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_backward_weight.hpp"
#include "convolution_forward_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4r2.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXdl,
ck::index_t NPerXdl,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CBlockTransferScalarPerVector_NWaveNPerXdl>
struct DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
: public DeviceConvWrw<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>
{
using DeviceOp = DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
using ADataType = OutDataType;
using BDataType = InDataType;
using CDataType = WeiDataType;
using AElementwiseOperation = OutElementwiseOperation;
using BElementwiseOperation = InElementwiseOperation;
using CElementwiseOperation = WeiElementwiseOperation;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr index_t NDimSpatial = 2;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t batch_k)
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t GemmKTotal = N * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X * Y;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmktotal_gemmn_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
}
using ABCGridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, 1));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>;
using GridwiseGemmAtomicAdd = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::AtomicAdd,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>;
// Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
using Block2CTileMap =
decltype(GridwiseGemm::MakeCBlockClusterAdaptor(CGridDesc_M_N{}, 1, 1, 1));
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
: p_a_grid_{p_out_grid},
p_b_grid_{p_in_grid},
p_c_grid_{p_wei_grid},
a_grid_desc_kbatch_k0_m_k1_{},
b_grid_desc_kbatch_k0_n_k1_{},
c_grid_desc_m_n_{},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
a_element_op_{out_element_op},
b_element_op_{in_element_op},
c_element_op_{wei_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
output_spatial_lengths_{output_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads},
k_batch_{split_k}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
k_batch_);
a_grid_desc_kbatch_k0_m_k1_ = descs[I0];
b_grid_desc_kbatch_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
if(GridwiseGemm::CheckValidity(a_grid_desc_kbatch_k0_m_k1_,
b_grid_desc_kbatch_k0_n_k1_,
c_grid_desc_m_n_,
M01_,
N01_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(c_grid_desc_m_n_);
block_2_ctile_map_ =
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
AGridDesc_K0_M_K1 a_grid_desc_kbatch_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_kbatch_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock c_grid_desc_mblock_mperblock_nblock_nperblock_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation a_element_op_;
OutElementwiseOperation b_element_op_;
WeiElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<index_t> output_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> conv_filter_strides_;
std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_;
index_t k_batch_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
void ShowInfo(const Argument& arg)
{
std::cout << "arg.a_grid_desc_kbatch_k0_m_k1_{"
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I2) << ", "
<< arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.b_grid_desc_kbatch_k0_n_k1_{"
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I0) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I2) << ", "
<< arg.b_grid_desc_kbatch_k0_n_k1_.GetLength(I3) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
float Run(const Argument& arg, int nrepeat = 1)
{
ShowInfo(arg);
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
}
const auto kbatch = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I0);
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_, kbatch);
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
if(nrepeat > 0)
{
ave_time =
launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
if(kbatch > 1 || nrepeat <= 0)
{
hipGetErrorString(hipMemset(
arg.p_c_grid_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
launch_kernel(kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
}
};
if(has_main_k0_block_loop)
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
}
else
{
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r4r2<
GridwiseGemmAtomicAdd,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 2 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CBlockTransferScalarPerVector_NWaveNPerXdl == 0))
{
return false;
}
// Gridwise GEMM size
return GridwiseGemm::CheckValidity(arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
void* p_wei_grid,
const void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op,
split_k);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_CONV2D_BWD_DATA_XDL_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV2D_BWD_DATA_XDL_NHWC_KYXC_NHWK_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_bwd_data.hpp"
#include "convolution_backward_data_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ConvolutionBackwardDataSpecialization_t ConvBackwardDataSpecialization,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXdl,
ck::index_t NPerXdl,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsAddExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsAddExtraN,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector>
struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
: public DeviceConvBwdData<InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
using ADataType = OutDataType;
using BDataType = WeiDataType;
using CDataType = InDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
static constexpr index_t NDimSpatial = 2;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static_assert((K1 % ABlockTransferThreadClusterLengths_K0_M_K1{}[I2]) %
ABlockTransferSrcScalarPerVector ==
0);
static_assert((NPerBlock / BBlockTransferThreadClusterLengths_K0_N_K1{}[I1]) %
BBlockTransferSrcScalarPerVector ==
0);
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
index_t i_ytilda,
index_t i_xtilda)
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const auto K0 = K / K1;
const auto out_n_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K));
const auto wei_k_y_x_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y, X, C));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization_t::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)),
make_tuple(make_pass_through_transform(N * Ho * Wo),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0, 2>{}));
// B: weight tensor
const auto wei_gemmk0_gemmn_gemmk1_grid_desc =
transform_tensor_descriptor(make_naive_tensor_descriptor_packed(make_tuple(K, C)),
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: input tensor
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(I1, Ho), make_tuple(I1, ConvStrideH)),
make_embed_transform(make_tuple(I1, Wo), make_tuple(I1, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_freeze_transform(I0),
make_freeze_transform(I0),
make_merge_transform(make_tuple(N, Ho, Wo)),
make_pass_through_transform(C)),
make_tuple(Sequence<1>{}, Sequence<3>{}, Sequence<0, 2, 4>{}, Sequence<5>{}),
make_tuple(Sequence<>{}, Sequence<>{}, Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
else
{
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilda = ConvStrideH / GcdStrideDilationH;
const auto XTilda = ConvStrideW / GcdStrideDilationW;
const auto YDot = math::integer_divide_ceil(Y, YTilda);
const auto XDot = math::integer_divide_ceil(X, XTilda);
const auto HTilda =
Ho + math::integer_divide_ceil(ConvDilationH * (Y - I1), ConvStrideH);
const auto WTilda =
Wo + math::integer_divide_ceil(ConvDilationW * (X - I1), ConvStrideW);
// only work on HTilda and WTilda that contribute to non-padding area of input tensor
const auto IHTildaSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadH - ConvDilationH * (YTilda - I1)), ConvStrideH);
const auto IWTildaSliceBegin = math::integer_divide_floor(
math::max(I0, InLeftPadW - ConvDilationW * (XTilda - I1)), ConvStrideW);
const auto IHTildaSliceEnd = math::min(
HTilda, math::integer_divide_ceil(InLeftPadH + Hi - I1, ConvStrideH) + I1);
const auto IWTildaSliceEnd = math::min(
WTilda, math::integer_divide_ceil(InLeftPadW + Wi - I1, ConvStrideW) + I1);
const auto HTildaSlice = IHTildaSliceEnd - IHTildaSliceBegin;
const auto WTildaSlice = IWTildaSliceEnd - IWTildaSliceBegin;
// GemmK is different for each GEMM
const auto YDotSlice = math::integer_divide_ceil(Y - i_ytilda, YTilda);
const auto XDotSlice = math::integer_divide_ceil(X - i_xtilda, XTilda);
// A: output tensor
const auto out_n_hop_wop_k_grid_desc = transform_tensor_descriptor(
out_n_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Ho, I0, I0),
make_pad_transform(Wo, I0, I0),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto out_n_ydot_htilda_xdot_wtilda_k_grid_desc = transform_tensor_descriptor(
out_n_hop_wop_k_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(YDot, HTilda),
make_tuple(-ConvDilationH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, WTilda),
make_tuple(-ConvDilationW / GcdStrideDilationW, I1)),
make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto out_n_ydotslice_htildaslice_xdotslice_wtildaslice_k0_k1_grid_desc =
transform_tensor_descriptor(
out_n_ydot_htilda_xdot_wtilda_k_grid_desc,
make_tuple(make_pass_through_transform(N),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(HTilda, IHTildaSliceBegin, HTildaSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_slice_transform(WTilda, IWTildaSliceBegin, WTildaSlice),
make_unmerge_transform(make_tuple(K0, K1))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5, 6>{}));
const auto out_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_n_ydotslice_htildaslice_xdotslice_wtildaslice_k0_k1_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_merge_transform(make_tuple(N, HTildaSlice, WTildaSlice)),
make_pass_through_transform(K1)),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}, Sequence<6>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B weight tensor
const auto wei_k_ydot_ytilda_xdot_xtilda_c_grid_desc = transform_tensor_descriptor(
wei_k_y_x_c_grid_desc,
make_tuple(make_pass_through_transform(K),
make_embed_transform(make_tuple(YDot, YTilda),
make_tuple(ConvStrideH / GcdStrideDilationH, I1)),
make_embed_transform(make_tuple(XDot, XTilda),
make_tuple(ConvStrideW / GcdStrideDilationW, I1)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto wei_k0_k1_ydotslice_xdotslice_c_grid_desc =
transform_tensor_descriptor(wei_k_ydot_ytilda_xdot_xtilda_c_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(K0, K1)),
make_slice_transform(YDot, I0, YDotSlice),
make_slice_transform(XDot, I0, XDotSlice),
make_freeze_transform(i_ytilda),
make_freeze_transform(i_xtilda),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<3>{},
Sequence<2>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0, 1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<>{},
Sequence<>{},
Sequence<4>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(YDotSlice, XDotSlice, K0)),
make_pass_through_transform(C),
make_pass_through_transform(K1)),
make_tuple(Sequence<2, 3, 0>{}, Sequence<4>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// C: input tensor
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_ytilda_htilda_xtilda_wtilda_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_embed_transform(make_tuple(YTilda, HTilda),
make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(XTilda, WTilda),
make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_n_htildaslice_wtildaslice_c_grid_desc = transform_tensor_descriptor(
in_n_ytilda_htilda_xtilda_wtilda_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_freeze_transform(i_ytilda),
make_slice_transform(HTilda, IHTildaSliceBegin, HTildaSlice),
make_freeze_transform(i_xtilda),
make_slice_transform(WTilda, IWTildaSliceBegin, WTildaSlice),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<0>{},
Sequence<>{},
Sequence<1>{},
Sequence<>{},
Sequence<2>{},
Sequence<3>{}));
const auto in_gemmm_gemmn_grid_desc = transform_tensor_descriptor(
in_n_htildaslice_wtildaslice_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(N, HTildaSlice, WTildaSlice)),
make_pass_through_transform(C)),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
return make_tuple(out_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
in_gemmm_gemmn_grid_desc);
}
} // function end
using ABCGridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, 0, 0));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>, // CThreadTransferSrcDstAccessOrder,
7, // CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector>;
// Argument
struct Argument : public BaseArgument
{
Argument(InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_out_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_in_grid},
M01_{M01},
N01_{N01},
a_element_op_{out_element_op},
b_element_op_{wei_element_op},
c_element_op_{in_element_op},
Conv_N_{N},
Conv_K_{K},
Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads}
{
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const auto GcdStrideDilationH = math::gcd(ConvStrideH, ConvDilationH);
const auto GcdStrideDilationW = math::gcd(ConvStrideW, ConvDilationW);
const auto YTilda = ConvStrideH / GcdStrideDilationH;
const auto XTilda = ConvStrideW / GcdStrideDilationW;
for(index_t i_ytilda = 0; i_ytilda < YTilda; ++i_ytilda)
{
for(index_t i_xtilda = 0; i_xtilda < XTilda; ++i_xtilda)
{
const auto descs = DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
i_ytilda,
i_xtilda);
a_grid_desc_k0_m_k1_container_.push_back(descs[I0]);
b_grid_desc_k0_n_k1_container_.push_back(descs[I1]);
c_grid_desc_m_n_container_.push_back(descs[I2]);
if(GridwiseGemm::CheckValidity(descs[I0], descs[I1], descs[I2], M01_, N01_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_.push_back(
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(descs[I2]));
block_2_ctile_map_container_.push_back(
GridwiseGemm::MakeDefaultBlock2CTileMap(descs[I2], M01, N01));
}
}
}
}
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
std::vector<AGridDesc_K0_M_K1> a_grid_desc_k0_m_k1_container_;
std::vector<BGridDesc_K0_N_K1> b_grid_desc_k0_n_k1_container_;
std::vector<CGridDesc_M_N> c_grid_desc_m_n_container_;
std::vector<typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_;
std::vector<typename GridwiseGemm::DefaultBlock2CTileMap> block_2_ctile_map_container_;
index_t M01_;
index_t N01_;
OutElementwiseOperation a_element_op_;
WeiElementwiseOperation b_element_op_;
InElementwiseOperation c_element_op_;
// for checking IsSupportedArgument()
index_t Conv_N_;
index_t Conv_K_;
index_t Conv_C_;
std::vector<ck::index_t> input_spatial_lengths_;
std::vector<ck::index_t> filter_spatial_lengths_;
std::vector<ck::index_t> output_spatial_lengths_;
std::vector<ck::index_t> conv_filter_strides_;
std::vector<ck::index_t> conv_filter_dilations_;
std::vector<ck::index_t> input_left_pads_;
std::vector<ck::index_t> input_right_pads_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
nrepeat = 1;
float ave_time = 0;
for(size_t i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_container_{"
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_container_{"
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I0) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_container_[i].GetLength(I2) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m_n_container_{ "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_container_[i].GetLength(I1) << "}"
<< std::endl;
std::cout << "arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I0)
<< ", "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I1)
<< ", "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I2)
<< ", "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I3)
<< ", "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I4)
<< ", "
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I5)
<< " ) " << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i],
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r1 has invalid setting");
}
const index_t grid_size =
GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_container_[i]);
const auto K0 = arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
OutElementwiseOperation,
WeiElementwiseOperation,
InElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
true>;
ave_time += launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i],
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_container_[i]);
}
else
{
const auto kernel = kernel_gemm_xdlops_v2r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
typename GridwiseGemm::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
OutElementwiseOperation,
WeiElementwiseOperation,
InElementwiseOperation,
remove_reference_t<typename GridwiseGemm::DefaultBlock2CTileMap>,
false>;
ave_time += launch_and_time_kernel(
kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i],
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_container_[i]);
}
}
return ave_time;
}
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if constexpr(ConvBackwardDataSpecialization ==
ConvolutionBackwardDataSpecialization_t::Filter1x1Stride1Pad0)
{
// check if it's 1x1, stride=1 pad = 0 conv
if(!(arg.filter_spatial_lengths_[0] == 1 && arg.filter_spatial_lengths_[1] == 1 &&
arg.conv_filter_strides_[0] == 1 && arg.conv_filter_strides_[1] == 1 &&
arg.input_left_pads_[0] == 0 && arg.input_left_pads_[1] == 0 &&
arg.input_right_pads_[0] == 0 && arg.input_right_pads_[1] == 0))
{
return false;
}
}
// vector load A/B matrix from global memory
if(!(ABlockTransferSrcVectorDim == 2 && BBlockTransferSrcVectorDim == 1 &&
arg.Conv_K_ % ABlockTransferSrcScalarPerVector == 0 &&
arg.Conv_C_ % BBlockTransferSrcScalarPerVector == 0))
{
return false;
}
// vector store C matrix into global memory
if(!(arg.Conv_C_ % CThreadTransferDstScalarPerVector == 0))
{
return false;
}
// Gridwise GEMM size
for(int i = 0; i < arg.a_grid_desc_k0_m_k1_container_.size(); i++)
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_container_[i],
arg.b_grid_desc_k0_n_k1_container_[i],
arg.c_grid_desc_m_n_container_[i],
arg.M01_,
arg.N01_))
{
return false;
}
}
return true;
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* p_in_grid,
const void* p_wei_grid,
const void* p_out_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<const OutDataType*>(p_out_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
...@@ -549,8 +549,11 @@ struct ...@@ -549,8 +549,11 @@ struct
Conv_N_{N}, Conv_N_{N},
Conv_K_{K}, Conv_K_{K},
Conv_C_{C}, Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths}, filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides}, conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads}, input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads} input_right_pads_{input_right_pads}
{ {
...@@ -625,8 +628,11 @@ struct ...@@ -625,8 +628,11 @@ struct
index_t Conv_N_; index_t Conv_N_;
index_t Conv_K_; index_t Conv_K_;
index_t Conv_C_; index_t Conv_C_;
std::vector<index_t> input_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_; std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> output_spatial_lengths_;
std::vector<index_t> conv_filter_strides_; std::vector<index_t> conv_filter_strides_;
std::vector<index_t> conv_filter_dilations_;
std::vector<index_t> input_left_pads_; std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_; std::vector<index_t> input_right_pads_;
}; };
...@@ -638,6 +644,28 @@ struct ...@@ -638,6 +644,28 @@ struct
float Run(const Argument& arg, int nrepeat = 1) float Run(const Argument& arg, int nrepeat = 1)
{ {
#if 0
{
std::cout << DeviceOp{}.GetTypeString() << std::endl;
std::cout << "N " << arg.Conv_N_ << ", "
<< "K " << arg.Conv_K_ << ", "
<< "C " << arg.Conv_C_ << ", " << std::endl;
std::cout << "Y X " << arg.filter_spatial_lengths_[0] << ", "
<< arg.filter_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Hi Wi " << arg.input_spatial_lengths_[0] << ", "
<< arg.input_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Ho Wo " << arg.output_spatial_lengths_[0] << ", "
<< arg.output_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Strides " << arg.conv_filter_strides_[0] << ", "
<< arg.conv_filter_strides_[1] << ", " << std::endl;
std::cout << "Dilations " << arg.conv_filter_dilations_[0] << ", "
<< arg.conv_filter_dilations_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_left_pads_[0] << ", "
<< arg.input_left_pads_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_right_pads_[0] << ", "
<< arg.input_right_pads_[1] << ", " << std::endl;
}
{ {
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0) std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", " << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...@@ -656,6 +684,7 @@ struct ...@@ -656,6 +684,7 @@ struct
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0) std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
} }
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
......
...@@ -526,8 +526,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -526,8 +526,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
Conv_N_{N}, Conv_N_{N},
Conv_K_{K}, Conv_K_{K},
Conv_C_{C}, Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths}, filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides}, conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads}, input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads} input_right_pads_{input_right_pads}
{ {
...@@ -590,8 +593,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -590,8 +593,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
index_t Conv_N_; index_t Conv_N_;
index_t Conv_K_; index_t Conv_K_;
index_t Conv_C_; index_t Conv_C_;
std::vector<index_t> input_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_; std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> output_spatial_lengths_;
std::vector<index_t> conv_filter_strides_; std::vector<index_t> conv_filter_strides_;
std::vector<index_t> conv_filter_dilations_;
std::vector<index_t> input_left_pads_; std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_; std::vector<index_t> input_right_pads_;
}; };
...@@ -603,6 +609,28 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -603,6 +609,28 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
float Run(const Argument& arg, int nrepeat = 1) float Run(const Argument& arg, int nrepeat = 1)
{ {
#if 0
{
std::cout << DeviceOp{}.GetTypeString() << std::endl;
std::cout << "N " << arg.Conv_N_ << ", "
<< "K " << arg.Conv_K_ << ", "
<< "C " << arg.Conv_C_ << ", " << std::endl;
std::cout << "Y X " << arg.filter_spatial_lengths_[0] << ", "
<< arg.filter_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Hi Wi " << arg.input_spatial_lengths_[0] << ", "
<< arg.input_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Ho Wo " << arg.output_spatial_lengths_[0] << ", "
<< arg.output_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Strides " << arg.conv_filter_strides_[0] << ", "
<< arg.conv_filter_strides_[1] << ", " << std::endl;
std::cout << "Dilations " << arg.conv_filter_dilations_[0] << ", "
<< arg.conv_filter_dilations_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_left_pads_[0] << ", "
<< arg.input_left_pads_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_right_pads_[0] << ", "
<< arg.input_right_pads_[1] << ", " << std::endl;
}
{ {
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0) std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", " << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...@@ -618,6 +646,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X ...@@ -618,6 +646,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0) std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
} }
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
......
...@@ -422,6 +422,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -422,6 +422,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
BlockSize, BlockSize,
ABDataType, // TODO: distinguish A/B datatype ABDataType, // TODO: distinguish A/B datatype
AccDataType, AccDataType,
CDataType, // TODO: Add ShuffleType for DeviceConv2d
CDataType, CDataType,
InMemoryDataOperationEnum_t::Set, InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1, AGridDesc_K0_M_K1,
...@@ -497,8 +498,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -497,8 +498,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
Conv_N_{N}, Conv_N_{N},
Conv_K_{K}, Conv_K_{K},
Conv_C_{C}, Conv_C_{C},
input_spatial_lengths_{input_spatial_lengths},
filter_spatial_lengths_{filter_spatial_lengths}, filter_spatial_lengths_{filter_spatial_lengths},
output_spatial_lengths_{output_spatial_lengths},
conv_filter_strides_{conv_filter_strides}, conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads}, input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads} input_right_pads_{input_right_pads}
{ {
...@@ -550,8 +554,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -550,8 +554,11 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
index_t Conv_N_; index_t Conv_N_;
index_t Conv_K_; index_t Conv_K_;
index_t Conv_C_; index_t Conv_C_;
std::vector<index_t> input_spatial_lengths_;
std::vector<index_t> filter_spatial_lengths_; std::vector<index_t> filter_spatial_lengths_;
std::vector<index_t> output_spatial_lengths_;
std::vector<index_t> conv_filter_strides_; std::vector<index_t> conv_filter_strides_;
std::vector<index_t> conv_filter_dilations_;
std::vector<index_t> input_left_pads_; std::vector<index_t> input_left_pads_;
std::vector<index_t> input_right_pads_; std::vector<index_t> input_right_pads_;
}; };
...@@ -563,6 +570,28 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -563,6 +570,28 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
float Run(const Argument& arg, int nrepeat = 1) float Run(const Argument& arg, int nrepeat = 1)
{ {
#if 0
{
std::cout << DeviceOp{}.GetTypeString() << std::endl;
std::cout << "N " << arg.Conv_N_ << ", "
<< "K " << arg.Conv_K_ << ", "
<< "C " << arg.Conv_C_ << ", " << std::endl;
std::cout << "Y X " << arg.filter_spatial_lengths_[0] << ", "
<< arg.filter_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Hi Wi " << arg.input_spatial_lengths_[0] << ", "
<< arg.input_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Ho Wo " << arg.output_spatial_lengths_[0] << ", "
<< arg.output_spatial_lengths_[1] << ", " << std::endl;
std::cout << "Strides " << arg.conv_filter_strides_[0] << ", "
<< arg.conv_filter_strides_[1] << ", " << std::endl;
std::cout << "Dilations " << arg.conv_filter_dilations_[0] << ", "
<< arg.conv_filter_dilations_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_left_pads_[0] << ", "
<< arg.input_left_pads_[1] << ", " << std::endl;
std::cout << "InLeftPads " << arg.input_right_pads_[0] << ", "
<< arg.input_right_pads_[1] << ", " << std::endl;
}
{ {
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0) std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", " << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...@@ -597,6 +626,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W ...@@ -597,6 +626,7 @@ struct DeviceConv2dFwdXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_W
.GetLength(I5) .GetLength(I5)
<< "}" << std::endl; << "}" << std::endl;
} }
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
......
...@@ -452,6 +452,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -452,6 +452,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
float Run(const Argument& arg, int nrepeat = 1) float Run(const Argument& arg, int nrepeat = 1)
{ {
#if 0
{ {
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0) std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", " << ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...@@ -464,6 +465,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K ...@@ -464,6 +465,7 @@ struct DeviceConv2dFwdXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", " std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl; << arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
} }
#endif
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_, if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_, arg.b_grid_desc_k0_n_k1_,
......
#ifndef DEVICE_CONV_WRW_HPP
#define DEVICE_CONV_WRW_HPP
#include <iostream>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct DeviceConvWrw : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in,
void* p_wei,
const void* p_out,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op,
ck::index_t split_k) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
using DeviceConvWrwPtr = std::unique_ptr<
DeviceConvWrw<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_CONV_BWD_DATA_HPP
#define DEVICE_CONV_BWD_DATA_HPP
#include <iostream>
#include "device_base.hpp"
#include "element_wise_operation.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
struct DeviceConvBwdData : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(void* p_in,
const void* p_wei,
const void* p_out,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation>
using DeviceConvBwdDataPtr = std::unique_ptr<
DeviceConvBwdData<InElementwiseOperation, WeiElementwiseOperation, OutElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment