Unverified Commit 9cc99065 authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into builtin_fastgelu

parents 6fd75022 830d37a7
...@@ -471,6 +471,12 @@ def Build_CK(Map conf=[:]){ ...@@ -471,6 +471,12 @@ def Build_CK(Map conf=[:]){
//we only need the ckProfiler to run the performance tests, so we pack and stash it //we only need the ckProfiler to run the performance tests, so we pack and stash it
sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler' sh 'tar -zcvf ckProfiler.tar.gz bin/ckProfiler'
stash "ckProfiler.tar.gz" stash "ckProfiler.tar.gz"
if (params.RUN_FULL_QA){
// build deb packages
sh 'make -j package'
archiveArtifacts artifacts: 'composablekernel-ckprofiler_*.deb'
archiveArtifacts artifacts: 'composablekernel-tests_*.deb'
}
} }
} }
} }
...@@ -651,8 +657,8 @@ pipeline { ...@@ -651,8 +657,8 @@ pipeline {
{ {
agent{ label rocmnode("gfx908 || gfx90a") } agent{ label rocmnode("gfx908 || gfx90a") }
environment{ environment{
setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" """ : """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 " """ }" setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx1030" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" """ : """ -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a;gfx1030" -DCMAKE_CXX_FLAGS="-O3 " """ }"
execute_args = "${params.COMPILER_VERSION == "ck-9110" ? """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ : """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908,gfx90a" -DCMAKE_CXX_FLAGS="-O3" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ }" execute_args = "${params.COMPILER_VERSION == "ck-9110" ? """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908;gfx90a;gfx1030" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ : """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908,gfx90a;gfx1030" -DCMAKE_CXX_FLAGS="-O3" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ }"
} }
steps{ steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local') Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
...@@ -674,7 +680,7 @@ pipeline { ...@@ -674,7 +680,7 @@ pipeline {
options { retry(2) } options { retry(2) }
agent{ label rocmnode("gfx908 || gfx90a")} agent{ label rocmnode("gfx908 || gfx90a")}
environment{ environment{
setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -DBUILD_DEV=On """ : """ -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS=" -O3 " -DBUILD_DEV=On """}" setup_args = "${params.COMPILER_VERSION == "ck-9110" ? """ -DGPU_TARGETS="gfx908;gfx90a;gfx1030" -DCMAKE_CXX_FLAGS=" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc" -DBUILD_DEV=On """ : """ -DGPU_TARGETS="gfx908;gfx90a;gfx1030" -DCMAKE_CXX_FLAGS=" -O3 " -DBUILD_DEV=On """}"
} }
steps{ steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release') runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
......
add_executable(client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp) add_executable(client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp)
target_link_libraries(client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp)
target_link_libraries(client_grouped_conv1d_fwd PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNWC;
using WeiLayout = ck::tensor_layout::convolution::GKXC;
using OutLayout = ck::tensor_layout::convolution::GNWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr ck::index_t NumDimSpatial = 1;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Wo = 28;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::array<ck::index_t, NumDimSpatial + 3> in_lengths{G, N, Wi, C};
std::array<ck::index_t, NumDimSpatial + 3> in_strides{0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> wei_lengths{G, K, X, C};
std::array<ck::index_t, NumDimSpatial + 3> wei_strides{0, 0, 0, 1};
std::array<ck::index_t, NumDimSpatial + 3> out_lengths{G, N, Wo, K};
std::array<ck::index_t, NumDimSpatial + 3> out_strides{0, 0, 0, 1};
std::partial_sum(rbegin(in_lengths),
std::prev(rend(in_lengths)),
std::next(rbegin(in_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(wei_lengths),
std::prev(rend(wei_lengths)),
std::next(rbegin(wei_strides)),
std::multiplies<>{});
std::partial_sum(rbegin(out_lengths),
std::prev(rend(out_lengths)),
std::next(rbegin(out_strides)),
std::multiplies<>{});
// transpose GNWC/GKXC/GNWK to GNCW/GKCX/GNCW
std::rotate(rbegin(in_lengths),
std::next(rbegin(in_lengths)),
std::next(rbegin(in_lengths), NumDimSpatial + 1));
std::rotate(rbegin(in_strides),
std::next(rbegin(in_strides)),
std::next(rbegin(in_strides), NumDimSpatial + 1));
std::rotate(rbegin(wei_lengths),
std::next(rbegin(wei_lengths)),
std::next(rbegin(wei_lengths), NumDimSpatial + 1));
std::rotate(rbegin(wei_strides),
std::next(rbegin(wei_strides)),
std::next(rbegin(wei_strides), NumDimSpatial + 1));
std::rotate(rbegin(out_lengths),
std::next(rbegin(out_lengths)),
std::next(rbegin(out_lengths), NumDimSpatial + 1));
std::rotate(rbegin(out_strides),
std::next(rbegin(out_strides)),
std::next(rbegin(out_strides), NumDimSpatial + 1));
std::array<ck::index_t, NumDimSpatial> filter_strides{1};
std::array<ck::index_t, NumDimSpatial> filter_dilations{1};
std::array<ck::index_t, NumDimSpatial> input_left_pads{1};
std::array<ck::index_t, NumDimSpatial> input_right_pads{1};
SimpleDeviceMem in(sizeof(InDataType) * G * N * Wi * C);
SimpleDeviceMem wei(sizeof(WeiDataType) * G * K * X * C);
SimpleDeviceMem out(sizeof(OutDataType) * G * N * Wo * K);
using DeviceOp = ck::tensor_operation::device::DeviceGroupedConvFwdMultipleD<NumDimSpatial,
InLayout,
WeiLayout,
ck::Tuple<>,
OutLayout,
InDataType,
WeiDataType,
ck::Tuple<>,
OutDataType,
PassThrough,
PassThrough,
PassThrough>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
std::string best_op_name;
int best_op_id = -1;
float best_avg_time = std::numeric_limits<float>::max();
float best_gb_per_sec = 0;
float best_tflops = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
std::string op_name = op_ptr->GetTypeString();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float avg_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = std::size_t(2) * G * N * K * C * Wo * X;
std::size_t num_bytes = sizeof(InDataType) * G * N * Wi * C +
sizeof(WeiDataType) * G * K * X * C +
sizeof(OutDataType) * G * N * Wo * K;
float tflops = static_cast<float>(flop) / 1.E9 / avg_time;
float gb_per_sec = num_bytes / 1.E6 / avg_time;
std::cout << "Perf: " << std::setw(10) << avg_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
best_op_id = i;
best_op_name = op_name;
best_avg_time = avg_time;
best_gb_per_sec = gb_per_sec;
best_tflops = tflops;
}
}
else
{
std::cerr << op_name << " does not support this problem" << std::endl;
}
}
if(best_op_id < 0)
{
std::cerr << "no suitable instance" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Best Perf: " << std::setw(10) << best_avg_time << " ms, " << best_tflops
<< " TFlops, " << best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
// run the best intance
{
auto& op_ptr = op_ptrs[best_op_id];
std::cout << "Run the best instance without timing: " << op_ptr->GetTypeString()
<< std::endl;
auto argument_ptr = op_ptr->MakeArgumentPointer(in.GetDeviceBuffer(),
wei.GetDeviceBuffer(),
{},
out.GetDeviceBuffer(),
in_lengths,
in_strides,
wei_lengths,
wei_strides,
{},
{},
out_lengths,
out_strides,
filter_strides,
filter_dilations,
input_left_pads,
input_right_pads,
PassThrough{},
PassThrough{},
PassThrough{});
auto invoker_ptr = op_ptr->MakeInvokerPointer();
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, false});
}
std::cout << "Done" << std::endl;
}
}
add_executable(client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp) add_executable(client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp) add_executable(client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp)
add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp) add_executable(client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp)
target_link_libraries(client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations)
target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations) target_link_libraries(client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using InLayout = ck::tensor_layout::convolution::GNWC;
using WeiLayout = ck::tensor_layout::convolution::GKXC;
using OutLayout = ck::tensor_layout::convolution::GNWK;
static constexpr ck::index_t NumDimSpatial = 1;
static constexpr ck::index_t G = 32;
static constexpr ck::index_t N = 256;
static constexpr ck::index_t K = 192;
static constexpr ck::index_t C = 192;
static constexpr ck::index_t X = 3;
static constexpr ck::index_t Wi = 28;
static constexpr ck::index_t Wo = 28;
int main()
{
return run_grouped_conv_bwd_weight<NumDimSpatial,
InDataType,
WeiDataType,
OutDataType,
InLayout,
WeiLayout,
OutLayout>(G, N, K, C, {Wi}, {X}, {Wo}, {1}, {1}, {1}, {1})
? EXIT_SUCCESS
: EXIT_FAILURE;
}
...@@ -111,6 +111,7 @@ __global__ void ...@@ -111,6 +111,7 @@ __global__ void
ignore = p_b_grid; ignore = p_b_grid;
ignore = p_b1_grid; ignore = p_b1_grid;
ignore = p_c_grid; ignore = p_c_grid;
ignore = p_d0s_grid;
ignore = a_element_op; ignore = a_element_op;
ignore = b_element_op; ignore = b_element_op;
ignore = c0de_element_op; ignore = c0de_element_op;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment