Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
9dce6851
Commit
9dce6851
authored
Mar 10, 2022
by
Jing Zhang
Browse files
merge develop
parents
3cc57101
5d37d7bf
Changes
473
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1343 additions
and
330 deletions
+1343
-330
example/08_conv3d_fwd/CMakeLists.txt
example/08_conv3d_fwd/CMakeLists.txt
+1
-0
example/08_conv3d_fwd/README.md
example/08_conv3d_fwd/README.md
+0
-0
example/08_conv3d_fwd/conv3d_fwd_xdl.cpp
example/08_conv3d_fwd/conv3d_fwd_xdl.cpp
+0
-0
example/09_convnd_fwd/CMakeLists.txt
example/09_convnd_fwd/CMakeLists.txt
+1
-0
example/09_convnd_fwd/README.md
example/09_convnd_fwd/README.md
+0
-0
example/09_convnd_fwd/convnd_fwd_xdl.cpp
example/09_convnd_fwd/convnd_fwd_xdl.cpp
+0
-1
example/10_conv2d_bwd_data/CMakeLists.txt
example/10_conv2d_bwd_data/CMakeLists.txt
+1
-0
example/10_conv2d_bwd_data/README.md
example/10_conv2d_bwd_data/README.md
+79
-0
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
+247
-0
example/11_conv2d_bwd_wgt/CMakeLists.txt
example/11_conv2d_bwd_wgt/CMakeLists.txt
+1
-0
example/11_conv2d_bwd_wgt/README.md
example/11_conv2d_bwd_wgt/README.md
+16
-15
example/11_conv2d_bwd_wgt/conv2d_bwd_wgt_xdl.cpp
example/11_conv2d_bwd_wgt/conv2d_bwd_wgt_xdl.cpp
+289
-0
example/12_reduce/CMakeLists.txt
example/12_reduce/CMakeLists.txt
+1
-0
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+394
-0
example/13_pool2d_fwd/CMakeLists.txt
example/13_pool2d_fwd/CMakeLists.txt
+1
-0
example/13_pool2d_fwd/pool2d_fwd.cpp
example/13_pool2d_fwd/pool2d_fwd.cpp
+311
-0
example/14_grouped_gemm/CMakeLists.txt
example/14_grouped_gemm/CMakeLists.txt
+1
-0
example/14_grouped_gemm/README.md
example/14_grouped_gemm/README.md
+0
-0
example/14_grouped_gemm/grouped_gemm_xdl_fp16.cpp
example/14_grouped_gemm/grouped_gemm_xdl_fp16.cpp
+0
-0
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
...s_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
+0
-314
No files found.
example/08_conv3d_fwd/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_conv3d_fwd_xdl conv3d_fwd_xdl.cpp
)
example/
1
0_conv3d_fwd
_xdl
/README.md
→
example/0
8
_conv3d_fwd/README.md
View file @
9dce6851
File moved
example/
1
0_conv3d_fwd
_xdl
/conv3d_fwd_xdl.cpp
→
example/0
8
_conv3d_fwd/conv3d_fwd_xdl.cpp
View file @
9dce6851
File moved
example/09_convnd_fwd/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_convnd_fwd_xdl convnd_fwd_xdl.cpp
)
example/
11
_convnd_fwd
_xdl
/README.md
→
example/
09
_convnd_fwd/README.md
View file @
9dce6851
File moved
example/
11
_convnd_fwd
_xdl
/convnd_fwd_xdl.cpp
→
example/
09
_convnd_fwd/convnd_fwd_xdl.cpp
View file @
9dce6851
...
@@ -2,7 +2,6 @@
...
@@ -2,7 +2,6 @@
#include <iostream>
#include <iostream>
#include <numeric>
#include <numeric>
#include <type_traits>
#include <type_traits>
#include "config.hpp"
#include "config.hpp"
#include "conv_utils.hpp"
#include "conv_utils.hpp"
#include "device.hpp"
#include "device.hpp"
...
...
example/10_conv2d_bwd_data/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_conv2d_bwd_data_xdl conv2d_bwd_data_xdl.cpp
)
example/
7
_conv2d_
f
wd_
xdl_bias_relu_atomic_add
/README.md
→
example/
10
_conv2d_
b
wd_
data
/README.md
View file @
9dce6851
# Instructions for ```conv
_xdl_bias_relu_add
``` Example
# Instructions for ```conv
2d_bwd_data_xdl
``` Example
## Docker script
## Docker script
```
bash
```
bash
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
/bin/bash
```
```
## Build ```conv
_xdl_bias_relu_add
```
## Build ```conv
2d_bwd_data_xdl
```
```
bash
```
bash
mkdir
build
&&
cd
build
mkdir
build
&&
cd
build
```
```
...
@@ -30,32 +30,50 @@ cmake \
...
@@ -30,32 +30,50 @@ cmake \
```
```
```
bash
```
bash
make
-j
conv
_xdl_bias_relu_add
make
-j
conv
2d_bwd_data_xdl
```
```
## Run ```conv
_xdl_bias_relu_add
```
## Run ```conv
2d_bwd_data_xdl
```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./
example/conv_xdl_bias_relu_add
0 1 5
./
bin/conv2d_bwd_data_xdl
0 1 5
```
```
Result
(MI100 @ 1087Mhz, 133.5TFlops peak FP16)
Result
```
```
in_n_c_hi_wi: dim 4, lengths {128,
192
, 71, 71}, strides {
967872, 1, 13632, 192
}
in_n_c_hi_wi: dim 4, lengths {128,
256
, 71, 71}, strides {
1290496, 1, 18176, 256
}
wei_k_c_y_x: dim 4, lengths {256,
192
, 3, 3}, strides {
1728
, 1,
5
76,
192
}
wei_k_c_y_x: dim 4, lengths {256,
256
, 3, 3}, strides {
2304
, 1, 76
8
,
256
}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
arg.a_grid_desc_k0_m_k1_container_{128, 175232, 8}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.b_grid_desc_k0_n_k1_container_{128, 256, 8}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
arg.c_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Warm up
Start running 5 times...
Start running 1 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{64, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{64, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
arg.a_grid_desc_k0_m_k1_container_{32, 175232, 8}
arg.b_grid_desc_k0_n_k1_container_{32, 256, 8}
arg.c_grid_desc_m_n_container_{ 175232, 256}
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_( 2738, 4, 2, 2, 4, 2 )
launch_and_time_kernel: grid_dim {2738, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 1 times...
Perf: 2.45966 ms, 79.5597 TFlops, 169.325 GB/s
```
```
example/10_conv2d_bwd_data/conv2d_bwd_data_xdl.cpp
0 → 100644
View file @
9dce6851
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_bwd_data.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
auto
ConvBwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionBackwardDataSpecialization_t
::
Default
;
using
DeviceConvBwdDataInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
ConvBwdDefault
,
// ConvolutionBackwardDataSpecialization_t
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
8
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
2
,
0
,
1
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
>
,
// BBlockTransferSrcAccessOrder
1
,
// BBlockTransferSrcVectorDim
2
,
// BBlockTransferSrcScalarPerVector
8
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
7
,
1
>
;
// GemmCThreadTransferDstScalarPerVector
using
ReferenceConvBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvBwdData
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
256
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
};
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
));
Tensor
<
InDataType
>
in_n_c_hi_wi_host_result
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
Tensor
<
InDataType
>
in_n_c_hi_wi_device_result
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
default:
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
1
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
// do GEMM
auto
conv
=
DeviceConvBwdDataInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ReferenceConvBwdInstance
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi_host_result
,
wei_k_c_y_x
,
out_n_k_ho_wo
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
in_device_buf
.
FromDevice
(
in_n_c_hi_wi_device_result
.
mData
.
data
());
check_error
(
in_n_c_hi_wi_host_result
,
in_n_c_hi_wi_device_result
);
}
}
example/11_conv2d_bwd_wgt/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_conv2d_bwd_wgt_xdl conv2d_bwd_wgt_xdl.cpp
)
example/
9
_conv2d_
f
wd_
xdl_int8
/README.md
→
example/
11
_conv2d_
b
wd_
wgt
/README.md
View file @
9dce6851
# Instructions for ```conv2d_
fwd
_xdl``` Example
# Instructions for ```conv2d_
wrw
_xdl``` Example
## Docker script
## Docker script
```
bash
```
bash
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
...
@@ -13,7 +13,7 @@ rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
/bin/bash
```
```
## Build ```conv2d_
fwd
_xdl```
## Build ```conv2d_
wrw
_xdl```
```
bash
```
bash
mkdir
build
&&
cd
build
mkdir
build
&&
cd
build
```
```
...
@@ -30,28 +30,29 @@ cmake \
...
@@ -30,28 +30,29 @@ cmake \
```
```
```
bash
```
bash
make
-j
conv2d_
fwd
_xdl
make
-j
conv2d_
wrw
_xdl
```
```
## Run ```conv2d_
fwd
_xdl
_int8
```
## Run ```conv2d_
wrw
_xdl```
```
bash
```
bash
#arg1: verification (0=no, 1=yes)
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
#arg4: is show log (0=no, 1=yes)
./example/conv2d_fwd_xdl_int8 0 1 5
#arg5 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx, split-k
./example/conv2d_fwd_xdl 0 1 5 0 4
```
```
Result
(MI100 @ 1087Mhz, 133.5TFlops peak FP16)
Result
```
```
in_n_c_hi_wi: dim 4, lengths {128, 1
92, 71, 71
}, strides {
967872, 1, 13632, 192
}
in_n_c_hi_wi: dim 4, lengths {128, 1
024, 14, 14
}, strides {
200704, 1, 14336, 1024
}
wei_k_c_y_x: dim 4, lengths {256, 1
92
, 3, 3}, strides {
1728
, 1,
576, 192
}
wei_k_c_y_x: dim 4, lengths {256, 1
024
, 3, 3}, strides {
9216
, 1,
3072, 1024
}
out_n_k_ho_wo: dim 4, lengths {128, 256,
3
6,
3
6}, strides {
33177
6, 1,
921
6, 256}
out_n_k_ho_wo: dim 4, lengths {128, 256, 6, 6}, strides {
921
6, 1,
153
6, 256}
arg.a_grid_desc_k0_m_k1_{
216, 165888
, 8}
arg.a_grid_desc_
kbatch_
k0_m_k1_{
4, 144, 256
, 8}
arg.b_grid_desc_k0_n_k1_{
216, 25
6, 8}
arg.b_grid_desc_
kbatch_
k0_n_k1_{
4, 144, 921
6, 8}
arg.c_grid_desc_m_n_{
165888, 25
6}
arg.c_grid_desc_m_n_{
256, 921
6}
launch_and_time_kernel: grid_dim {
129
6, 1, 1}, block_dim {256, 1, 1}
launch_and_time_kernel: grid_dim {
57
6, 1, 1}, block_dim {256, 1, 1}
Warm up
Warm up
Start running 5 times...
Start running 5 times...
Perf:
1
.4
3206 ms, 102.486
TFlops,
232.947
GB/s
Perf:
0
.4
01084 ms, 54.2112
TFlops,
145.75
GB/s
```
```
example/11_conv2d_bwd_wgt/conv2d_bwd_wgt_xdl.cpp
0 → 100644
View file @
9dce6851
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "element_wise_operation.hpp"
#include "device_conv2d_backward_weight_xdl_c_shuffle_nhwc_kyxc_nhwk.hpp"
#include "reference_conv_backward_weight.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// clang-format off
using
DeviceConvWrWInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dWrWXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<
InDataType
,
// InDataType
WeiDataType
,
// WeiDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
InElementOp
,
// InElementwiseOperation
WeiElementOp
,
// WeiElementwiseOperation
OutElementOp
,
// OutElementwiseOperation
256
,
// BlockSize
128
,
// MPerBlock
128
,
// NPerBlock
4
,
// K0PerBlock
8
,
// K1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
2
,
// NXdlPerWave
S
<
1
,
4
,
16
,
4
>
,
// ABlockTransferThreadClusterLengths_K0_M_K1
S
<
0
,
3
,
1
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
8
,
// ABlockTransferSrcScalarPerVector
2
,
// ABlockTransferDstScalarPerVector_K1
true
,
// ABlockLdsAddExtraM
S
<
1
,
4
,
16
,
4
>
,
// BBlockTransferThreadClusterLengths_K0_N_K1
S
<
0
,
3
,
1
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
0
,
2
,
1
,
3
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
8
,
// BBlockTransferSrcScalarPerVector
2
,
// BBlockTransferDstScalarPerVector_K1
true
,
// BBlockLdsAddExtraN
1
,
// CShuffleMXdlPerWavePerShuffle
1
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
4
>
,
// CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
>
;
// CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using
ReferenceConvWrwInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvWrw
<
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
int
do_log
=
0
;
int
split_k
=
4
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
1024
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
14
;
ck
::
index_t
Wi
=
14
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
0
;
ck
::
index_t
in_left_pad_w
=
0
;
ck
::
index_t
in_right_pad_h
=
0
;
ck
::
index_t
in_right_pad_w
=
0
;
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
}
else
if
(
argc
==
21
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
do_log
=
std
::
stoi
(
argv
[
4
]);
split_k
=
std
::
stoi
(
argv
[
5
]);
N
=
std
::
stoi
(
argv
[
6
]);
K
=
std
::
stoi
(
argv
[
7
]);
C
=
std
::
stoi
(
argv
[
8
]);
Y
=
std
::
stoi
(
argv
[
9
]);
X
=
std
::
stoi
(
argv
[
10
]);
Hi
=
std
::
stoi
(
argv
[
11
]);
Wi
=
std
::
stoi
(
argv
[
12
]);
conv_stride_h
=
std
::
stoi
(
argv
[
13
]);
conv_stride_w
=
std
::
stoi
(
argv
[
14
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
15
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
16
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
18
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
19
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
20
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4: is show log (0=no, 1=yes)
\n
"
);
printf
(
"arg5: split-k
\n
"
);
printf
(
"arg6 to 19: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
YEff
=
(
Y
-
1
)
*
conv_dilation_h
+
1
;
const
ck
::
index_t
XEff
=
(
X
-
1
)
*
conv_dilation_w
+
1
;
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
YEff
)
/
conv_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
XEff
)
/
conv_stride_w
+
1
;
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{{
conv_stride_h
,
conv_stride_w
}};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{{
conv_dilation_h
,
conv_dilation_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x_host_result
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x_device_result
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{
1
});
out_n_k_ho_wo
.
GenerateTensorValue
(
GeneratorTensor_1
<
OutDataType
>
{
1
});
}
wei_k_c_y_x_device_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
WeiDataType
>
{
0
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
// do GEMM
auto
conv
=
DeviceConvWrWInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{{
Hi
,
Wi
}},
std
::
vector
<
ck
::
index_t
>
{{
Y
,
X
}},
std
::
vector
<
ck
::
index_t
>
{{
Ho
,
Wo
}},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{},
split_k
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
<<
std
::
endl
;
return
1
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
auto
ref_conv
=
ReferenceConvWrwInstance
{};
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
wei_k_c_y_x_host_result
,
out_n_k_ho_wo
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
ref_invoker
.
Run
(
ref_argument
);
wei_device_buf
.
FromDevice
(
wei_k_c_y_x_device_result
.
mData
.
data
());
if
(
do_log
)
{
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out: "
,
out_n_k_ho_wo
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_device(after): "
,
wei_k_c_y_x_device_result
.
mData
,
","
)
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei_host : "
,
wei_k_c_y_x_host_result
.
mData
,
","
)
<<
std
::
endl
;
}
check_error
(
wei_k_c_y_x_host_result
,
wei_k_c_y_x_device_result
);
}
}
example/12_reduce/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_reduce_blockwise reduce_blockwise.cpp
)
example/12_reduce/reduce_blockwise.cpp
0 → 100644
View file @
9dce6851
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <getopt.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_reduce_blockwise.hpp"
#include "host_reduce_util.hpp"
#include "host_generic_reduction.hpp"
#include "reduction_enums.hpp"
#include "reduction_operator_mapping.hpp"
using
namespace
ck
;
using
namespace
ck
::
tensor_operation
::
device
;
using
InDataType
=
half_float
::
half
;
using
OutDataType
=
half_float
::
half
;
using
AccDataType
=
float
;
using
kInDataType
=
ck
::
half_t
;
using
kOutDataType
=
ck
::
half_t
;
using
kAccDataType
=
float
;
constexpr
int
Rank
=
4
;
using
ReduceDims_
=
ck
::
Sequence
<
0
,
1
,
2
>
;
constexpr
ReduceTensorOp_t
ReduceOpId
=
ReduceTensorOp_t
::
NORM2
;
constexpr
NanPropagation_t
NanOpt
=
NanPropagation_t
::
PROPAGATE_NAN
;
constexpr
bool
PropagateNan
=
(
NanOpt
==
NanPropagation_t
::
NOT_PROPAGATE_NAN
)
?
false
:
true
;
constexpr
ReduceTensorIndices_t
IndicesOpt
=
ReduceTensorIndices_t
::
NO_INDICES
;
using
ReduceOperation
=
typename
reduce_binary_operator
<
AccDataType
,
ReduceOpId
>::
opType
;
using
InElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
InElementwiseOperation
;
using
AccElementwiseOperation
=
typename
reduce_unary_operator
<
AccDataType
,
ReduceOpId
,
true
,
true
>::
AccElementwiseOperation
;
using
DeviceReduceInstance
=
DeviceReduceBlockWise
<
kInDataType
,
kAccDataType
,
kOutDataType
,
Rank
,
ReduceDims_
,
ReduceOperation
,
InElementwiseOperation
,
AccElementwiseOperation
,
PropagateNan
,
false
,
256
,
4
,
64
,
1
,
1
,
0
,
1
,
1
>
;
static
struct
option
long_options
[]
=
{{
"inLengths"
,
required_argument
,
nullptr
,
'D'
},
{
"scales"
,
required_argument
,
nullptr
,
'S'
},
{
"verify"
,
required_argument
,
nullptr
,
'v'
},
{
"help"
,
no_argument
,
nullptr
,
'?'
},
{
nullptr
,
0
,
nullptr
,
0
}};
class
SimpleAppArgs
{
template
<
typename
T
>
static
T
getSingleValueFromString
(
const
std
::
string
&
valueStr
)
{
std
::
istringstream
iss
(
valueStr
);
T
ret
;
iss
>>
ret
;
return
(
ret
);
};
template
<
typename
T
>
static
std
::
vector
<
T
>
getTypeValuesFromString
(
const
char
*
cstr_values
)
{
std
::
string
valuesStr
(
cstr_values
);
std
::
vector
<
T
>
values
;
std
::
size_t
pos
=
0
;
std
::
size_t
new_pos
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
while
(
new_pos
!=
std
::
string
::
npos
)
{
const
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
,
new_pos
-
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
pos
=
new_pos
+
1
;
new_pos
=
valuesStr
.
find
(
','
,
pos
);
};
std
::
string
sliceStr
=
valuesStr
.
substr
(
pos
);
T
val
=
getSingleValueFromString
<
T
>
(
sliceStr
);
values
.
push_back
(
val
);
return
(
values
);
};
private:
int
option_index
=
0
;
public:
std
::
vector
<
size_t
>
inLengths
;
std
::
vector
<
float
>
scales
;
bool
do_verification
=
false
;
int
init_method
=
1
;
int
nrepeat
=
5
;
public:
void
show_usage
(
const
char
*
cmd
)
{
std
::
cout
<<
"Usage of "
<<
cmd
<<
std
::
endl
;
std
::
cout
<<
"--inLengths or -D, comma separated list of input tensor dimension lengths"
<<
std
::
endl
;
std
::
cout
<<
"--scales or -S, comma separated two float values for alpha and beta"
<<
std
::
endl
;
std
::
cout
<<
"--verify or -v, 1/0 to indicate whether to verify the reduction result by "
"comparing with the host-based reduction"
<<
std
::
endl
;
};
int
processArgs
(
int
argc
,
char
*
argv
[])
{
unsigned
int
ch
;
while
(
1
)
{
ch
=
getopt_long
(
argc
,
argv
,
"D:S:v:l:"
,
long_options
,
&
option_index
);
if
(
ch
==
-
1
)
break
;
switch
(
ch
)
{
case
'D'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
inLengths
=
getTypeValuesFromString
<
size_t
>
(
optarg
);
break
;
case
'S'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
scales
=
getTypeValuesFromString
<
float
>
(
optarg
);
break
;
case
'v'
:
if
(
!
optarg
)
throw
std
::
runtime_error
(
"Invalid option format!"
);
do_verification
=
static_cast
<
bool
>
(
std
::
atoi
(
optarg
));
break
;
case
'?'
:
if
(
std
::
string
(
long_options
[
option_index
].
name
)
==
"help"
)
{
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
break
;
default:
show_usage
(
argv
[
0
]);
return
(
-
1
);
};
};
if
(
optind
+
2
>
argc
)
throw
std
::
runtime_error
(
"Invalid cmd-line arguments, more argumetns are needed!"
);
init_method
=
std
::
atoi
(
argv
[
optind
++
]);
nrepeat
=
std
::
atoi
(
argv
[
optind
]);
if
(
scales
.
empty
())
{
scales
.
push_back
(
1.0
f
);
scales
.
push_back
(
0.0
f
);
};
return
(
0
);
};
};
template
<
int
Rank
,
typename
ReduceDims
>
static
std
::
vector
<
int
>
get_reduce_dims
()
{
std
::
vector
<
int
>
resDims
;
static_for
<
0
,
ReduceDims
::
Size
(),
1
>
{}([
&
](
auto
i
)
{
resDims
.
push_back
(
ReduceDims
::
At
(
i
));
});
return
(
resDims
);
};
template
<
int
Rank
,
typename
ReduceDims
>
static
std
::
vector
<
int
>
get_invariant_dims
()
{
std
::
vector
<
int
>
resDims
;
unsigned
int
incFlag
=
0
;
static_for
<
0
,
ReduceDims
::
Size
(),
1
>
{}(
[
&
](
auto
i
)
{
incFlag
=
incFlag
|
(
0x1
<<
ReduceDims
::
At
(
i
));
});
for
(
int
dim
=
0
;
dim
<
Rank
;
dim
++
)
{
if
(
incFlag
&
(
0x1
<<
dim
))
continue
;
resDims
.
push_back
(
dim
);
};
return
(
resDims
);
};
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
::
host_reduce
;
SimpleAppArgs
args
;
if
(
args
.
processArgs
(
argc
,
argv
)
<
0
)
return
(
-
1
);
constexpr
bool
op_support_indices
=
(
ReduceOpId
==
ReduceTensorOp_t
::
MIN
||
ReduceOpId
==
ReduceTensorOp_t
::
MAX
||
ReduceOpId
==
ReduceTensorOp_t
::
AMAX
);
constexpr
bool
NeedIndices
=
(
op_support_indices
&&
(
IndicesOpt
!=
ReduceTensorIndices_t
::
NO_INDICES
));
// if input is half type, no reason to use float for indiced reduction operation and must use
// float for non-indiced reduction operation for accuracy
constexpr
bool
invalid_reduce_1
=
std
::
is_same
<
InDataType
,
ck
::
half_t
>::
value
&&
((
!
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
)
||
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
ck
::
half_t
>::
value
));
// if input is float type, no reason to use double for indiced reduction operation
constexpr
bool
invalid_reduce_2
=
std
::
is_same
<
InDataType
,
float
>::
value
&&
(
op_support_indices
&&
!
std
::
is_same
<
AccDataType
,
float
>::
value
);
// indices option can only be used when it is really needed
constexpr
bool
invalid_reduce_3
=
(
!
op_support_indices
&&
IndicesOpt
!=
ReduceTensorIndices_t
::
NO_INDICES
);
constexpr
bool
invalid_reduce
=
(
invalid_reduce_1
||
invalid_reduce_2
||
invalid_reduce_3
);
if
constexpr
(
invalid_reduce
)
std
::
cout
<<
"Reduction setting is not supported, exiting!"
<<
std
::
endl
;
Tensor
<
InDataType
>
in
(
args
.
inLengths
);
const
std
::
vector
<
int
>
InvariantDims
=
get_invariant_dims
<
Rank
,
ReduceDims_
>
();
const
std
::
vector
<
int
>
ReduceDims
=
get_reduce_dims
<
Rank
,
ReduceDims_
>
();
std
::
vector
<
size_t
>
outLengths
;
if
(
InvariantDims
.
empty
())
outLengths
.
push_back
(
1
);
else
for
(
auto
dim
:
InvariantDims
)
outLengths
.
push_back
(
args
.
inLengths
[
dim
]);
Tensor
<
OutDataType
>
out_ref
(
outLengths
);
Tensor
<
OutDataType
>
out
(
outLengths
);
Tensor
<
int
>
out_indices_ref
(
outLengths
);
Tensor
<
int
>
out_indices
(
outLengths
);
auto
inStrides
=
in
.
mDesc
.
GetStrides
();
auto
outStrides
=
out
.
mDesc
.
GetStrides
();
size_t
invariant_total_length
=
out
.
mDesc
.
GetElementSize
();
size_t
reduce_total_length
=
in
.
mDesc
.
GetElementSize
()
/
invariant_total_length
;
float
alpha
=
args
.
scales
[
0
];
float
beta
=
args
.
scales
[
1
];
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
();
if
(
args
.
do_verification
)
{
switch
(
args
.
init_method
)
{
case
0
:
in
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_1
<
InDataType
>
{},
num_thread
);
break
;
case
1
:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
1
,
5
},
num_thread
);
if
(
beta
!=
0.0
f
)
out_ref
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
1
,
5
},
num_thread
);
}
if
(
beta
!=
0.0
f
)
for
(
size_t
i
=
0
;
i
<
out_ref
.
mDesc
.
GetElementSpace
();
i
++
)
out
.
mData
[
i
]
=
out_ref
.
mData
[
i
];
};
// these buffers are usually provided by the user application
DeviceMem
in_dev
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpace
());
DeviceMem
out_dev
(
sizeof
(
OutDataType
)
*
out
.
mDesc
.
GetElementSpace
());
in_dev
.
ToDevice
(
in
.
mData
.
data
());
if
(
beta
!=
0.0
f
)
out_dev
.
ToDevice
(
out
.
mData
.
data
());
size_t
indicesSizeInBytes
=
NeedIndices
?
out
.
mDesc
.
GetElementSize
()
*
sizeof
(
int
)
:
0
;
DeviceMem
out_indices_dev
(
indicesSizeInBytes
);
if
(
args
.
do_verification
)
{
ReductionHost
<
InDataType
,
AccDataType
,
OutDataType
,
ReduceOpId
,
PropagateNan
,
NeedIndices
>
hostReduce
(
in
.
mDesc
,
out_ref
.
mDesc
,
InvariantDims
,
ReduceDims
);
hostReduce
.
Run
(
alpha
,
in
.
mData
.
data
(),
beta
,
out_ref
.
mData
.
data
(),
out_indices_ref
.
mData
.
data
());
};
const
auto
i_inLengths
=
to_int_vector
(
args
.
inLengths
);
const
auto
i_inStrides
=
to_int_vector
(
inStrides
);
const
auto
i_outLengths
=
to_int_vector
(
outLengths
);
const
auto
i_outStrides
=
to_int_vector
(
outStrides
);
auto
reduce
=
DeviceReduceInstance
{};
auto
wsSizeInBytes
=
reduce
.
GetWorkspaceSizeInBytes
(
i_inLengths
);
DeviceMem
ws_dev
(
wsSizeInBytes
);
auto
argument_ptr
=
reduce
.
MakeArgumentPointer
(
i_inLengths
,
i_inStrides
,
i_outLengths
,
i_outStrides
,
alpha
,
beta
,
in_dev
.
GetDeviceBuffer
(),
out_dev
.
GetDeviceBuffer
(),
out_indices_dev
.
GetDeviceBuffer
(),
ws_dev
.
GetDeviceBuffer
(),
InElementwiseOperation
{
static_cast
<
int
>
(
reduce_total_length
)},
AccElementwiseOperation
{
static_cast
<
int
>
(
reduce_total_length
)});
if
(
!
reduce
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
cout
<<
"The runtime parameters seems not supported by the DeviceReduce instance, exiting!"
<<
std
::
endl
;
};
std
::
string
reduce_name
=
reduce
.
GetTypeString
();
auto
invoker_ptr
=
reduce
.
MakeInvokerPointer
();
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
args
.
nrepeat
);
std
::
size_t
num_bytes
=
invariant_total_length
*
reduce_total_length
*
sizeof
(
InDataType
)
+
invariant_total_length
*
sizeof
(
OutDataType
);
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
reduce_name
<<
std
::
endl
;
if
(
args
.
do_verification
)
{
out_dev
.
FromDevice
(
out
.
mData
.
data
());
check_error
(
out_ref
,
out
);
if
(
NeedIndices
)
{
out_indices_dev
.
FromDevice
(
out_indices
.
mData
.
data
());
check_indices
(
out_indices_ref
,
out_indices
);
};
};
}
example/13_pool2d_fwd/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_pool2d_fwd pool2d_fwd.cpp
)
example/13_pool2d_fwd/pool2d_fwd.cpp
0 → 100644
View file @
9dce6851
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_reduce_util.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "reduction_operator.hpp"
#include "device_pool2d_fwd_nhwc_nhwc.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp_t
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp_t
::
AVG
;
#endif
static
constexpr
bool
NeedIndices
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
using
DevicePoolFwdInstance
=
ck
::
tensor_operation
::
device
::
DevicePool2dFwd_Input_N_Hi_Wi_C_Output_N_Ho_Wo_C
<
InDataType
,
// InDataType
OutDataType
,
// OutDataType
AccDataType
,
// AccDataType
ReduceOpId
,
NeedIndices
,
64
,
// BlockSize
64
,
// ReduceMThreadClusterSize
1
,
// ReduceKThreadClusterSize
4
,
// ReduceMThreadSliceSize
1
,
// ReduceKThreadSliceSize
4
>
;
// InSrcOutDstVectorSize
template
<
typename
InDataType
,
typename
OutDataType
,
typename
AccDataType
,
ck
::
ReduceTensorOp_t
ReduceOpId
,
bool
PropagateNan
,
bool
NeedIndices
>
static
void
pool_host_verify
(
const
Tensor
<
InDataType
>&
in
,
Tensor
<
OutDataType
>&
out
,
Tensor
<
int
>&
out_indices
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
2
>&
window_strides
,
const
std
::
array
<
ck
::
index_t
,
2
>&
in_left_pads
,
const
std
::
array
<
ck
::
index_t
,
2
>&
/*in_right_pads*/
)
{
using
namespace
ck
::
host_reduce
;
const
int
divider
=
window_spatial_lengths
[
0
]
*
window_spatial_lengths
[
1
];
const
auto
PreUnaryOp
=
PreUnaryOpFn
<
AccDataType
,
ReduceOpId
>
(
divider
);
const
auto
PosUnaryOp
=
PosUnaryOpFn
<
AccDataType
,
ReduceOpId
>
(
divider
);
if
constexpr
(
!
NeedIndices
)
{
auto
opReduce
=
ReduceOpFn
<
AccDataType
,
ReduceOpId
>
();
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOpZeroVal
<
AccDataType
,
ReduceOpId
>
();
for
(
int
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
int
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
int
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
PreUnaryOp
(
currVal
);
binop_with_nan_check
<
AccDataType
,
PropagateNan
>
(
opReduce
,
accuVal
,
currVal
);
}
}
}
PosUnaryOp
(
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
else
{
auto
opReduce
=
ReduceOpFn2
<
AccDataType
,
ReduceOpId
>
();
auto
f_nchw
=
[
&
](
auto
n
,
auto
c
,
auto
ho
,
auto
wo
)
{
auto
accuVal
=
ReduceOpZeroVal
<
AccDataType
,
ReduceOpId
>
();
int
accuIndex
=
0
;
for
(
int
y
=
0
;
y
<
window_spatial_lengths
[
0
];
++
y
)
{
int
hi
=
ho
*
window_strides
[
0
]
+
y
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
window_spatial_lengths
[
1
];
++
x
)
{
int
wi
=
wo
*
window_strides
[
1
]
+
x
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in
.
mDesc
.
GetLengths
()[
3
])
{
AccDataType
currVal
=
static_cast
<
AccDataType
>
(
in
(
n
,
c
,
hi
,
wi
));
int
currIndex
=
y
*
window_spatial_lengths
[
1
]
+
x
;
PreUnaryOp
(
currVal
);
binop_with_nan_check2
<
AccDataType
,
PropagateNan
>
(
opReduce
,
accuVal
,
currVal
,
accuIndex
,
currIndex
);
}
}
}
PosUnaryOp
(
accuVal
);
out
(
n
,
c
,
ho
,
wo
)
=
accuVal
;
out_indices
(
n
,
c
,
ho
,
wo
)
=
accuIndex
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out
.
mDesc
.
GetLengths
()[
0
],
out
.
mDesc
.
GetLengths
()[
1
],
out
.
mDesc
.
GetLengths
()[
2
],
out
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
};
}
int
main
(
int
argc
,
char
*
argv
[])
{
using
namespace
ck
::
host_reduce
;
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Pool shape
ck
::
index_t
N
=
128
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
16
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
C
=
std
::
stoi
(
argv
[
5
]);
Y
=
std
::
stoi
(
argv
[
6
]);
X
=
std
::
stoi
(
argv
[
7
]);
Hi
=
std
::
stoi
(
argv
[
8
]);
Wi
=
std
::
stoi
(
argv
[
9
]);
window_stride_h
=
std
::
stoi
(
argv
[
10
]);
window_stride_w
=
std
::
stoi
(
argv
[
11
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
12
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
13
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
14
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
15
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 15: N, C, Y, X, Hi, Wi, Sy, Sx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
ck
::
index_t
Ho
=
(
Hi
+
in_left_pad_h
+
in_right_pad_h
-
Y
)
/
window_stride_h
+
1
;
const
ck
::
index_t
Wo
=
(
Wi
+
in_left_pad_w
+
in_right_pad_w
-
X
)
/
window_stride_w
+
1
;
const
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
{{
Y
,
X
}};
const
std
::
array
<
ck
::
index_t
,
2
>
window_strides
{{
window_stride_h
,
window_stride_w
}};
const
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
{{
in_left_pad_h
,
in_left_pad_w
}};
const
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
{{
in_right_pad_h
,
in_right_pad_w
}};
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
int
>
out_indices_n_c_ho_wo_host
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
int
>
out_indices_n_c_ho_wo_device
(
f_host_tensor_descriptor
(
N
,
C
,
Ho
,
Wo
,
OutLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_c_ho_wo: "
<<
out_n_c_ho_wo_host
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_c_ho_wo_device
.
mDesc
.
GetElementSpace
());
DeviceMem
out_indices_device_buf
(
sizeof
(
int
)
*
out_indices_n_c_ho_wo_device
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
auto
pool
=
DevicePoolFwdInstance
{};
auto
invoker_ptr
=
pool
.
MakeInvokerPointer
();
auto
argument_ptr
=
pool
.
MakeArgumentPointer
(
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
int
*>
(
out_indices_device_buf
.
GetDeviceBuffer
()),
N
,
C
,
std
::
array
<
ck
::
index_t
,
2
>
{{
Hi
,
Wi
}},
std
::
array
<
ck
::
index_t
,
2
>
{{
Y
,
X
}},
std
::
array
<
ck
::
index_t
,
2
>
{{
Ho
,
Wo
}},
window_strides
,
input_left_pads
,
input_right_pads
);
if
(
!
pool
.
IsSupportedArgument
(
argument_ptr
.
get
()))
{
throw
std
::
runtime_error
(
"wrong! device_op with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
OutDataType
)
*
(
N
*
C
*
Ho
*
Wo
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
pool_host_verify
<
InDataType
,
OutDataType
,
AccDataType
,
ReduceOpId
,
PropagateNan
,
NeedIndices
>
(
in_n_c_hi_wi
,
out_n_c_ho_wo_host
,
out_indices_n_c_ho_wo_host
,
window_spatial_lengths
,
window_strides
,
input_left_pads
,
input_right_pads
);
out_device_buf
.
FromDevice
(
out_n_c_ho_wo_device
.
mData
.
data
());
check_error
(
out_n_c_ho_wo_host
,
out_n_c_ho_wo_device
);
if
constexpr
(
NeedIndices
)
{
out_indices_device_buf
.
FromDevice
(
out_indices_n_c_ho_wo_device
.
mData
.
data
());
// check_indices(out_indices_n_c_ho_wo_host, out_indices_n_c_ho_wo_device);
};
}
}
example/14_grouped_gemm/CMakeLists.txt
0 → 100644
View file @
9dce6851
add_example_executable
(
example_grouped_gemm_xdl_fp16 grouped_gemm_xdl_fp16.cpp
)
example/1_gemm
_xdl
/README.md
→
example/1
4_grouped
_gemm/README.md
View file @
9dce6851
File moved
example/1
2
_grouped_gemm
_xdl
/grouped_gemm_xdl.cpp
→
example/1
4
_grouped_gemm/grouped_gemm_xdl
_fp16
.cpp
View file @
9dce6851
File moved
example/7_conv2d_fwd_xdl_bias_relu_atomic_add/conv2d_fwd_xdl_bias_relu_atomic_add.cpp
deleted
100644 → 0
View file @
3cc57101
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
#include "convolution_utility.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
KYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NHWK
;
using
InElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
AddRelu
;
static
constexpr
auto
MemoryAtomicAdd
=
ck
::
InMemoryDataOperationEnum_t
::
AtomicAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization_t
::
Default
;
// clang-format off
using
DeviceConvFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceConv2dFwdXdl_C_Shuffle_Bias_Activation_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// clang-format off
// | InData| WeiData| OutData| AccData| In| Wei| Out| Out| ConvForward| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| GlobalMemory| Specialization| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MXdlPerWave_MWaveMPerXdl| ScalarPerVector|
// | | | | | Operation| Operation| Operation| DataOperation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NXdlPerWave_NWaveNPerXdl| _NWaveNPerXdl|
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
InDataType
,
WeiDataType
,
OutDataType
,
AccDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
MemoryAtomicAdd
,
ConvFwdDefault
,
256
,
128
,
256
,
4
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
1
,
1
,
S
<
1
,
1
,
8
,
1
,
1
,
32
>
,
2
>
;
// clang-format on
template
<
typename
TIn
,
typename
TWei
,
typename
TOut
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
>
void
host_reference_calculation
(
const
Tensor
<
TIn
>&
in_n_c_hi_wi
,
const
Tensor
<
TWei
>&
wei_k_c_y_x
,
Tensor
<
TOut
>&
out_n_k_ho_wo
,
const
Tensor
<
TOut
>&
bias_k
,
const
std
::
vector
<
ck
::
index_t
>&
conv_strides
,
const
std
::
vector
<
ck
::
index_t
>&
conv_dilations
,
const
std
::
vector
<
ck
::
index_t
>&
in_left_pads
,
const
std
::
vector
<
ck
::
index_t
>&
/* in_right_pads */
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
auto
f_nchw
=
[
&
](
auto
n
,
auto
k
,
auto
ho
,
auto
wo
)
{
float
v_acc
=
0
;
for
(
int
c
=
0
;
c
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
1
];
++
c
)
{
for
(
int
y
=
0
;
y
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
2
];
++
y
)
{
int
hi
=
ho
*
conv_strides
[
0
]
+
y
*
conv_dilations
[
0
]
-
in_left_pads
[
0
];
for
(
int
x
=
0
;
x
<
wei_k_c_y_x
.
mDesc
.
GetLengths
()[
3
];
++
x
)
{
int
wi
=
wo
*
conv_strides
[
1
]
+
x
*
conv_dilations
[
1
]
-
in_left_pads
[
1
];
if
(
hi
>=
0
&&
hi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
2
]
&&
wi
>=
0
&&
wi
<
in_n_c_hi_wi
.
mDesc
.
GetLengths
()[
3
])
{
float
v_in
;
float
v_wei
;
in_element_op
(
v_in
,
static_cast
<
const
float
>
(
in_n_c_hi_wi
(
n
,
c
,
hi
,
wi
)));
wei_element_op
(
v_wei
,
static_cast
<
const
float
>
(
wei_k_c_y_x
(
k
,
c
,
y
,
x
)));
v_acc
+=
v_in
*
v_wei
;
}
}
}
}
float
v_out
;
out_element_op
(
v_out
,
v_acc
,
static_cast
<
float
>
(
bias_k
(
k
)));
out_n_k_ho_wo
(
n
,
k
,
ho
,
wo
)
+=
v_out
;
};
make_ParallelTensorFunctor
(
f_nchw
,
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
0
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
1
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
2
],
out_n_k_ho_wo
.
mDesc
.
GetLengths
()[
3
])(
std
::
thread
::
hardware_concurrency
());
}
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
0
;
int
init_method
=
0
;
int
nrepeat
=
5
;
// Conv shape
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
256
;
ck
::
index_t
C
=
192
;
ck
::
index_t
Y
=
3
;
ck
::
index_t
X
=
3
;
ck
::
index_t
Hi
=
71
;
ck
::
index_t
Wi
=
71
;
ck
::
index_t
conv_stride_h
=
2
;
ck
::
index_t
conv_stride_w
=
2
;
ck
::
index_t
conv_dilation_h
=
1
;
ck
::
index_t
conv_dilation_w
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
19
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
N
=
std
::
stoi
(
argv
[
4
]);
K
=
std
::
stoi
(
argv
[
5
]);
C
=
std
::
stoi
(
argv
[
6
]);
Y
=
std
::
stoi
(
argv
[
7
]);
X
=
std
::
stoi
(
argv
[
8
]);
Hi
=
std
::
stoi
(
argv
[
9
]);
Wi
=
std
::
stoi
(
argv
[
10
]);
conv_stride_h
=
std
::
stoi
(
argv
[
11
]);
conv_stride_w
=
std
::
stoi
(
argv
[
12
]);
conv_dilation_h
=
std
::
stoi
(
argv
[
13
]);
conv_dilation_w
=
std
::
stoi
(
argv
[
14
]);
in_left_pad_h
=
std
::
stoi
(
argv
[
15
]);
in_left_pad_w
=
std
::
stoi
(
argv
[
16
]);
in_right_pad_h
=
std
::
stoi
(
argv
[
17
]);
in_right_pad_w
=
std
::
stoi
(
argv
[
18
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx
\n
"
);
exit
(
0
);
}
const
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
{
conv_stride_h
,
conv_stride_w
};
const
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
{
conv_dilation_h
,
conv_dilation_w
};
const
std
::
vector
<
ck
::
index_t
>
input_left_pads
{
in_left_pad_h
,
in_left_pad_w
};
const
std
::
vector
<
ck
::
index_t
>
input_right_pads
{
in_right_pad_h
,
in_right_pad_w
};
const
auto
output_spatial_lengths
=
ck
::
tensor_operation
::
ConvolutionUtility
::
ComputeOutputSpatialLengths
({
Hi
,
Wi
},
{
Y
,
X
},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
// tensor layout
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
}
else
if
constexpr
(
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KYXC
>::
value
||
ck
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
};
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
// bias: assume contiguous 1d vector
Tensor
<
OutDataType
>
bias_k
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
static_cast
<
std
::
size_t
>
(
K
)})));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias_k: "
<<
bias_k
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
OutDataType
>
{
-
5
,
5
});
break
;
default:
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
out_n_k_ho_wo_host_result
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
-
0.5
,
0.5
});
bias_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
OutDataType
>
{
0.0
,
1.0
});
}
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
bias_device_buf
(
sizeof
(
OutDataType
)
*
bias_k
.
mDesc
.
GetElementSpace
());
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
out_device_buf
.
ToDevice
(
out_n_k_ho_wo_host_result
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias_k
.
mData
.
data
());
auto
conv
=
DeviceConvFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
static_cast
<
const
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
OutDataType
*>
(
bias_device_buf
.
GetDeviceBuffer
()),
N
,
K
,
C
,
std
::
vector
<
ck
::
index_t
>
{
Hi
,
Wi
},
std
::
vector
<
ck
::
index_t
>
{
Y
,
X
},
std
::
vector
<
ck
::
index_t
>
{
Ho
,
Wo
},
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device operator with the specified compilation parameters does "
"not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
nrepeat
);
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
)
+
sizeof
(
OutDataType
)
*
(
K
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
if
(
do_verification
)
{
host_reference_calculation
(
in_n_c_hi_wi
,
wei_k_c_y_x
,
out_n_k_ho_wo_host_result
,
bias_k
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
InElementOp
{},
WeiElementOp
{},
OutElementOp
{});
out_device_buf
.
FromDevice
(
out_n_k_ho_wo_device_result
.
mData
.
data
());
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
}
}
Prev
1
2
3
4
5
6
7
8
…
24
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment