Unverified Commit 9b3365e1 authored by Po Yen Chen's avatar Po Yen Chen Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents 9608beee b79bbbc2
......@@ -45,9 +45,9 @@ add_subdirectory(batched_gemm_softmax_gemm_permute)
add_subdirectory(grouped_gemm)
add_subdirectory(reduce)
add_subdirectory(convnd_fwd)
add_subdirectory(convnd_bwd_weight)
add_subdirectory(convnd_bwd_data)
add_subdirectory(grouped_convnd_fwd)
add_subdirectory(grouped_convnd_bwd_weight)
add_subdirectory(block_to_ctile_map)
add_subdirectory(softmax)
add_subdirectory(normalization)
......
add_gtest_executable(test_convnd_bwd_weight convnd_bwd_weight.cpp)
target_link_libraries(test_convnd_bwd_weight PRIVATE utility device_conv1d_bwd_weight_instance device_conv2d_bwd_weight_instance device_conv3d_bwd_weight_instance)
......@@ -9,6 +9,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace ck {
......@@ -128,15 +129,15 @@ struct TestGemm
{
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......@@ -229,27 +230,27 @@ struct TestGemm
bool res = false;
if(std::is_same<CDataType, float>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
res = ck::utils::check_err(c_device, c_host);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, ck::half_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
res = ck::utils::check_err(c_device, c_host);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, ck::bhalf_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
res = ck::utils::check_err(c_device, c_host);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, int8_t>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
res = ck::utils::check_err(c_device, c_host);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
else if(std::is_same<CDataType, double>::value)
{
res = ck::utils::check_err(c_device.mData, c_host.mData);
res = ck::utils::check_err(c_device, c_host);
std::cout << (res ? "SUCCESS" : "FAILURE") << std::endl;
}
......
......@@ -16,6 +16,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/host_gemm.hpp"
......@@ -93,15 +94,15 @@ int test_gemm(const gemmArgs& args)
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, bool row_major) {
using namespace ck::literals;
if(row_major)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
......
add_gtest_executable(test_grouped_convnd_bwd_weight grouped_convnd_bwd_weight.cpp)
target_link_libraries(test_grouped_convnd_bwd_weight PRIVATE utility device_grouped_conv1d_bwd_weight_instance device_grouped_conv2d_bwd_weight_instance device_grouped_conv3d_bwd_weight_instance)
......@@ -4,14 +4,15 @@
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <vector>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/include/profile_conv_bwd_weight_impl.hpp"
#include "profiler/include/profile_grouped_conv_bwd_weight_impl.hpp"
template <typename Tuple>
class TestConvndBwdWeight : public ::testing::Test
class TestGroupedConvndBwdWeight : public ::testing::Test
{
protected:
using DataType = std::tuple_element_t<0, Tuple>;
......@@ -25,20 +26,20 @@ class TestConvndBwdWeight : public ::testing::Test
{
bool pass;
EXPECT_FALSE(conv_params.empty());
pass = ck::profiler::profile_conv_bwd_weight_impl<
pass = ck::profiler::profile_grouped_conv_bwd_weight_impl<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWC,
ck::tensor_layout::convolution::NHWC,
ck::tensor_layout::convolution::NDHWC>>,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::KXC,
ck::tensor_layout::convolution::KYXC,
ck::tensor_layout::convolution::KZYXC>>,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::NWK,
ck::tensor_layout::convolution::NHWK,
ck::tensor_layout::convolution::NDHWK>>,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
DataType,
DataType,
DataType>(true, // do_verification
......@@ -54,37 +55,37 @@ class TestConvndBwdWeight : public ::testing::Test
using KernelTypes =
::testing::Types<std::tuple<float>, std::tuple<ck::half_t>, std::tuple<ck::bhalf_t>>;
TYPED_TEST_SUITE(TestConvndBwdWeight, KernelTypes);
TYPED_TEST_SUITE(TestGroupedConvndBwdWeight, KernelTypes);
TYPED_TEST(TestConvndBwdWeight, Test1D)
TYPED_TEST(TestGroupedConvndBwdWeight, Test1D)
{
this->conv_params.clear();
this->conv_params.push_back({1, 1, 128, 128, 256, {1}, {14}, {2}, {1}, {0}, {0}});
this->conv_params.push_back({1, 1, 128, 128, 256, {3}, {28}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 1, 128, 128, 256, {1}, {3}, {1}, {1}, {0}, {0}});
this->conv_params.push_back({1, 4, 128, 128, 256, {1}, {14}, {2}, {1}, {0}, {0}});
this->conv_params.push_back({1, 4, 128, 128, 256, {3}, {28}, {1}, {1}, {1}, {1}});
this->conv_params.push_back({1, 4, 128, 128, 256, {1}, {3}, {1}, {1}, {0}, {0}});
this->template Run<1>();
}
TYPED_TEST(TestConvndBwdWeight, Test2D)
TYPED_TEST(TestGroupedConvndBwdWeight, Test2D)
{
this->conv_params.clear();
this->conv_params.push_back(
{2, 1, 128, 128, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
{2, 4, 128, 128, 256, {1, 1}, {7, 7}, {2, 2}, {1, 1}, {0, 0}, {0, 0}});
this->conv_params.push_back(
{2, 1, 32, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
{2, 4, 32, 128, 256, {3, 3}, {14, 14}, {1, 1}, {1, 1}, {1, 1}, {1, 1}});
this->conv_params.push_back(
{2, 1, 128, 128, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
{2, 4, 128, 128, 256, {1, 1}, {3, 3}, {1, 1}, {1, 1}, {0, 0}, {0, 0}});
this->template Run<2>();
}
TYPED_TEST(TestConvndBwdWeight, Test3D)
TYPED_TEST(TestGroupedConvndBwdWeight, Test3D)
{
this->conv_params.clear();
this->conv_params.push_back(
{3, 1, 128, 128, 256, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
{3, 4, 128, 128, 256, {1, 1, 1}, {7, 7, 7}, {2, 2, 2}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
this->conv_params.push_back(
{3, 1, 32, 128, 256, {3, 3, 3}, {14, 14, 3}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
{3, 4, 32, 128, 256, {3, 3, 3}, {14, 14, 3}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}, {1, 1, 1}});
this->conv_params.push_back(
{3, 1, 128, 128, 256, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
{3, 4, 128, 128, 256, {1, 1, 1}, {3, 3, 3}, {1, 1, 1}, {1, 1, 1}, {0, 0, 0}, {0, 0, 0}});
this->template Run<3>();
}
......@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
......@@ -54,7 +55,7 @@ run_reference_convolution_forward(const ck::utils::conv::ConvParam& conv_param,
fill_input_op(input.begin(), input.end());
fill_weights_op(weights.begin(), weights.end());
std::fill(host_output.begin(), host_output.end(), OutDataType(0.f));
ck::ranges::fill<OutDataType>(host_output, 0.f);
auto ref_conv = ck::tensor_operation::host::ReferenceConvFwd<NDimSpatial,
InDataType,
......@@ -122,7 +123,7 @@ TEST(ReferenceConvolutionFWD, Conv2DGNHWC)
508.5};
EXPECT_TRUE(ck::utils::check_err(
out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor, ref_data, "Error: incorrect results!"));
}
TEST(ReferenceConvolutionFWD, Conv2DGNHWCStridesDilationsPadding)
......@@ -149,7 +150,7 @@ TEST(ReferenceConvolutionFWD, Conv2DGNHWCStridesDilationsPadding)
1323., 1323., 2002.5, 2002.5, 2038.5, 2038.5, 2074.5, 2074.5, 2110.5, 2110.5};
EXPECT_TRUE(ck::utils::check_err(
out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor, ref_data, "Error: incorrect results!"));
}
TEST(ReferenceConvolutionFWD, Conv1DGNWC)
......@@ -178,7 +179,7 @@ TEST(ReferenceConvolutionFWD, Conv1DGNWC)
std::vector<float> ref_data{7.5, 13.5, 19.5, 25.5};
EXPECT_TRUE(ck::utils::check_err(
out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor, ref_data, "Error: incorrect results!"));
}
TEST(ReferenceConvolutionFWD, Conv1DGNWCStridesDilationsPadding)
......@@ -207,7 +208,7 @@ TEST(ReferenceConvolutionFWD, Conv1DGNWCStridesDilationsPadding)
std::vector<float> ref_data{9., 9., 19.5, 19.5, 31.5, 31.5, 43.5, 43.5, 55.5, 55.5};
EXPECT_TRUE(ck::utils::check_err(
out_tensor.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor.mData, ref_data, "Error: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor, ref_data, "Error: incorrect results!"));
}
TEST(ReferenceConvolutionFWD, Conv1DGNWCSameOutputSize)
......@@ -301,7 +302,7 @@ TEST(ReferenceConvolutionFWD, Conv1DGNWCSameOutputSize)
49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4, 49.4};
EXPECT_TRUE(ck::utils::check_err(
out_tensor2.mDesc.GetLengths(), ref_dims, "Error: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor2.mData, ref_data, "Error: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor2, ref_data, "Error: incorrect results!"));
}
#endif
......@@ -340,8 +341,7 @@ TEST(ReferenceConvolutionFWD, Conv3DGNCDHW)
EXPECT_TRUE(ck::utils::check_err(out_tensor.mDesc.GetLengths(),
ref_dims,
"Error [case 1]: wrong output tensor dimensions!"));
EXPECT_TRUE(
ck::utils::check_err(out_tensor.mData, ref_data, "Error [case 1]: incorrect results!"));
EXPECT_TRUE(ck::utils::check_err(out_tensor, ref_data, "Error [case 1]: incorrect results!"));
}
TEST(ReferenceConvolutionFWD, Conv3DGNCDHWStridesDilations)
......@@ -388,5 +388,5 @@ TEST(ReferenceConvolutionFWD, Conv3DGNCDHWStridesDilations)
ref_dims,
"Error [case 2]: wrong output tensor dimensions!"));
EXPECT_TRUE(ck::utils::check_err(
out_tensor.mData, ref_data, "Error [case 2]: incorrect results!", 1e-4f, 1e-6f));
out_tensor, ref_data, "Error [case 2]: incorrect results!", 1e-4f, 1e-6f));
}
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment