"...git@developer.sourcefind.cn:hehl2/torchaudio.git" did not exist on "b3c2cfceb35f8c962bf596f81ea6c5dcc47ed39a"
Unverified Commit 9b1437db authored by Bartlomiej Wroblewski's avatar Bartlomiej Wroblewski Committed by GitHub
Browse files

Merge branch 'develop' into bwroblew/dl_fails_vec_size

parents 27a59270 f9d0eddb
# Documentation files
docs/* @saadrahim @LisaDelaney
*.md @saadrahim @LisaDelaney
*.rst @saadrahim @LisaDelaney
# Header directory
library/include/* @saadrahim @LisaDelaney
cmake_minimum_required(VERSION 3.14)
# This has to be initialized before the project() command appears
# Set the default of CMAKE_BUILD_TYPE to be release, unless user specifies with -D. MSVC_IDE does not use CMAKE_BUILD_TYPE
if( NOT MSVC_IDE AND NOT CMAKE_BUILD_TYPE )
set( CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel." )
endif()
# Default installation path
if(WIN32)
set(CMAKE_INSTALL_PREFIX "/opt/rocm/x86_64-w64-mingw32" CACHE PATH "")
else()
set(CMAKE_INSTALL_PREFIX "/opt/rocm" CACHE PATH "")
endif()
set(version 1.1.0)
# Check support for CUDA/HIP in Cmake
project(composable_kernel VERSION ${version})
......@@ -15,6 +28,12 @@ if (DTYPES)
if (DTYPES MATCHES "fp8")
add_definitions(-DCK_ENABLE_FP8)
set(CK_ENABLE_FP8 "ON")
add_compile_options(-Wno-bit-int-extension)
endif()
if (DTYPES MATCHES "bf8")
add_definitions(-DCK_ENABLE_BF8)
set(CK_ENABLE_BF8 "ON")
add_compile_options(-Wno-bit-int-extension)
endif()
if (DTYPES MATCHES "fp16")
add_definitions(-DCK_ENABLE_FP16)
......@@ -34,8 +53,9 @@ if (DTYPES)
endif()
message("DTYPES macro set to ${DTYPES}")
else()
add_definitions(-DCK_ENABLE_INT8 -DCK_ENABLE_FP8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16)
add_definitions(-DCK_ENABLE_INT8 -DCK_ENABLE_FP8 -DCK_ENABLE_BF8 -DCK_ENABLE_FP16 -DCK_ENABLE_FP32 -DCK_ENABLE_FP64 -DCK_ENABLE_BF16)
set(CK_ENABLE_ALL_DTYPES "ON")
add_compile_options(-Wno-bit-int-extension) # enable fp8 and bf8
endif()
if(DL_KERNELS)
......@@ -365,6 +385,10 @@ IF(IS_DIRECTORY "${PROJECT_SOURCE_DIR}/library/src/tensor_operation_instance/gpu
#message("fp8 instance found!")
set(add_inst 1)
endif()
if("${cmake_instance}" MATCHES "DTYPES MATCHES \"bf8\" " AND DTYPES MATCHES "bf8")
#message("bf8 instance found!")
set(add_inst 1)
endif()
if("${cmake_instance}" MATCHES "DTYPES MATCHES \"fp16\"" AND DTYPES MATCHES "fp16")
#message("fp16 instance found!")
set(add_inst 1)
......
......@@ -73,15 +73,8 @@ RUN wget -qO /usr/local/bin/ninja.gz https://github.com/ninja-build/ninja/releas
RUN gunzip /usr/local/bin/ninja.gz
RUN chmod a+x /usr/local/bin/ninja
RUN git clone https://github.com/nico/ninjatracing.git
RUN apt purge --auto-remove -y cmake
RUN apt update
RUN apt install -y software-properties-common lsb-release
RUN apt clean all
RUN wget -O - https://apt.kitware.com/keys/kitware-archive-latest.asc 2>/dev/null | gpg --dearmor - | tee /etc/apt/trusted.gpg.d/kitware.gpg >/dev/null
RUN apt-add-repository "deb https://apt.kitware.com/ubuntu/ $(lsb_release -cs) main"
RUN apt install -y kitware-archive-keyring
RUN rm /etc/apt/trusted.gpg.d/kitware.gpg
RUN apt install -y cmake
# Update the cmake to the latest version
RUN pip install --upgrade cmake
# Setup ubsan environment to printstacktrace
RUN ln -s /usr/bin/llvm-symbolizer-3.8 /usr/local/bin/llvm-symbolizer
......
......@@ -210,6 +210,9 @@ def cmake_build(Map conf=[:]){
} else{
setup_args = ' -DBUILD_DEV=On' + setup_args
}
if (params.DL_KERNELS){
setup_args = setup_args + " -DDL_KERNELS=ON "
}
if(build_type_debug){
setup_args = " -DCMAKE_BUILD_TYPE=debug -DCMAKE_CXX_FLAGS_DEBUG='${debug_flags}'" + setup_args
......@@ -367,8 +370,6 @@ def runCKProfiler(Map conf=[:]){
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
timeout(time: 24, unit: 'HOURS')
{
//cmake_build(conf)
//instead of building, just unstash the ckProfiler and install it
sh """
rm -rf build
mkdir build
......@@ -614,7 +615,7 @@ def process_results(Map conf=[:]){
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS = BRANCH_NAME == "develop" ? '''0 23 * * * % RUN_FULL_QA=true;ROCMVERSION=5.7;COMPILER_VERSION=rc1
0 21 * * * % ROCMVERSION=5.6;COMPILER_VERSION=;COMPILER_COMMIT=
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=''' : ""
0 19 * * * % BUILD_DOCKER=true;DL_KERNELS=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=''' : ""
pipeline {
agent none
......@@ -649,6 +650,10 @@ pipeline {
name: "RUN_FULL_QA",
defaultValue: false,
description: "Select whether to run small set of performance tests (default) or full QA")
booleanParam(
name: "DL_KERNELS",
defaultValue: false,
description: "Select whether to build DL kernels (default: OFF)")
}
environment{
dbuser = "${dbuser}"
......@@ -663,15 +668,12 @@ pipeline {
}
stages{
stage("Build Docker"){
//when {
// beforeAgent true
// expression { params.BUILD_DOCKER.toBoolean() }
//}
parallel{
stage('Docker /opt/rocm'){
agent{ label rocmnode("nogpu") }
steps{
buildDocker('/opt/rocm')
cleanWs()
}
}
}
......@@ -693,6 +695,7 @@ pipeline {
}
steps{
buildHipClangJobAndReboot(setup_cmd: "", build_cmd: "", execute_cmd: execute_cmd, no_reboot:true)
cleanWs()
}
}
}
......@@ -715,6 +718,7 @@ pipeline {
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs()
}
}
stage("Build CK and run Tests on MI100/MI200")
......@@ -730,6 +734,7 @@ pipeline {
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs()
}
}
stage("Build CK and run Tests on Navi21")
......@@ -742,10 +747,10 @@ pipeline {
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" -DDL_KERNELS=ON """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs()
}
}
stage("Build CK and run Tests on Navi32")
......@@ -756,12 +761,12 @@ pipeline {
}
agent{ label rocmnode("navi32") }
environment{
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DDTYPES="fp16;fp32;bf16" -DGPU_TARGETS="gfx1101" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1101" -DDTYPES="fp16;fp32;bf16" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
setup_args = """ -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1101" """
execute_args = """ cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1101" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps{
Build_CK_and_Reboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
cleanWs()
}
}
}
......@@ -784,6 +789,7 @@ pipeline {
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
cleanWs()
}
}
stage("Run ckProfiler: gfx90a")
......@@ -799,6 +805,7 @@ pipeline {
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
cleanWs()
}
}
}
......@@ -811,6 +818,7 @@ pipeline {
agent { label 'mici' }
steps{
process_results()
cleanWs()
}
}
}
......
add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp)
target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_operations)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_executable(client_splitK_gemm splitK_gemm_fp16_f8.cpp)
target_link_libraries(client_splitK_gemm PRIVATE composable_kernel::device_operations)
endif()
add_executable(client_grouped_gemm_fixed_nk_fp16 grouped_gemm_fixed_nk_fp16.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp16 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_gemm_fixed_nk_fp8 grouped_gemm_fixed_nk_fp8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_fp8 PRIVATE composable_kernel::device_operations)
add_executable(client_grouped_gemm_fixed_nk_i8 grouped_gemm_fixed_nk_i8.cpp)
target_link_libraries(client_grouped_gemm_fixed_nk_i8 PRIVATE composable_kernel::device_operations)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F16;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
// Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
Ms = {0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0};
int group_count = Ms.size();
for(int i = 0; i < group_count; ++i)
{
Ns.push_back(768);
Ks.push_back(4608);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 32);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
int group_count = Ms.size();
for(int i = 0; i < group_count; ++i)
{
Ns.push_back(768);
Ks.push_back(4608);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 16);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include <random>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_gemm_fixed_nk.hpp"
using I8 = int8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = I8;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Row;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
struct SimpleDeviceMem
{
SimpleDeviceMem() = delete;
SimpleDeviceMem(std::size_t mem_size) : p_mem_{}
{
(void)hipMalloc(static_cast<void**>(&p_mem_), mem_size);
}
void* GetDeviceBuffer() { return p_mem_; }
~SimpleDeviceMem() { (void)hipFree(p_mem_); }
void* p_mem_;
};
int main()
{
std::vector<int> Ms, Ns, Ks, StrideAs, StrideBs, StrideEs;
int sum_of_m = 0;
Ms = {167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
int group_count = Ms.size();
for(int i = 0; i < group_count; ++i)
{
Ns.push_back(768);
Ks.push_back(4608);
StrideAs.push_back(std::is_same<Row, ALayout>::value ? Ks[i] : Ms[i]);
StrideBs.push_back(std::is_same<Row, BLayout>::value ? Ns[i] : Ks[i]);
StrideEs.push_back(std::is_same<Row, ELayout>::value ? Ns[i] : Ms[i]);
sum_of_m += Ms[i];
}
auto f_matrix_space_size =
[](std::size_t nRow, std::size_t nCol, std::size_t stride, auto layout) {
using Layout = decltype(layout);
if constexpr(std::is_same<Layout, ck::tensor_layout::gemm::RowMajor>::value)
{
return (nRow - 1) * stride + nCol;
}
else
{
return (nCol - 1) * stride + nRow;
}
};
std::vector<SimpleDeviceMem> a_dev_bufs, b_dev_bufs, e_dev_bufs;
a_dev_bufs.reserve(group_count);
b_dev_bufs.reserve(group_count);
e_dev_bufs.reserve(group_count);
std::vector<void*> p_e;
p_e.reserve(group_count);
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
gemm_descs.reserve(group_count);
std::vector<ck::tensor_operation::device::GroupedGemmKernelArgument<1>>
grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; ++i)
{
a_dev_bufs.emplace_back(sizeof(ADataType) *
f_matrix_space_size(Ms[i], Ks[i], StrideAs[i], ALayout{}));
b_dev_bufs.emplace_back(sizeof(BDataType) *
f_matrix_space_size(Ks[i], Ns[i], StrideBs[i], BLayout{}));
e_dev_bufs.emplace_back(sizeof(EDataType) *
f_matrix_space_size(Ms[i], Ns[i], StrideEs[i], ELayout{}));
gemm_descs.push_back({sum_of_m, Ns[i], Ks[i], 1, StrideBs[i], 1, {0}});
p_e.push_back(e_dev_bufs[i].GetDeviceBuffer());
grouped_gemm_kernel_args_.push_back({a_dev_bufs[i].GetDeviceBuffer(),
b_dev_bufs[i].GetDeviceBuffer(),
{},
e_dev_bufs[i].GetDeviceBuffer(),
Ms[i],
Ns[i],
Ks[i],
StrideAs[i],
StrideBs[i],
{},
StrideEs[i]});
}
using DeviceOp = ck::tensor_operation::device::DeviceGroupedGemmFixedNK<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CDEElementOp>;
// get device op instances
const auto op_ptrs = ck::tensor_operation::device::instance::DeviceOperationInstanceFactory<
DeviceOp>::GetInstances();
std::cout << "found " << op_ptrs.size() << " instances" << std::endl;
const auto a_element_op = AElementOp{};
const auto b_element_op = BElementOp{};
const auto cde_element_op = CDEElementOp{};
std::string best_op_name;
bool found = false;
int best_op_id = -1;
float best_ave_time = 0;
float best_tflops = 0;
float best_gb_per_sec = 0;
// profile device operation instances
std::cout << "Run all instances and do timing" << std::endl;
std::vector<const void*> p_a = {}, p_b = {};
std::vector<std::array<const void*, 0>> p_ds = {};
for(int i = 0; i < op_ptrs.size(); ++i)
{
auto& op_ptr = op_ptrs[i];
auto argument_ptr = op_ptr->MakeArgumentPointer(
p_a, p_b, p_ds, p_e, gemm_descs, a_element_op, b_element_op, cde_element_op);
auto invoker_ptr = op_ptr->MakeInvokerPointer();
SimpleDeviceMem grouped_gemm_kernel_args_dev(
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()));
SimpleDeviceMem grouped_gemm_workspace_dev(op_ptr->GetWorkSpaceSize(argument_ptr.get()));
std::string op_name = op_ptr->GetTypeString();
hipGetErrorString(hipMemcpy(grouped_gemm_kernel_args_dev.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
op_ptr->GetDeviceKernelArgSize(argument_ptr.get()),
hipMemcpyHostToDevice));
op_ptr->SetWorkSpacePointer(argument_ptr.get(),
grouped_gemm_workspace_dev.GetDeviceBuffer());
op_ptr->SetDeviceKernelArgs(argument_ptr.get(),
grouped_gemm_kernel_args_dev.GetDeviceBuffer());
op_ptr->SetKBatch(argument_ptr.get(), 32);
if(op_ptr->IsSupportedArgument(argument_ptr.get()))
{
float ave_time = invoker_ptr->Run(argument_ptr.get(), StreamConfig{nullptr, true});
std::size_t flop = 0, num_btype = 0;
for(std::size_t j = 0; j < gemm_descs.size(); ++j)
{
flop += std::size_t(2) * Ms[j] * Ns[j] * Ks[j];
num_btype += sizeof(ADataType) * Ms[j] * Ks[j] + sizeof(BDataType) * Ks[j] * Ns[j] +
sizeof(EDataType) * Ms[j] * Ns[j];
}
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
<< gb_per_sec << " GB/s, " << op_name << std::endl;
if(tflops > best_tflops)
{
found = true;
best_op_id = i;
best_op_name = op_name;
best_tflops = tflops;
best_ave_time = ave_time;
best_gb_per_sec = gb_per_sec;
}
}
else
{
std::cout << op_name << " does not support this problem" << std::endl;
}
}
std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
<< best_gb_per_sec << " GB/s, " << best_op_name << std::endl;
return 0;
}
......@@ -69,5 +69,7 @@ if(DTYPES MATCHES "fp8" OR NOT DEFINED DTYPES)
endif()
endif()
add_example_executable(example_gemm_xdl_fp16_f8 gemm_xdl_fp16_f8.cpp)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp16_f8)
if((DTYPES MATCHES "fp8" AND DTYPES MATCHES "fp16") OR NOT DEFINED DTYPES)
add_example_executable(example_gemm_xdl_fp16_f8 gemm_xdl_fp16_f8.cpp)
add_dependencies(example_gemm_xdl example_gemm_xdl_fp16_f8)
endif()
......@@ -25,6 +25,11 @@ if(DTYPES MATCHES "int8" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_gemm_xdl_int8 grouped_gemm_xdl_int8.cpp)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int8)
endif()
if(DTYPES MATCHES "f8" OR NOT DEFINED DTYPES)
add_example_executable(example_grouped_gemm_xdl_fixed_nk_fp8 grouped_gemm_xdl_fixed_nk_fp8.cpp)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_fixed_nk_fp8)
endif()
if(USE_BITINT_EXTENSION_INT4)
add_example_executable(example_grouped_gemm_xdl_int4 grouped_gemm_xdl_int4.cpp)
add_dependencies(example_grouped_gemm_xdl example_grouped_gemm_xdl_int4)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F8 = ck::f8_t;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = F16;
using BDataType = F8;
using AccDataType = F32;
using CShuffleDataType = F32;
using DsDataType = ck::Tuple<>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using DsLayout = ck::Tuple<>;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::MNPadding;
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGroupedGemm_Xdl_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, DsLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, S<1, 4, 64, 1>, S<0, 2, 1, 3>, S<0, 2, 1, 3>, 3, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
struct ProblemSize final
{
std::vector<ck::index_t> Ms;
std::vector<ck::index_t> Ns;
std::vector<ck::index_t> Ks;
std::vector<ck::index_t> stride_As;
std::vector<ck::index_t> stride_Bs;
std::vector<ck::index_t> stride_Cs;
ck::index_t group_count;
};
struct ExecutionConfig final
{
bool do_verification = true;
int init_method = 1;
int k_batch = 1;
bool time_kernel = false;
};
bool run_grouped_gemm(const ProblemSize& problem_size, const ExecutionConfig& config)
{
auto group_count = problem_size.group_count;
// GEMM shape
std::vector<ck::tensor_operation::device::GemmDesc> gemm_descs;
std::vector<void*> p_Cs;
gemm_descs.reserve(group_count);
int sum_of_m = 0;
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
using namespace ck::literals;
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor({row, col}, {stride, 1_uz});
}
else
{
return HostTensorDescriptor({row, col}, {1_uz, stride});
}
};
std::vector<Tensor<ADataType>> a_tensors;
std::vector<Tensor<BDataType>> b_tensors;
std::vector<Tensor<EDataType>> c_host_tensors;
std::vector<Tensor<EDataType>> c_device_tensors;
a_tensors.reserve(group_count);
b_tensors.reserve(group_count);
c_host_tensors.reserve(group_count);
c_device_tensors.reserve(group_count);
using DeviceMemPtr = std::unique_ptr<DeviceMem>;
std::vector<DeviceMemPtr> a_tensors_device, b_tensors_device, c_tensors_device;
a_tensors_device.reserve(group_count);
b_tensors_device.reserve(group_count);
c_tensors_device.reserve(group_count);
std::size_t flop = 0, num_btype = 0;
for(int i = 0; i < group_count; i++)
{
sum_of_m += problem_size.Ms[i];
a_tensors.push_back(Tensor<ADataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ks[i], problem_size.stride_As[i], ALayout{})));
b_tensors.push_back(Tensor<BDataType>(f_host_tensor_descriptor(
problem_size.Ks[i], problem_size.Ns[i], problem_size.stride_Bs[i], BLayout{})));
c_host_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
c_device_tensors.push_back(Tensor<EDataType>(f_host_tensor_descriptor(
problem_size.Ms[i], problem_size.Ns[i], problem_size.stride_Cs[i], ELayout{})));
std::cout << "gemm[" << i << "] a_m_k: " << a_tensors[i].mDesc
<< " b_k_n: " << b_tensors[i].mDesc << " c_m_n: " << c_device_tensors[i].mDesc
<< std::endl;
flop += std::size_t(2) * problem_size.Ms[i] * problem_size.Ks[i] * problem_size.Ns[i];
num_btype += sizeof(ADataType) * a_tensors[i].mDesc.GetElementSize() +
sizeof(BDataType) * b_tensors[i].mDesc.GetElementSize() +
sizeof(EDataType) * c_device_tensors[i].mDesc.GetElementSize();
switch(config.init_method)
{
case 0: break;
case 1:
a_tensors[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_tensors[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
break;
case 2:
a_tensors[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_tensors[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
break;
default:
a_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<0>{});
b_tensors[i].GenerateTensorValue(GeneratorTensor_Sequential<1>{});
}
}
using GroupedGemmKernelArgument = ck::tensor_operation::device::GroupedGemmKernelArgument<>;
std::vector<GroupedGemmKernelArgument> grouped_gemm_kernel_args_;
grouped_gemm_kernel_args_.reserve(group_count);
for(int i = 0; i < group_count; i++)
{
a_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(ADataType) * sum_of_m * problem_size.Ks[i]));
b_tensors_device.emplace_back(std::make_unique<DeviceMem>(
sizeof(BDataType) * problem_size.Ns[i] * problem_size.Ks[i]));
c_tensors_device.emplace_back(
std::make_unique<DeviceMem>(sizeof(EDataType) * sum_of_m * problem_size.Ns[i]));
a_tensors_device[i]->ToDevice(a_tensors[i].mData.data(),
a_tensors[i].mDesc.GetElementSpaceSize() * sizeof(ADataType));
b_tensors_device[i]->ToDevice(b_tensors[i].mData.data(),
b_tensors[i].mDesc.GetElementSpaceSize() * sizeof(BDataType));
c_tensors_device[i]->SetZero();
p_Cs.push_back(c_tensors_device[i]->GetDeviceBuffer());
gemm_descs.push_back({sum_of_m,
problem_size.Ns[i],
problem_size.Ks[i],
1,
problem_size.stride_Bs[i],
1,
{}});
grouped_gemm_kernel_args_.push_back({a_tensors_device[i]->GetDeviceBuffer(),
b_tensors_device[i]->GetDeviceBuffer(),
{},
c_tensors_device[i]->GetDeviceBuffer(),
problem_size.Ms[i],
problem_size.Ns[i],
problem_size.Ks[i],
problem_size.stride_As[i],
problem_size.stride_Bs[i],
{},
problem_size.stride_Cs[i]});
}
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CDEElementOp{};
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
std::vector<const void*> p_As = {};
std::vector<const void*> p_Bs = {};
std::vector<std::array<const void*, 0>> p_Ds = {};
// do GEMM
auto argument = gemm.MakeArgument(
p_As, p_Bs, p_Ds, p_Cs, gemm_descs, a_element_op, b_element_op, c_element_op);
DeviceMem gemm_arg_dev_mem(gemm.GetDeviceKernelArgSize(&argument));
DeviceMem gemm_workspace_dev(gemm.GetWorkSpaceSize(&argument));
gemm.SetWorkSpacePointer(&argument, gemm_workspace_dev.GetDeviceBuffer());
hip_check_error(hipMemcpy(gemm_arg_dev_mem.GetDeviceBuffer(),
grouped_gemm_kernel_args_.data(),
gemm.GetDeviceKernelArgSize(&argument),
hipMemcpyHostToDevice));
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
gemm.SetDeviceKernelArgs(argument, gemm_arg_dev_mem.GetDeviceBuffer());
gemm.SetKBatch(argument, config.k_batch);
invoker.Run(argument, StreamConfig{nullptr, false});
if(config.time_kernel)
{
float ave_time = invoker.Run(argument, StreamConfig{nullptr, config.time_kernel});
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec
<< " GB/s, " << gemm.GetTypeString() << std::endl;
}
bool pass = true;
if(config.do_verification)
{
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
EDataType,
AccDataType,
AElementOp,
BElementOp,
CDEElementOp>;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
c_tensors_device[i]->FromDevice(c_device_tensors[i].mData.data(),
c_device_tensors[i].mDesc.GetElementSize() *
sizeof(EDataType));
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_tensors[i],
b_tensors[i],
c_host_tensors[i],
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
pass &= ck::utils::check_err(c_device_tensors[i], c_host_tensors[i]);
}
}
return pass;
}
int main(int argc, char* argv[])
{
ProblemSize problem_size;
ExecutionConfig config;
problem_size.group_count = 16;
problem_size.Ms = {
167, 183, 177, 181, 153, 139, 156, 173, 163, 150, 204, 184, 168, 156, 168, 148};
for(int i = 0; i < problem_size.group_count; i++)
{
problem_size.Ns.push_back(768);
problem_size.Ks.push_back(4608);
problem_size.stride_As.push_back(problem_size.Ks[i]);
problem_size.stride_Bs.push_back(problem_size.Ks[i]);
problem_size.stride_Cs.push_back(problem_size.Ns[i]);
}
if(argc == 5)
{
config.do_verification = std::stoi(argv[1]);
config.init_method = std::stoi(argv[2]);
config.time_kernel = std::stoi(argv[3]);
config.k_batch = std::stoi(argv[4]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4: k_batch (> 0)\n");
exit(0);
}
return !run_grouped_gemm(problem_size, config);
}
......@@ -3,7 +3,7 @@
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_dl.hpp"
using InDataType = F16;
using WeiDataType = F16;
......@@ -15,44 +15,55 @@ using WeiElementOp = PassThrough;
using OutElementOp = PassThrough;
template <ck::index_t NDimSpatial>
using DeviceConvBwdWeightInstance =
ck::tensor_operation::device::DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl<
NDimSpatial, // NDimSpatial
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
16, // K0PerBlock
2, // K1
4, // M1PerThread
4, // N1PerThread
1, // KPerThread
S<8, 2>, // M1N1ThreadClusterM1Xs
S<8, 2>, // M1N1ThreadClusterN1Xs
S<1, 8, 1, 1, 2>, // ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S<1, 2, 1, 128, 1>, // ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 3, 1, 4>, // ABlockTransferSrcAccessOrder
S<1, 1, 1, 1, 1>, // ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 1>, // ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S<1, 1, 1, 8, 2>, // BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S<1, 16, 1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferThreadClusterArrangeOrder
S<0, 1, 4, 2, 3>, // BBlockTransferSrcAccessOrder
S<1, 1, 1, 8, 1>, // BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 2>, // BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 2, 3, 4, 5>, // CThreadTransferSrcDstAccessOrder
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
using DeviceConvBwdWeightInstance = ck::tensor_operation::device::DeviceGroupedConvBwdWeight_Dl<
NDimSpatial, // NDimSpatial
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>, // InLayout
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>, // WeiLayout
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>, // OutLayout
InDataType, // InDataType
WeiDataType, // WeiDataType
OutDataType, // OutDataType
AccDataType, // AccDataType
InElementOp, // InElementwiseOperation
WeiElementOp, // WeiElementwiseOperation
OutElementOp, // OutElementwiseOperation
ConvBwdWeightDefault, // ConvBackwardWeightSpecialization
256, // BlockSize
128, // MPerBlock
128, // NPerBlock
16, // K0PerBlock
2, // K1
4, // M1PerThread
4, // N1PerThread
1, // KPerThread
S<8, 2>, // M1N1ThreadClusterM1Xs
S<8, 2>, // M1N1ThreadClusterN1Xs
S<1, 8, 1, 1, 2>, // ABlockTransferThreadSliceLengths_K0_M0_M1_K1
S<1, 2, 1, 128, 1>, // ABlockTransferThreadClusterLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferThreadClusterArrangeOrder
S<0, 2, 3, 1, 4>, // ABlockTransferSrcAccessOrder
S<1, 1, 1, 1, 1>, // ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
S<0, 2, 3, 1, 4>, // ABlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 1>, // ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
S<1, 1, 1, 8, 2>, // BBlockTransferThreadSliceLengths_K0_N0_N1_K1
S<1, 16, 1, 16, 1>, // BBlockTransferThreadClusterLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferThreadClusterArrangeOrder
S<0, 1, 4, 2, 3>, // BBlockTransferSrcAccessOrder
S<1, 1, 1, 8, 1>, // BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 4, 2, 3>, // BBlockTransferSrcVectorTensorContiguousDimOrder
S<1, 1, 1, 1, 2>, // BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
S<0, 1, 2, 3, 4, 5>, // CThreadTransferSrcDstAccessOrder
5, // CThreadTransferSrcDstVectorDim
4>; // CThreadTransferDstScalarPerVector
#include "run_grouped_conv_bwd_weight_example.inc"
......
......@@ -14,20 +14,8 @@ template <ck::index_t NDimSpatial>
bool run_grouped_conv_bwd_weight(const ExecutionConfig& config,
const ck::utils::conv::ConvParam& conv_param)
{
ck::index_t split_k;
// Set split_k = 2 for xdl op, split_k = 1 for dl
// Dl op doesn't support split_k > 1
// TODO: Add Dl op split_k > 1 support
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102"))
{
split_k = 2;
}
else
{
split_k = 1;
}
constexpr ck::index_t split_k = 1;
const auto in_g_n_c_wis_desc =
ck::utils::conv::make_input_host_tensor_descriptor_g_n_c_wis_packed<
......
......@@ -14,18 +14,22 @@ using ComputeDataType = float;
struct YElementOp
{
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
static_assert(ck::is_same<T, float>::value || ck::is_same<T, double>::value ||
ck::is_same<T, ck::half_t>::value,
static_assert(ck::is_same<X, float>::value || ck::is_same<X, double>::value ||
ck::is_same<X, ck::half_t>::value,
"Data type is not supported by this operation!");
T a;
static_assert(ck::is_same<Y, float>::value || ck::is_same<Y, double>::value ||
ck::is_same<Y, ck::half_t>::value,
"Data type is not supported by this operation!");
X a;
ck::tensor_operation::element_wise::Sigmoid{}(a, x);
y = x * a;
y = ck::type_convert<Y>(x * a);
};
};
......
......@@ -43,6 +43,9 @@
#ifndef CK_ENABLE_FP8
#define CK_ENABLE_FP8 "ON"
#endif
#ifndef CK_ENABLE_BF8
#define CK_ENABLE_BF8 "ON"
#endif
#ifndef CK_ENABLE_FP16
#define CK_ENABLE_FP16 "ON"
#endif
......@@ -66,6 +69,10 @@
#cmakedefine CK_ENABLE_FP8 @CK_ENABLE_FP8@
#endif
#ifndef CK_ENABLE_BF8
#cmakedefine CK_ENABLE_BF8 @CK_ENABLE_BF8@
#endif
#ifndef CK_ENABLE_FP16
#cmakedefine CK_ENABLE_FP16 @CK_ENABLE_FP16@
#endif
......
......@@ -144,7 +144,8 @@ template <typename ALayout,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
PipelineVersion PipelineVer = PipelineVersion::v1>
PipelineVersion PipelineVer = PipelineVersion::v1,
typename ComputeDataType = EDataType>
struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
BLayout,
DsLayout,
......@@ -243,11 +244,9 @@ struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<ALayout,
using DsGridDesc_M_N = remove_cvref_t<decltype(MakeDsGridDescriptor_M_N({}, {}, {}))>;
using EGridDesc_M_N = decltype(MakeEGridDescriptor_M_N<ELayout>(1, 1, 1));
using ComputeDataType = EDataType;
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
ADataType,
BDataType,
ComputeDataType,
AccDataType,
......
......@@ -14,6 +14,7 @@
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
......@@ -72,6 +73,9 @@ __global__ void
const Block2CTileMap block_2_ctile_map,
const ComputePtrOffsetOfBatch compute_ptr_offset_of_batch)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx940__) || defined(__gfx1100__) || \
defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx941__) || defined(__gfx942__))
const index_t num_blocks_per_batch =
__builtin_amdgcn_readfirstlane(get_grid_size() / batch_count);
const index_t g_idx = __builtin_amdgcn_readfirstlane(get_block_1d_id() / num_blocks_per_batch);
......@@ -96,9 +100,27 @@ __global__ void
block_2_ctile_map,
integral_constant<bool, HasMainKBlockLoop>{},
integral_constant<bool, HasDoubleTailKBlockLoop>{});
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_c_grid;
ignore = batch_count;
ignore = a_grid_desc_kbatch_k0_m0_m1_k1;
ignore = b_grid_desc_kbatch_k0_n0_n1_k1;
ignore = c_grid_desc_m0_m10_m11_n0_n10_n11;
ignore = block_2_ctile_map;
ignore = compute_ptr_offset_of_batch;
compute_ptr_offset_of_batch.GetAPtrOffset(0);
compute_ptr_offset_of_batch.GetBPtrOffset(0);
compute_ptr_offset_of_batch.GetCPtrOffset(0);
#endif
}
template <ck::index_t NDimSpatial,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InDataType,
typename WeiDataType,
typename OutDataType,
......@@ -134,29 +156,46 @@ template <ck::index_t NDimSpatial,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector>
struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
: public DeviceGroupedConvBwdWeight<
NDimSpatial,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWC,
ck::tensor_layout::convolution::GNHWC,
ck::tensor_layout::convolution::GNDHWC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GKXC,
ck::tensor_layout::convolution::GKYXC,
ck::tensor_layout::convolution::GKZYXC>>,
ck::tuple_element_t<NDimSpatial - 1,
ck::Tuple<ck::tensor_layout::convolution::GNWK,
ck::tensor_layout::convolution::GNHWK,
ck::tensor_layout::convolution::GNDHWK>>,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
struct DeviceGroupedConvBwdWeight_Dl : public DeviceGroupedConvBwdWeight<NDimSpatial,
InLayout,
WeiLayout,
OutLayout,
InDataType,
WeiDataType,
OutDataType,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp = DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl;
// 1d
static constexpr bool is_NWGK_GKXC_NWGC =
is_same_v<InLayout, tensor_layout::convolution::NWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NWGK>;
static constexpr bool is_GNWK_GKXC_GNWC =
is_same_v<InLayout, tensor_layout::convolution::GNWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKXC> &&
is_same_v<OutLayout, tensor_layout::convolution::GNWK>;
// 2d
static constexpr bool is_NHWGK_GKYXC_NHWGC =
is_same_v<InLayout, tensor_layout::convolution::NHWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NHWGK>;
static constexpr bool is_GNHWK_GKYXC_GNHWC =
is_same_v<InLayout, tensor_layout::convolution::GNHWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::GNHWK>;
// 3d
static constexpr bool is_NDHWGK_GKZYXC_NDHWGC =
is_same_v<InLayout, tensor_layout::convolution::NDHWGC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::NDHWGK>;
static constexpr bool is_GNDHWK_GKZYXC_GNDHWC =
is_same_v<InLayout, tensor_layout::convolution::GNDHWC> &&
is_same_v<WeiLayout, tensor_layout::convolution::GKZYXC> &&
is_same_v<OutLayout, tensor_layout::convolution::GNDHWK>;
using DeviceOp = DeviceGroupedConvBwdWeight_Dl;
using ADataType = OutDataType;
using BDataType = InDataType;
......@@ -176,6 +215,8 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto spatial_offset = I3;
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
......@@ -195,12 +236,12 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
template <ck::index_t NDim, typename ck::enable_if<NDim == 1, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const ck::index_t N,
const ck::index_t K,
const ck::index_t C,
const std::array<ck::index_t, NDimSpatial>& input_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
......@@ -209,90 +250,102 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
{
using namespace ck;
const index_t Wi = input_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[0];
const index_t X = filter_spatial_lengths[0];
const index_t InLeftPadW = input_left_pads[0];
const index_t InRightPadW = input_right_pads[0];
const index_t ConvStrideW = conv_filter_strides[0];
const index_t ConvDilationW = conv_filter_dilations[0];
const index_t N = a_g_n_c_wis_lengths[I1];
const index_t K = b_g_k_c_xs_lengths[I1];
const index_t C = a_g_n_c_wis_lengths[I2];
const index_t Wi = a_g_n_c_wis_lengths[spatial_offset];
const index_t Wo = e_g_n_k_wos_lengths[spatial_offset];
const index_t X = b_g_k_c_xs_lengths[spatial_offset];
const index_t InLeftPadW = input_left_pads[I0];
const index_t InRightPadW = input_right_pads[I0];
const index_t ConvStrideW = conv_filter_strides[I0];
const index_t ConvDilationW = conv_filter_dilations[I0];
const auto InNStride = a_g_n_c_wis_strides[I1];
const auto InCStride = a_g_n_c_wis_strides[I2];
const auto InWStride = a_g_n_c_wis_strides[spatial_offset];
const auto WeiKStride = b_g_k_c_xs_strides[I1];
const auto WeiCStride = b_g_k_c_xs_strides[I2];
const auto OutKStride = e_g_n_k_wos_strides[I2];
const auto OutWStride = e_g_n_k_wos_strides[spatial_offset];
const index_t GemmKTotal = N * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Wo, K), make_tuple(OutWStride, OutKStride));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wi, C));
const auto in_gemmktotal_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Wi, C), make_tuple(InWStride, InCStride));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weights tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Wo, K));
const auto in_n_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Wi, C));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Wo, K), make_tuple(OutWStride, OutKStride));
const auto in_n_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Wi, C), make_tuple(InNStride, InWStride, InCStride));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -321,38 +374,43 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
make_tuple(Sequence<1, 3>{}, Sequence<0, 2>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const ck::index_t N,
const ck::index_t K,
const ck::index_t C,
const std::array<ck::index_t, NDimSpatial>& input_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
......@@ -361,103 +419,111 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t N = a_g_n_c_wis_lengths[I1];
const index_t K = b_g_k_c_xs_lengths[I1];
const index_t C = a_g_n_c_wis_lengths[I2];
const index_t Hi = a_g_n_c_wis_lengths[spatial_offset];
const index_t Wi = a_g_n_c_wis_lengths[spatial_offset + I1];
const index_t Ho = e_g_n_k_wos_lengths[spatial_offset];
const index_t Wo = e_g_n_k_wos_lengths[spatial_offset + I1];
const index_t Y = b_g_k_c_xs_lengths[spatial_offset];
const index_t X = b_g_k_c_xs_lengths[spatial_offset + I1];
const index_t InLeftPadH = input_left_pads[I0];
const index_t InLeftPadW = input_left_pads[I1];
const index_t InRightPadH = input_right_pads[I0];
const index_t InRightPadW = input_right_pads[I1];
const index_t ConvStrideH = conv_filter_strides[I0];
const index_t ConvStrideW = conv_filter_strides[I1];
const index_t ConvDilationH = conv_filter_dilations[I0];
const index_t ConvDilationW = conv_filter_dilations[I1];
const auto InNStride = a_g_n_c_wis_strides[I1];
const auto InCStride = a_g_n_c_wis_strides[I2];
const auto InHStride = a_g_n_c_wis_strides[spatial_offset];
const auto InWStride = a_g_n_c_wis_strides[spatial_offset + I1];
const auto WeiKStride = b_g_k_c_xs_strides[I1];
const auto WeiCStride = b_g_k_c_xs_strides[I2];
const auto OutKStride = e_g_n_k_wos_strides[I2];
const auto OutWStride = e_g_n_k_wos_strides[spatial_offset + I1];
const index_t GemmKTotal = N * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * X * Y;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Ho * Wo, K), make_tuple(OutWStride, OutKStride));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Hi * Wi, C));
const auto in_gemmktotal_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Hi * Wi, C), make_tuple(InWStride, InCStride));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, Y * X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Ho * Wo, K), make_tuple(OutWStride, OutKStride));
const auto in_n_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Hi, Wi, C), make_tuple(InNStride, InHStride, InWStride, InCStride));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -488,39 +554,44 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, Y * X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
} // function end
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
const ck::index_t N,
const ck::index_t K,
const ck::index_t C,
const std::array<ck::index_t, NDimSpatial>& input_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& filter_spatial_lengths,
const std::array<ck::index_t, NDimSpatial>& output_spatial_lengths,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
......@@ -529,110 +600,120 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
{
using namespace ck;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
const index_t Ho = output_spatial_lengths[1];
const index_t Wo = output_spatial_lengths[2];
const index_t Z = filter_spatial_lengths[0];
const index_t Y = filter_spatial_lengths[1];
const index_t X = filter_spatial_lengths[2];
const index_t InLeftPadD = input_left_pads[0];
const index_t InLeftPadH = input_left_pads[1];
const index_t InLeftPadW = input_left_pads[2];
const index_t InRightPadD = input_right_pads[0];
const index_t InRightPadH = input_right_pads[1];
const index_t InRightPadW = input_right_pads[2];
const index_t ConvStrideD = conv_filter_strides[0];
const index_t ConvStrideH = conv_filter_strides[1];
const index_t ConvStrideW = conv_filter_strides[2];
const index_t ConvDilationD = conv_filter_dilations[0];
const index_t ConvDilationH = conv_filter_dilations[1];
const index_t ConvDilationW = conv_filter_dilations[2];
const index_t N = a_g_n_c_wis_lengths[I1];
const index_t K = b_g_k_c_xs_lengths[I1];
const index_t C = a_g_n_c_wis_lengths[I2];
const index_t Di = a_g_n_c_wis_lengths[spatial_offset + I0];
const index_t Hi = a_g_n_c_wis_lengths[spatial_offset + I1];
const index_t Wi = a_g_n_c_wis_lengths[spatial_offset + I2];
const index_t Do = e_g_n_k_wos_lengths[spatial_offset + I0];
const index_t Ho = e_g_n_k_wos_lengths[spatial_offset + I1];
const index_t Wo = e_g_n_k_wos_lengths[spatial_offset + I2];
const index_t Z = b_g_k_c_xs_lengths[spatial_offset + I0];
const index_t Y = b_g_k_c_xs_lengths[spatial_offset + I1];
const index_t X = b_g_k_c_xs_lengths[spatial_offset + I2];
const index_t InLeftPadD = input_left_pads[I0];
const index_t InLeftPadH = input_left_pads[I1];
const index_t InLeftPadW = input_left_pads[I2];
const index_t InRightPadD = input_right_pads[I0];
const index_t InRightPadH = input_right_pads[I1];
const index_t InRightPadW = input_right_pads[I2];
const index_t ConvStrideD = conv_filter_strides[I0];
const index_t ConvStrideH = conv_filter_strides[I1];
const index_t ConvStrideW = conv_filter_strides[I2];
const index_t ConvDilationD = conv_filter_dilations[I0];
const index_t ConvDilationH = conv_filter_dilations[I1];
const index_t ConvDilationW = conv_filter_dilations[I2];
const auto InNStride = a_g_n_c_wis_strides[I1];
const auto InCStride = a_g_n_c_wis_strides[I2];
const auto InDStride = a_g_n_c_wis_strides[spatial_offset];
const auto InHStride = a_g_n_c_wis_strides[spatial_offset + I1];
const auto InWStride = a_g_n_c_wis_strides[spatial_offset + I2];
const auto WeiKStride = b_g_k_c_xs_strides[I1];
const auto WeiCStride = b_g_k_c_xs_strides[I2];
const auto OutKStride = e_g_n_k_wos_strides[I2];
const auto OutWStride = e_g_n_k_wos_strides[spatial_offset + I2];
const index_t GemmKTotal = N * Do * Ho * Wo;
const index_t GemmM = K;
const index_t GemmN = C * Z * X * Y;
const index_t GemmKBatch = batch_k;
const index_t GemmK0 =
math::integer_divide_ceil(GemmKTotal, GemmK1Number * K0PerBlock * GemmKBatch) *
K0PerBlock;
const index_t GemmKPad = GemmKBatch * GemmK0 * GemmK1Number;
if constexpr(ConvBackwardWeightSpecialization ==
ConvolutionBackwardWeightSpecialization::Filter1x1Stride1Pad0)
{
// A: output tensor
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Do * Ho * Wo, K), make_tuple(OutWStride, OutKStride));
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// B: input tensor
const auto in_gemmktotal_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Di * Hi * Wi, C));
const auto in_gemmktotal_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Di * Hi * Wi, C), make_tuple(InWStride, InCStride));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z * Y * X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, Z * Y * X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
else
{
const auto out_gemmktotal_gemmm_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Do * Ho * Wo, K));
const auto in_n_di_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Di, Hi, Wi, C));
const auto out_gemmktotal_gemmm_grid_desc = make_naive_tensor_descriptor(
make_tuple(N * Do * Ho * Wo, K), make_tuple(OutWStride, OutKStride));
const auto in_n_di_hi_wi_c_grid_desc = make_naive_tensor_descriptor(
make_tuple(N, Di, Hi, Wi, C),
make_tuple(InNStride, InDStride, InHStride, InWStride, InCStride));
// A: output tensor
const auto out_gemmkpad_gemmm_grid_desc = transform_tensor_descriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmM)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmkpad_gemmmpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
out_gemmktotal_gemmm_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, MPerBlock),
Sequence<true, true>{});
const auto out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc = transform_tensor_descriptor(
out_gemmkpad_gemmm_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmM)),
out_gemmkpad_gemmmpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(out_gemmkpad_gemmmpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
......@@ -672,27 +753,32 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
make_tuple(Sequence<1, 3, 5, 7>{}, Sequence<0, 2, 4, 6>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto in_gemmkpad_gemmn_grid_desc = transform_tensor_descriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmKTotal, GemmKPad - GemmKTotal),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmkpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(
in_gemmktotal_gemmn_grid_desc,
make_tuple(GemmK1Number * K0PerBlock * GemmKBatch, NPerBlock),
Sequence<true, true>{});
const auto in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmkpad_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
in_gemmkpad_gemmnpad_grid_desc,
make_tuple(
make_unmerge_transform(make_tuple(GemmKBatch, GemmK0, GemmK1Number)),
make_pass_through_transform(in_gemmkpad_gemmnpad_grid_desc.GetLength(I1))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 3>{}, Sequence<2>{}));
// C: weight tensor
const auto wei_gemmm_gemmn_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Z * Y * X * C));
const auto wei_gemmm_gemmn_grid_desc = make_naive_tensor_descriptor(
make_tuple(K, Z * Y * X * C), make_tuple(WeiKStride, WeiCStride));
const auto wei_gemmmpad_gemmnpad_grid_desc =
ck::tensor_operation::device::PadTensorDescriptor(wei_gemmm_gemmn_grid_desc,
make_tuple(MPerBlock, NPerBlock),
Sequence<true, true>{});
return make_tuple(out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc,
wei_gemmm_gemmn_grid_desc);
wei_gemmmpad_gemmnpad_grid_desc);
}
} // function end
......@@ -701,22 +787,22 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<1>(
1, 1, 1, {1}, {1}, {1}, {1}, {1}, {1}, {1}, 1);
{1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, {1}, 1);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 2, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<2>(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, 1);
{1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, 1);
}
template <ck::index_t NDim, typename ck::enable_if<NDim == 3, bool>::type = false>
static auto GetABCGridDesc()
{
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>(1,
1,
1,
return MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<3>({1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
{1, 1, 1},
......@@ -785,11 +871,11 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
WeiDataType* p_wei_grid,
const OutDataType* p_out_grid,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_lengths, // input
const std::array<index_t, NDimSpatial + 3>& /*a_g_n_c_wis_strides*/,
const std::array<index_t, NDimSpatial + 3>& a_g_n_c_wis_strides,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_lengths, // weight
const std::array<index_t, NDimSpatial + 3>& /*b_g_k_c_xs_strides*/,
const std::array<index_t, NDimSpatial + 3>& b_g_k_c_xs_strides,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_lengths, // output
const std::array<index_t, NDimSpatial + 3>& /*e_g_n_k_wos_strides*/,
const std::array<index_t, NDimSpatial + 3>& e_g_n_k_wos_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides,
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations,
const std::array<ck::index_t, NDimSpatial>& input_left_pads,
......@@ -809,38 +895,24 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
a_element_op_{out_element_op},
b_element_op_{wei_element_op},
c_element_op_{in_element_op},
Conv_G_{a_g_n_c_wis_lengths[0]},
Conv_N_{a_g_n_c_wis_lengths[1]},
Conv_K_{b_g_k_c_xs_lengths[1]},
Conv_C_{a_g_n_c_wis_lengths[2]},
input_spatial_lengths_{},
filter_spatial_lengths_{},
output_spatial_lengths_{},
Conv_G_{a_g_n_c_wis_lengths[I0]},
Conv_K_{b_g_k_c_xs_lengths[I1]},
Conv_C_{a_g_n_c_wis_lengths[I2]},
filter_lengths_{b_g_k_c_xs_lengths},
conv_filter_strides_{conv_filter_strides},
conv_filter_dilations_{conv_filter_dilations},
input_left_pads_{input_left_pads},
input_right_pads_{input_right_pads},
k_batch_{split_k}
{
constexpr index_t spatial_offset = 3;
std::copy(begin(a_g_n_c_wis_lengths) + spatial_offset,
end(a_g_n_c_wis_lengths),
begin(input_spatial_lengths_));
std::copy(begin(b_g_k_c_xs_lengths) + spatial_offset,
end(b_g_k_c_xs_lengths),
begin(filter_spatial_lengths_));
std::copy(begin(e_g_n_k_wos_lengths) + spatial_offset,
end(e_g_n_k_wos_lengths),
begin(output_spatial_lengths_));
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N<NDimSpatial>(
Conv_N_,
Conv_K_,
Conv_C_,
input_spatial_lengths_,
filter_spatial_lengths_,
output_spatial_lengths_,
a_g_n_c_wis_lengths, // input
a_g_n_c_wis_strides,
b_g_k_c_xs_lengths, // weight
b_g_k_c_xs_strides,
e_g_n_k_wos_lengths, // output
e_g_n_k_wos_strides,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
......@@ -863,24 +935,9 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
GridwiseGemm::MakeCBlockClusterAdaptor(c_grid_desc_m_n_, M01, N01, k_batch_);
// A/B/C Batch Stride
compute_ptr_offset_of_batch_.BatchStrideA_ =
Conv_N_ * Conv_K_ *
std::accumulate(begin(output_spatial_lengths_),
end(output_spatial_lengths_),
index_t{1},
std::multiplies<>{});
compute_ptr_offset_of_batch_.BatchStrideB_ =
Conv_N_ * Conv_C_ *
std::accumulate(begin(input_spatial_lengths_),
end(input_spatial_lengths_),
index_t{1},
std::multiplies<>{});
compute_ptr_offset_of_batch_.BatchStrideC_ =
Conv_K_ * Conv_C_ *
std::accumulate(begin(filter_spatial_lengths_),
end(filter_spatial_lengths_),
index_t{1},
std::multiplies<>{});
compute_ptr_offset_of_batch_.BatchStrideA_ = e_g_n_k_wos_strides[I0];
compute_ptr_offset_of_batch_.BatchStrideB_ = a_g_n_c_wis_strides[I0];
compute_ptr_offset_of_batch_.BatchStrideC_ = b_g_k_c_xs_strides[I0];
}
const ADataType* p_a_grid_;
......@@ -908,13 +965,10 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
// for checking IsSupportedArgument()
const index_t Conv_G_;
const index_t Conv_N_;
const index_t Conv_K_;
const index_t Conv_C_;
std::array<ck::index_t, NDimSpatial> input_spatial_lengths_;
std::array<ck::index_t, NDimSpatial> filter_spatial_lengths_;
std::array<ck::index_t, NDimSpatial> output_spatial_lengths_;
std::array<ck::index_t, NDimSpatial + 3> filter_lengths_;
const std::array<ck::index_t, NDimSpatial>& conv_filter_strides_;
const std::array<ck::index_t, NDimSpatial>& conv_filter_dilations_;
const std::array<ck::index_t, NDimSpatial>& input_left_pads_;
......@@ -1036,10 +1090,14 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
static bool IsSupportedArgument(const Argument& arg)
{
// check device
if(!(ck::get_device_name() == "gfx906" || ck::get_device_name() == "gfx1030" ||
ck::get_device_name() == "gfx1100" || ck::get_device_name() == "gfx1101" ||
ck::get_device_name() == "gfx1102"))
// DL version only supports split_k equal to 1
if(arg.k_batch_ != 1)
return false;
if constexpr(!((NDimSpatial == 1 && (is_NWGK_GKXC_NWGC || is_GNWK_GKXC_GNWC)) ||
(NDimSpatial == 2 && (is_NHWGK_GKYXC_NHWGC || is_GNHWK_GKYXC_GNHWC)) ||
(NDimSpatial == 3 && (is_NDHWGK_GKZYXC_NDHWGC || is_GNDHWK_GKZYXC_GNDHWC))))
{
return false;
}
......@@ -1050,8 +1108,9 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
// check if it's 1x1, stride=1 pad = 0 conv
for(int i = 0; i < NDimSpatial; i++)
{
if(!(arg.filter_spatial_lengths_[i] == 1 && arg.conv_filter_strides_[i] == 1 &&
arg.input_left_pads_[i] == 0 && arg.input_right_pads_[i] == 0))
if(!(arg.filter_lengths_[spatial_offset + i] == 1 &&
arg.conv_filter_strides_[i] == 1 && arg.input_left_pads_[i] == 0 &&
arg.input_right_pads_[i] == 0))
{
return false;
}
......@@ -1206,7 +1265,7 @@ struct DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl"
str << "DeviceGroupedConvBwdWeight_Dl"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
......
......@@ -193,6 +193,7 @@ template <typename ALayout,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
typename ComputeType = ADataType,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
BLayout,
......@@ -217,6 +218,8 @@ struct DeviceGroupedGemm_Xdl_Fixed_NK : public DeviceGroupedGemmFixedNK<ALayout,
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_xdl_splitk_cshuffle<
ADataType, // TODO: distinguish A/B datatype
BDataType,
ComputeType,
AccDataType,
CShuffleDataType,
DsDataType,
......
......@@ -27,6 +27,12 @@ struct PassThrough
y = x;
}
template <>
__host__ __device__ void operator()<float, double>(float& y, const double& x) const
{
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<float, float>(float& y, const float& x) const
{
......@@ -69,18 +75,36 @@ struct PassThrough
y = type_convert<bhalf_t>(x);
}
template <>
__host__ __device__ void operator()<float, half_t>(float& y, const half_t& x) const
{
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<int8_t, int8_t>(int8_t& y, const int8_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<half_t, int8_t>(half_t& y, const int8_t& x) const
{
y = type_convert<half_t>(x);
}
template <>
__host__ __device__ void operator()<int8_t, int32_t>(int8_t& y, const int32_t& x) const
{
y = type_convert<int8_t>(x);
}
template <>
__host__ __device__ void operator()<int8_t, float>(int8_t& y, const float& x) const
{
y = type_convert<int8_t>(x);
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
__host__ __device__ void operator()<int4_t, int4_t>(int4_t& y, const int4_t& x) const
......@@ -89,6 +113,7 @@ struct PassThrough
}
#endif
#if defined CK_ENABLE_FP8
template <>
__host__ __device__ void operator()<f8_t, f8_t>(f8_t& y, const f8_t& x) const
{
......@@ -118,6 +143,7 @@ struct PassThrough
{
y = type_convert<f8_t>(x);
}
#endif
};
struct UnaryConvert
......@@ -146,6 +172,7 @@ struct ConvertBF16RTN
}
};
#if defined CK_ENABLE_FP8
struct ConvertF8SR
{
// convert to fp8 using stochastic rounding (SR)
......@@ -162,6 +189,7 @@ struct ConvertF8SR
y = f8_convert_sr<Y>(x);
}
};
#endif
struct Scale
{
......@@ -412,14 +440,19 @@ struct Swish
{
Swish(float beta = 1.0f) : beta_(beta) {}
template <typename T>
__host__ __device__ void operator()(T& y, const T& x) const
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
static_assert(is_same<T, float>::value || is_same<T, double>::value ||
is_same<T, ck::half_t>::value,
static_assert(is_same<X, float>::value || is_same<X, double>::value ||
is_same<X, ck::half_t>::value,
"Data type is not supported by this operation!");
static_assert(is_same<Y, float>::value || is_same<Y, double>::value ||
is_same<Y, ck::half_t>::value,
"Data type is not supported by this operation!");
y = x / (ck::type_convert<T>(1) + ck::math::exp(-beta_ * x));
float bx = -beta_ * type_convert<float>(x);
y = type_convert<Y>(x / (1.f + ck::math::exp(bx)));
};
float beta_ = 1.0f;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment