Commit 9b0ee1f1 authored by carlushuang's avatar carlushuang
Browse files

Merge remote-tracking branch 'origin/develop' into stream-k-initial-impl

parents c3c89727 3b18f1e3
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/math.hpp" #include "ck/utility/math.hpp"
#include "ck/utility/math_v2.hpp" #include "ck/utility/math_v2.hpp"
#include "ck/utility/type_convert.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
...@@ -81,6 +82,36 @@ struct PassThrough ...@@ -81,6 +82,36 @@ struct PassThrough
y = x; y = x;
} }
#endif #endif
template <>
__host__ __device__ void operator()<f8_t, f8_t>(f8_t& y, const f8_t& x) const
{
y = x;
}
template <>
__host__ __device__ void operator()<float, f8_t>(float& y, const f8_t& x) const
{
y = type_convert<float>(x);
}
template <>
__host__ __device__ void operator()<f8_t, float>(f8_t& y, const float& x) const
{
y = type_convert<f8_t>(x);
}
template <>
__host__ __device__ void operator()<half_t, f8_t>(half_t& y, const f8_t& x) const
{
y = type_convert<half_t>(x);
}
template <>
__host__ __device__ void operator()<f8_t, half_t>(f8_t& y, const half_t& x) const
{
y = type_convert<f8_t>(x);
}
}; };
struct UnaryConvert struct UnaryConvert
...@@ -109,6 +140,23 @@ struct ConvertBF16RTN ...@@ -109,6 +140,23 @@ struct ConvertBF16RTN
} }
}; };
struct ConvertF8SR
{
// convert to fp8 using stochastic rounding (SR)
template <typename Y, typename X>
__host__ __device__ void operator()(Y& y, const X& x) const
{
// check Y datatype
static_assert(is_same<Y, f8_t>::value, "Data type is not supported by this operation!");
// check X datatype
static_assert(is_same<X, float>::value || is_same<X, half_t>::value,
"Data type is not supported by this operation!");
y = f8_convert_sr<Y>(x);
}
};
struct Scale struct Scale
{ {
__host__ __device__ Scale(float scale) : scale_(scale) {} __host__ __device__ Scale(float scale) : scale_(scale) {}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
namespace ck {
template <typename GridwisePutElementwise1dFunctor,
typename InGrid1dDesc,
typename InDataType,
typename IndexDataType,
typename OutDataType,
typename ElementwiseOperation>
__global__ void kernel_put_element_1d(const InGrid1dDesc in_grid_1d_desc,
const InDataType* __restrict__ p_in_global,
const IndexDataType* __restrict__ p_indices_global,
OutDataType* __restrict__ p_out_global,
const ElementwiseOperation elementwise_op)
{
GridwisePutElementwise1dFunctor::Run(
in_grid_1d_desc, p_in_global, p_indices_global, p_out_global, elementwise_op);
}
// output[indices] = input
template <typename InGrid1dDesc,
typename InDataType,
typename IndexDataType,
typename OutDataType,
typename ElementwiseOperation,
InMemoryDataOperationEnum MemOp,
index_t InVectorSize>
struct GridwisePutElement_1D
{
static constexpr auto I0 = Number<0>{};
static constexpr auto thread_buffer_desc_m =
make_naive_tensor_descriptor_packed(make_tuple(Number<InVectorSize>{}));
__device__ static void Run(const InGrid1dDesc& in_grid_1d_desc,
const InDataType* __restrict__ p_in_global,
const IndexDataType* __restrict__ p_indices_global,
OutDataType* __restrict__ p_out_global,
const ElementwiseOperation& elementwise_op)
{
// Global Memory
const auto in_global_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_in_global, in_grid_1d_desc.GetElementSpaceSize());
const auto indices_global_buf =
make_dynamic_buffer<AddressSpaceEnum::Global>(p_indices_global,
in_grid_1d_desc.GetElementSpaceSize(),
NumericLimits<IndexDataType>::Lowest());
// VGPR
StaticBuffer<AddressSpaceEnum::Vgpr, InDataType, InVectorSize, true> in_thread_buf;
StaticBuffer<AddressSpaceEnum::Vgpr, IndexDataType, InVectorSize, true> indices_thread_buf;
// Thread id, Block id and index
const index_t thread_global_id = get_thread_global_1d_id();
const auto thread_global_offset = make_multi_index(thread_global_id * InVectorSize);
const index_t blockSize = get_block_size();
const index_t blockPerGrid = get_grid_size();
const auto M = in_grid_1d_desc.GetLength(I0);
const index_t loop_step = blockPerGrid * blockSize * InVectorSize;
const auto loop_step_index = make_multi_index(loop_step);
auto in_global_load =
ThreadwiseTensorSliceTransfer_v2<InDataType,
InDataType,
decltype(in_grid_1d_desc),
decltype(thread_buffer_desc_m),
Sequence<InVectorSize>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
InVectorSize, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{in_grid_1d_desc, thread_global_offset};
auto indices_global_load =
ThreadwiseTensorSliceTransfer_v2<IndexDataType,
IndexDataType,
decltype(in_grid_1d_desc),
decltype(thread_buffer_desc_m),
Sequence<InVectorSize>, // SliceLengths
Sequence<0>, // DimAccessOrder
0, // SrcVectorDim
InVectorSize, // ScalarPerVector
1, // SrcScalarStrideInVector
false>{in_grid_1d_desc, thread_global_offset};
index_t num_iter = M / loop_step;
do
{
in_global_load.Run(in_grid_1d_desc,
in_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
in_thread_buf);
in_global_load.MoveSrcSliceWindow(in_grid_1d_desc, loop_step_index);
static_for<0, InVectorSize, 1>{}(
[&](auto iM) { elementwise_op(in_thread_buf(iM), in_thread_buf[iM]); });
indices_global_load.Run(in_grid_1d_desc,
indices_global_buf,
thread_buffer_desc_m,
make_tuple(I0),
indices_thread_buf);
indices_global_load.MoveSrcSliceWindow(in_grid_1d_desc, loop_step_index);
static_for<0, InVectorSize, 1>{}([&](auto iM) {
if(indices_thread_buf[iM] >= 0)
{
if constexpr(MemOp == InMemoryDataOperationEnum::Set)
{
// User should guarantee each index in p_indices_global is different
*(p_out_global + indices_thread_buf[iM]) =
ck::type_convert<OutDataType>(in_thread_buf[iM]);
}
else if constexpr(MemOp == InMemoryDataOperationEnum::AtomicAdd)
{
atomic_add<OutDataType>(p_out_global + indices_thread_buf[iM],
ck::type_convert<OutDataType>(in_thread_buf[iM]));
}
else if constexpr(MemOp == InMemoryDataOperationEnum::AtomicMax)
{
atomic_max<OutDataType>(p_out_global + indices_thread_buf[iM],
ck::type_convert<OutDataType>(in_thread_buf[iM]));
}
else if constexpr(MemOp == InMemoryDataOperationEnum::Add)
{
// User should guarantee each index in p_indices_global is different
*(p_out_global + indices_thread_buf[iM]) +=
ck::type_convert<OutDataType>(in_thread_buf[iM]);
}
else
{
static_assert(MemOp == InMemoryDataOperationEnum::Set ||
MemOp == InMemoryDataOperationEnum::AtomicAdd ||
MemOp == InMemoryDataOperationEnum::AtomicMax ||
MemOp == InMemoryDataOperationEnum::Add);
}
}
});
} while(--num_iter);
}
};
} // namespace ck
...@@ -13,6 +13,61 @@ ...@@ -13,6 +13,61 @@
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace {
template <
index_t NDimSpatial,
typename ALayout,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization>
constexpr auto
make_out_n_ho_wo_k_grid_desc(const index_t N,
const index_t Ho,
const index_t Wo,
const index_t K,
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_strides)
{
if constexpr(is_same_v<ALayout, tensor_layout::convolution::NHWGK>)
{
const index_t NStride = out_g_n_k_wos_strides[1];
const index_t HiStride = out_g_n_k_wos_strides[3];
const index_t WiStride = out_g_n_k_wos_strides[4];
const auto CStride = Number<1>{};
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor(make_tuple(N * Ho * Wo, K),
make_tuple(WiStride, CStride));
}
else
{
return make_naive_tensor_descriptor(make_tuple(N, Ho, Wo, K),
make_tuple(NStride, HiStride, WiStride, CStride));
}
}
else if constexpr(is_same_v<ALayout, tensor_layout::convolution::GNHWK>)
{
// assume packed
if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
Filter1x1Stride1Pad0)
{
return make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
}
else
{
return make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K));
}
}
else
{
throw std::runtime_error("wrong! unsupported layout: " + ALayout::name());
}
}
} // namespace
template < template <
index_t NDimSpatial, index_t NDimSpatial,
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization, ck::tensor_operation::device::ConvolutionBackwardDataSpecialization ConvBwdDataSpecialization,
...@@ -29,11 +84,12 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -29,11 +84,12 @@ struct TransformConvBwdDataToGemm_v1
template <typename ALayout, template <typename ALayout,
typename std::enable_if<NDimSpatial == 2 && typename std::enable_if<NDimSpatial == 2 &&
is_same_v<ALayout, tensor_layout::convolution::GNHWK>, (is_same_v<ALayout, tensor_layout::convolution::GNHWK> ||
is_same_v<ALayout, tensor_layout::convolution::NHWGK>),
bool>::type = false> bool>::type = false>
static auto MakeADescriptor_AK0_M_AK1( static auto MakeADescriptor_AK0_M_AK1(
const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths, const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_lengths,
const std::array<index_t, NDimSpatial + 3>& /* out_g_n_k_wos_strides */, const std::array<index_t, NDimSpatial + 3>& out_g_n_k_wos_strides,
const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths, const std::array<index_t, NDimSpatial + 3>& wei_g_k_c_xs_lengths,
const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */, const std::array<index_t, NDimSpatial + 3>& /* wei_g_k_c_xs_strides */,
const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths, const std::array<index_t, NDimSpatial + 3>& in_g_n_c_wis_lengths,
...@@ -70,9 +126,9 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -70,9 +126,9 @@ struct TransformConvBwdDataToGemm_v1
const index_t AK0 = K / AK1; const index_t AK0 = K / AK1;
// assume packed
const auto out_n_ho_wo_k_grid_desc = const auto out_n_ho_wo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Ho, Wo, K)); make_out_n_ho_wo_k_grid_desc<NDimSpatial, ALayout, ConvBwdDataSpecialization>(
N, Ho, Wo, K, out_g_n_k_wos_strides);
if constexpr(ConvBwdDataSpecialization == if constexpr(ConvBwdDataSpecialization ==
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization:: ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::
...@@ -80,7 +136,7 @@ struct TransformConvBwdDataToGemm_v1 ...@@ -80,7 +136,7 @@ struct TransformConvBwdDataToGemm_v1
{ {
// A: output tensor // A: output tensor
const auto out_gemmak0_gemmmraw_gemmak1_grid_desc = transform_tensor_descriptor( const auto out_gemmak0_gemmmraw_gemmak1_grid_desc = transform_tensor_descriptor(
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K)), out_n_ho_wo_k_grid_desc,
make_tuple(make_pass_through_transform(N * Ho * Wo), make_tuple(make_pass_through_transform(N * Ho * Wo),
make_unmerge_transform(make_tuple(AK0, AK1))), make_unmerge_transform(make_tuple(AK0, AK1))),
make_tuple(Sequence<0>{}, Sequence<1>{}), make_tuple(Sequence<0>{}, Sequence<1>{}),
......
...@@ -24,6 +24,7 @@ ...@@ -24,6 +24,7 @@
#include "ck/utility/tuple.hpp" #include "ck/utility/tuple.hpp"
#include "ck/utility/tuple_helper.hpp" #include "ck/utility/tuple_helper.hpp"
#include "ck/utility/type.hpp" #include "ck/utility/type.hpp"
#include "ck/utility/type_convert.hpp"
#include "ck/utility/magic_division.hpp" #include "ck/utility/magic_division.hpp"
#include "ck/utility/c_style_pointer_cast.hpp" #include "ck/utility/c_style_pointer_cast.hpp"
#include "ck/utility/is_known_at_compile_time.hpp" #include "ck/utility/is_known_at_compile_time.hpp"
......
...@@ -12,6 +12,7 @@ using half_t = _Float16; ...@@ -12,6 +12,7 @@ using half_t = _Float16;
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 #ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
using int4_t = _BitInt(4); using int4_t = _BitInt(4);
#endif #endif
using f8_t = uint8_t;
// vector_type // vector_type
template <typename T, index_t N> template <typename T, index_t N>
...@@ -142,6 +143,13 @@ struct scalar_type<int4_t> ...@@ -142,6 +143,13 @@ struct scalar_type<int4_t>
}; };
#endif #endif
template <>
struct scalar_type<f8_t>
{
using type = f8_t;
static constexpr index_t vector_size = 1;
};
// //
template <typename T> template <typename T>
struct vector_type<T, 1> struct vector_type<T, 1>
...@@ -944,151 +952,13 @@ using int8x16_t = typename vector_type<int8_t, 16>::type; ...@@ -944,151 +952,13 @@ using int8x16_t = typename vector_type<int8_t, 16>::type;
using int8x32_t = typename vector_type<int8_t, 32>::type; using int8x32_t = typename vector_type<int8_t, 32>::type;
using int8x64_t = typename vector_type<int8_t, 64>::type; using int8x64_t = typename vector_type<int8_t, 64>::type;
// Convert X to Y // f8
template <typename Y, typename X> using f8x2_t = typename vector_type<f8_t, 2>::type;
__host__ __device__ constexpr Y type_convert(X x) using f8x4_t = typename vector_type<f8_t, 4>::type;
{ using f8x8_t = typename vector_type<f8_t, 8>::type;
static_assert(!std::is_reference_v<Y> && !std::is_reference_v<X>); using f8x16_t = typename vector_type<f8_t, 16>::type;
using f8x32_t = typename vector_type<f8_t, 32>::type;
return static_cast<Y>(x); using f8x64_t = typename vector_type<f8_t, 64>::type;
}
// convert bfp16 to fp32
template <>
inline __host__ __device__ constexpr float type_convert<float, bhalf_t>(bhalf_t x)
{
union
{
uint32_t int32;
float fp32;
} u = {uint32_t(x) << 16};
return u.fp32;
}
// convert fp32 to bfp16
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float x)
{
union
{
float fp32;
uint32_t int32;
} u = {x};
return uint16_t(u.int32 >> 16);
}
// convert bfp16 to fp16 via fp32
template <>
inline __host__ __device__ constexpr half_t type_convert<half_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<half_t>(x_fp32);
}
// convert fp16 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, half_t>(half_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int32 via fp32
template <>
inline __host__ __device__ constexpr int32_t type_convert<int32_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int32_t>(x_fp32);
}
// convert int32 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int32_t>(int32_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int8 via fp32
template <>
inline __host__ __device__ constexpr int8_t type_convert<int8_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int8_t>(x_fp32);
}
// convert int8 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// Declare a template function for bf16 conversion using RTN
template <typename Y, typename X>
__host__ __device__ constexpr Y bf16_convert_rtn(X x);
// Convert fp32 to bf16 with RTN if higher precision is needed
template <>
inline __host__ __device__ constexpr bhalf_t bf16_convert_rtn<bhalf_t, float>(float x)
{
union
{
float fp32;
uint32_t int32;
} u = {x};
// When the exponent bits are not all 1s, then the value is zero, normal,
// or subnormal. We round the bfloat16 mantissa up by adding 0x7FFF, plus
// 1 if the least significant bit of the bfloat16 mantissa is 1 (odd).
// This causes the bfloat16's mantissa to be incremented by 1 if the 16
// least significant bits of the float mantissa are greater than 0x8000,
// or if they are equal to 0x8000 and the least significant bit of the
// bfloat16 mantissa is 1 (odd). This causes it to be rounded to even when
// the lower 16 bits are exactly 0x8000. If the bfloat16 mantissa already
// has the value 0x7f, then incrementing it causes it to become 0x00 and
// the exponent is incremented by one, which is the next higher FP value
// to the unrounded bfloat16 value. When the bfloat16 value is subnormal
// with an exponent of 0x00 and a mantissa of 0x7f, it may be rounded up
// to a normal value with an exponent of 0x01 and a mantissa of 0x00.
// When the bfloat16 value has an exponent of 0xFE and a mantissa of 0x7F,
// incrementing it causes it to become an exponent of 0xFF and a mantissa
// of 0x00, which is Inf, the next higher value to the unrounded value.
bool flag0 = ~u.int32 & 0x7f800000;
// When all of the exponent bits are 1, the value is Inf or NaN.
// Inf is indicated by a zero mantissa. NaN is indicated by any nonzero
// mantissa bit. Quiet NaN is indicated by the most significant mantissa
// bit being 1. Signaling NaN is indicated by the most significant
// mantissa bit being 0 but some other bit(s) being 1. If any of the
// lower 16 bits of the mantissa are 1, we set the least significant bit
// of the bfloat16 mantissa, in order to preserve signaling NaN in case
// the bfloat16's mantissa bits are all 0.
bool flag1 = !flag0 && (u.int32 & 0xffff);
u.int32 += flag0 ? 0x7fff + ((u.int32 >> 16) & 1) : 0; // Round to nearest, round to even
u.int32 |= flag1 ? 0x10000 : 0x0; // Preserve signaling NaN
return uint16_t(u.int32 >> 16);
}
// convert fp16 to bfp16 via fp32 with RTN if higher precision is needed
template <>
inline __host__ __device__ constexpr bhalf_t bf16_convert_rtn<bhalf_t, half_t>(half_t x)
{
float x_fp32 = static_cast<float>(x);
return bf16_convert_rtn<bhalf_t>(x_fp32);
}
template <typename T> template <typename T>
struct NumericLimits struct NumericLimits
...@@ -1136,4 +1006,21 @@ struct NumericLimits<int4_t> ...@@ -1136,4 +1006,21 @@ struct NumericLimits<int4_t>
}; };
#endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4 #endif // CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template <>
struct NumericLimits<f8_t>
{
static constexpr uint8_t binary_min = 0x08; // 0b00001000
static constexpr uint8_t binary_max = 0x77; // 0b01110111
static constexpr uint8_t binary_lowest = 0xF7; // 0b11110111
static constexpr uint8_t binary_qnan = 0x80; // 0b10000000
__host__ __device__ static constexpr f8_t Min() { return bit_cast<f8_t>(binary_min); }
__host__ __device__ static constexpr f8_t Max() { return bit_cast<f8_t>(binary_max); }
__host__ __device__ static constexpr f8_t Lowest() { return bit_cast<f8_t>(binary_lowest); }
__host__ __device__ static constexpr f8_t QuietNaN() { return bit_cast<f8_t>(binary_qnan); }
};
} // namespace ck } // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
namespace ck {
// fp8 rounding modes
// use standard for rounding to nearest, the faster one
// use stochastic for stochastic rounding, helps to avoid error accumulation
enum class f8_rounding_mode
{
standard,
stochastic
};
} // namespace ck
namespace ck::utils {
namespace {
template <typename T, bool negative_zero_nan, bool clip, bool stoch>
__host__ __device__ f8_t run_cast_to_f8(T x, uint32_t rng)
{
// check data type
constexpr bool is_half = std::is_same<T, half_t>::value;
constexpr bool is_float = std::is_same<T, float>::value;
// fp8 exponent/mantissa layout
constexpr int f8_exp = 4;
constexpr int f8_mant = 3;
// resulting type exponent/mantissa layout
constexpr int type_exp = is_half ? 5 : 8;
constexpr int type_mant = is_half ? 10 : 23;
int exponent;
uint32_t head, mantissa, sign;
// nan code is same for float and half
constexpr uint8_t nan_code = 0x80;
constexpr uint32_t nan_mask = is_half ? 0x7C00 : 0x7F800000;
// convert to bitwise
typedef typename std::conditional<std::is_same<T, half_t>::value, uint16_t, uint32_t>::type
T_bitwise;
T_bitwise x_bitwise = *(reinterpret_cast<T_bitwise*>(&x));
// unpack the input, depends on datatype
if constexpr(is_float)
{
head = x_bitwise & 0xFF800000;
mantissa = x_bitwise & 0x7FFFFF;
exponent = (head >> type_mant) & 0xFF;
sign = head >> (type_exp + type_mant);
}
else if constexpr(is_half)
{
head = x_bitwise & 0xFC00;
mantissa = x_bitwise & 0x3FF;
exponent = (head >> type_mant) & 0x1F;
sign = head >> (type_exp + type_mant);
}
uint32_t signed_inf = (sign << (type_exp + type_mant)) + (((1 << type_exp) - 1) << type_mant);
uint32_t drop_mask = (1 << (type_mant - f8_mant)) - 1;
constexpr int max_exp = (1 << f8_exp) - (negative_zero_nan ? 1 : 2);
constexpr int exp_low_cutoff =
(1 << (type_exp - 1)) - (1 << (f8_exp - 1)) + 1 - (negative_zero_nan ? 1 : 0);
if constexpr(negative_zero_nan)
{
if((x_bitwise & nan_mask) == nan_mask)
return nan_code;
}
else
{
if((x_bitwise & nan_mask) == nan_mask)
return signed_inf + (mantissa != 0 ? 1 : 0);
}
// check if x is 0.0
if(x_bitwise == 0)
return 0;
exponent -= exp_low_cutoff - 1;
if(exponent <= 0)
drop_mask = (1 << (type_mant - f8_mant + 1 - exponent)) - 1;
mantissa += 1 << type_mant;
// apply random number if needed
mantissa += (stoch ? rng : mantissa) & drop_mask;
if(mantissa >= (2 << type_mant))
{
mantissa >>= 1;
exponent++;
}
mantissa >>= (type_mant - f8_mant);
// check negative exponent
if(exponent <= 0)
{
if(x_bitwise == 0)
return 0;
else
{
// subnormal range; represented by a subnormal float8 (exponent 0)
// and involves loss of accuracy
mantissa >>= 1 - exponent;
exponent = 0;
}
}
// above range: quantize to maximum possible float of the same sign
else if(exponent > max_exp)
{
if(clip)
{
mantissa = (1 << f8_mant) - 1;
exponent = max_exp;
}
else
{
return signed_inf;
}
}
// check if x is 0.0 or -0.0
if(exponent == 0 && mantissa == 0)
return negative_zero_nan ? 0 : (sign << (f8_exp + f8_mant));
mantissa &= (1 << f8_mant) - 1;
return (sign << (f8_exp + f8_mant)) | (exponent << f8_mant) | mantissa;
}
template <typename T, bool negative_zero_nan>
__host__ __device__ T run_cast_from_f8(f8_t x)
{
// check data type
constexpr bool is_half = std::is_same<T, half_t>::value;
constexpr bool is_float = std::is_same<T, float>::value;
// fp8 exponent/mantissa layout
constexpr int f8_exp = 4;
constexpr int f8_mant = 3;
// resulting type exponent/mantissa layout
constexpr int type_exp = is_half ? 5 : 8;
constexpr int type_mant = is_half ? 10 : 23;
// prepare the codes
constexpr uint8_t nan_code = 0x80;
T fInf, fNegInf, fNaN, fNeg0;
if constexpr(is_half)
{
constexpr uint16_t ihInf = 0x7C00;
constexpr uint16_t ihNegInf = 0xFC00;
constexpr uint16_t ihNaN = 0x7C01;
constexpr uint16_t ihNeg0 = 0x8000;
fInf = *(reinterpret_cast<const half_t*>(&ihInf));
fNegInf = *(reinterpret_cast<const half_t*>(&ihNegInf));
fNaN = *(reinterpret_cast<const half_t*>(&ihNaN));
fNeg0 = *(reinterpret_cast<const half_t*>(&ihNeg0));
}
else if constexpr(is_float)
{
constexpr uint32_t ifInf = 0x7F800000;
constexpr uint32_t ifNegInf = 0xFF800000;
constexpr uint32_t ifNaN = 0x7F800001;
constexpr uint32_t ifNeg0 = 0x80000000;
fInf = *(reinterpret_cast<const float*>(&ifInf));
fNegInf = *(reinterpret_cast<const float*>(&ifNegInf));
fNaN = *(reinterpret_cast<const float*>(&ifNaN));
fNeg0 = *(reinterpret_cast<const float*>(&ifNeg0));
}
// unpack the input
uint32_t sign = x >> (f8_exp + f8_mant);
uint32_t mantissa = x & ((1 << f8_mant) - 1);
int exponent = (x & 0x7F) >> f8_mant;
constexpr int exp_low_cutoff =
(1 << (type_exp - 1)) - (1 << (f8_exp - 1)) + 1 - (negative_zero_nan ? 1 : 0);
typename std::conditional<std::is_same<T, half_t>::value, uint16_t, uint32_t>::type retval;
if constexpr(negative_zero_nan)
{
if(x == nan_code)
return fNaN;
}
else
{
if(x == nan_code)
return fNeg0;
if(exponent == ((1 << f8_exp) - 1))
return (mantissa == 0) ? (sign ? fNegInf : fInf) : fNaN;
}
// subnormal input
if(exponent == 0)
{
// guaranteed mantissa!=0 since cases 0x0 and 0x80 are handled above
int sh = 1 + __builtin_clz(mantissa) - ((1 + type_exp + type_mant) - f8_mant);
mantissa <<= sh;
mantissa &= ((1 << f8_mant) - 1);
exponent += 1 - sh;
}
exponent += exp_low_cutoff - 1;
mantissa <<= type_mant - f8_mant;
// subnormal output (occurs when T=half, we=5, negative_zero_nan=true)
if(exponent <= 0)
{
mantissa |= 1 << type_mant;
mantissa >>= 1 - exponent;
exponent = 0;
}
retval = (sign << (type_exp + type_mant)) | (exponent << type_mant) | mantissa;
return *(reinterpret_cast<const T*>(&retval));
}
} // namespace
template <typename T, bool negative_zero_nan, bool clip, bool stoch>
__host__ __device__ f8_t cast_to_f8(T x, uint32_t rng)
{
// check datatype
constexpr bool is_half = std::is_same<T, half_t>::value;
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(is_half || is_float, "Only half and float can be casted to f8.");
return run_cast_to_f8<T, negative_zero_nan, clip, stoch>(x, rng);
}
template <typename T, bool negative_zero_nan>
__host__ __device__ T cast_from_f8(f8_t x)
{
// check datatype
constexpr bool is_half = std::is_same<T, half_t>::value;
constexpr bool is_float = std::is_same<T, float>::value;
static_assert(is_half || is_float, "only half and float are supported.");
// check if x is 0.0
if(x == 0)
return static_cast<T>(0);
return run_cast_from_f8<T, negative_zero_nan>(x);
}
} // namespace ck::utils
...@@ -3,6 +3,7 @@ ...@@ -3,6 +3,7 @@
#pragma once #pragma once
#include "data_type.hpp" #include "data_type.hpp"
#include "type_convert.hpp"
namespace ck { namespace ck {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace ck {
// Pseudo random number generator
// version for fp32
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<float, T>{}, bool> = false>
__host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed = seed_t)
{
uint32_t x = *(reinterpret_cast<uint32_t*>(&val));
uint32_t drop_bits = uint32_t(x) & 0xFFFFu;
drop_bits ^= x >> 16;
drop_bits = ((drop_bits & 31) << 11) | (drop_bits >> 5);
drop_bits *= 0x7000149;
// NOTE: If id is in 64 bit, we are only using lower 32 bit.
// So, it can have an effect of using same id for multiple elements when the id is very
// large!
uint32_t rng = (drop_bits ^ 0x13371337 ^ (id * 229791) ^ seed);
return rng;
}
// version for fp16
template <typename T, uint32_t seed_t, std::enable_if_t<std::is_same<half_t, T>{}, bool> = false>
__host__ __device__ uint32_t prand_generator(index_t id, T val, uint32_t seed = seed_t)
{
uint16_t x = *(reinterpret_cast<uint16_t*>(&val));
uint32_t drop_bits = uint32_t(x) & 0xFFFFu;
drop_bits = ((drop_bits & 31) << 11) | (drop_bits >> 5);
drop_bits *= 0x7000149;
// NOTE: If id is in 64 bit, we are only using lower 32 bit.
// So, it can have an effect of using same id for multiple elements when the id is very
// large!
uint32_t rng = (drop_bits ^ 0x13371337 ^ (id * 229791) ^ seed);
return rng;
}
// return 0 if data is not fp16 or fp32
template <typename T,
uint32_t seed_t,
std::enable_if_t<!(std::is_same<float, T>{} || std::is_same<half_t, T>{}), bool> = false>
__host__ __device__ uint32_t prand_generator(int id, T val, uint32_t seed = seed_t)
{
std::ignore = id;
std::ignore = val;
std::ignore = seed;
return 0;
}
} // namespace ck
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
#include "ck/ck.hpp" #include "ck/ck.hpp"
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/type.hpp" #include "ck/utility/type.hpp"
#include "ck/utility/type_convert.hpp"
namespace ck { namespace ck {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/utility/f8_utils.hpp"
#include "ck/utility/random_gen.hpp"
namespace ck {
// Convert X to Y
template <typename Y, typename X>
__host__ __device__ constexpr Y type_convert(X x)
{
static_assert(!std::is_reference_v<Y> && !std::is_reference_v<X>);
return static_cast<Y>(x);
}
// convert bfp16 to fp32
template <>
inline __host__ __device__ constexpr float type_convert<float, bhalf_t>(bhalf_t x)
{
union
{
uint32_t int32;
float fp32;
} u = {uint32_t(x) << 16};
return u.fp32;
}
// convert fp32 to bfp16
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, float>(float x)
{
union
{
float fp32;
uint32_t int32;
} u = {x};
return uint16_t(u.int32 >> 16);
}
// convert bfp16 to fp16 via fp32
template <>
inline __host__ __device__ constexpr half_t type_convert<half_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<half_t>(x_fp32);
}
// convert fp16 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, half_t>(half_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int32 via fp32
template <>
inline __host__ __device__ constexpr int32_t type_convert<int32_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int32_t>(x_fp32);
}
// convert int32 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int32_t>(int32_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert bfp16 to int8 via fp32
template <>
inline __host__ __device__ constexpr int8_t type_convert<int8_t, bhalf_t>(bhalf_t x)
{
float x_fp32 = type_convert<float>(x);
return static_cast<int8_t>(x_fp32);
}
// convert int8 to bfp16 via fp32
template <>
inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_t x)
{
float x_fp32 = static_cast<float>(x);
return type_convert<bhalf_t>(x_fp32);
}
// convert fp32 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
{
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::cast_to_f8<float, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
}
// convert fp8 to fp32
template <>
inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
{
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<float, negative_zero_nan>(x);
}
// convert fp16 to fp8
template <>
inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
{
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::standard;
constexpr uint32_t rng = 0;
return utils::cast_to_f8<half_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
}
// convert fp8 to fp16
template <>
inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
{
constexpr bool negative_zero_nan = true;
return utils::cast_from_f8<half_t, negative_zero_nan>(x);
}
// Declare a template function for bf16 conversion using RTN
template <typename Y, typename X>
__host__ __device__ constexpr Y bf16_convert_rtn(X x);
// Convert fp32 to bf16 with RTN if higher precision is needed
template <>
inline __host__ __device__ constexpr bhalf_t bf16_convert_rtn<bhalf_t, float>(float x)
{
union
{
float fp32;
uint32_t int32;
} u = {x};
// When the exponent bits are not all 1s, then the value is zero, normal,
// or subnormal. We round the bfloat16 mantissa up by adding 0x7FFF, plus
// 1 if the least significant bit of the bfloat16 mantissa is 1 (odd).
// This causes the bfloat16's mantissa to be incremented by 1 if the 16
// least significant bits of the float mantissa are greater than 0x8000,
// or if they are equal to 0x8000 and the least significant bit of the
// bfloat16 mantissa is 1 (odd). This causes it to be rounded to even when
// the lower 16 bits are exactly 0x8000. If the bfloat16 mantissa already
// has the value 0x7f, then incrementing it causes it to become 0x00 and
// the exponent is incremented by one, which is the next higher FP value
// to the unrounded bfloat16 value. When the bfloat16 value is subnormal
// with an exponent of 0x00 and a mantissa of 0x7f, it may be rounded up
// to a normal value with an exponent of 0x01 and a mantissa of 0x00.
// When the bfloat16 value has an exponent of 0xFE and a mantissa of 0x7F,
// incrementing it causes it to become an exponent of 0xFF and a mantissa
// of 0x00, which is Inf, the next higher value to the unrounded value.
bool flag0 = ~u.int32 & 0x7f800000;
// When all of the exponent bits are 1, the value is Inf or NaN.
// Inf is indicated by a zero mantissa. NaN is indicated by any nonzero
// mantissa bit. Quiet NaN is indicated by the most significant mantissa
// bit being 1. Signaling NaN is indicated by the most significant
// mantissa bit being 0 but some other bit(s) being 1. If any of the
// lower 16 bits of the mantissa are 1, we set the least significant bit
// of the bfloat16 mantissa, in order to preserve signaling NaN in case
// the bfloat16's mantissa bits are all 0.
bool flag1 = !flag0 && (u.int32 & 0xffff);
u.int32 += flag0 ? 0x7fff + ((u.int32 >> 16) & 1) : 0; // Round to nearest, round to even
u.int32 |= flag1 ? 0x10000 : 0x0; // Preserve signaling NaN
return uint16_t(u.int32 >> 16);
}
// convert fp16 to bfp16 via fp32 with RTN if higher precision is needed
template <>
inline __host__ __device__ constexpr bhalf_t bf16_convert_rtn<bhalf_t, half_t>(half_t x)
{
float x_fp32 = static_cast<float>(x);
return bf16_convert_rtn<bhalf_t>(x_fp32);
}
// Declare a template function for fp8 conversion using SR
template <typename Y, typename X>
__host__ __device__ constexpr Y f8_convert_sr(X x);
// convert fp32 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, float>(float x)
{
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 42;
// as thread id is not available on host, use 0 for prn generation
uint32_t rng = prand_generator<float, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::cast_to_f8<float, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
}
// convert fp16 to fp8 with stochastic rounding
template <>
inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
{
constexpr bool negative_zero_nan = true;
constexpr bool clip = true;
constexpr f8_rounding_mode rm = f8_rounding_mode::stochastic;
constexpr int seed = 42;
// as thread id is not available on host, use 0 for prn generation
uint32_t rng = prand_generator<half_t, seed>(reinterpret_cast<uintptr_t>(&x), x);
return utils::cast_to_f8<half_t, negative_zero_nan, clip, (rm == f8_rounding_mode::stochastic)>(
x, rng);
}
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace ck {
namespace tensor_operation {
namespace host {
using namespace std;
template <typename DOutDataType,
typename IndexDataType,
typename ConputeDataType,
typename DInDataType,
typename ElementwiseOperation>
struct ReferenceMaxPoolBwd : public device::BaseOperator
{
// Argument
struct Argument : public device::BaseArgument
{
Argument(const Tensor<DOutDataType>& dout,
const Tensor<IndexDataType>& indices,
Tensor<DInDataType>& din,
ElementwiseOperation elementwise_op)
: dout_(dout), indices_(indices), din_(din), elementwise_op_(elementwise_op)
{
}
const Tensor<DOutDataType>& dout_;
const Tensor<IndexDataType>& indices_;
Tensor<DInDataType>& din_;
ElementwiseOperation elementwise_op_;
};
// Invoker
struct Invoker : public device::BaseInvoker
{
float Run(const Argument& arg)
{
int din_length = arg.din_.GetElementSpaceSize();
int dout_length = arg.dout_.GetElementSpaceSize();
std::vector<ConputeDataType> buf(din_length, 0);
for(int i = 0; i < dout_length; ++i)
{
int index = arg.indices_.mData[i];
if(index >= 0 && index < din_length)
buf[index] += ck::type_convert<ConputeDataType>(arg.dout_.mData[i]);
}
for(int i = 0; i < din_length; ++i)
arg.din_.mData[i] = ck::type_convert<DInDataType>(buf[i]);
return 0;
}
float Run(const device::BaseArgument* p_arg,
const StreamConfig& /* stream_config */ = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg));
}
};
bool IsSupportedArgument(const device::BaseArgument*) override { return true; }
static auto MakeArgument(const Tensor<DOutDataType>& dout,
const Tensor<IndexDataType>& indices,
Tensor<DInDataType>& din,
ElementwiseOperation elementwise_op)
{
return Argument{dout, indices, din, elementwise_op};
}
static auto MakeInvoker() { return Invoker{}; }
virtual std::unique_ptr<device::BaseInvoker> MakeInvokerPointer()
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "ReferenceMaxPoolBwd"
<< std::endl;
// clang-format on
return str.str();
}
};
} // namespace host
} // namespace tensor_operation
} // namespace ck
...@@ -100,8 +100,8 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -100,8 +100,8 @@ struct ReferencePoolingFwd : public device::BaseOperator
wi >= 0 && wi >= 0 &&
wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[4])) wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[4]))
{ {
ComputeDataType currVal = ComputeDataType currVal = ck::type_convert<ComputeDataType>(
static_cast<ComputeDataType>(arg.in_(n, c, di, hi, wi)); arg.in_(n, c, di, hi, wi));
in_elementwise_op(currVal, currVal); in_elementwise_op(currVal, currVal);
...@@ -112,7 +112,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -112,7 +112,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
} }
acc_elementwise_op(accuVal, accuVal); acc_elementwise_op(accuVal, accuVal);
arg.out_(n, c, do_, ho, wo) = accuVal; arg.out_(n, c, do_, ho, wo) = ck::type_convert<OutDataType>(accuVal);
}; };
make_ParallelTensorFunctor(f_ncdhw, make_ParallelTensorFunctor(f_ncdhw,
...@@ -151,8 +151,8 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -151,8 +151,8 @@ struct ReferencePoolingFwd : public device::BaseOperator
wi >= 0 && wi >= 0 &&
wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[4])) wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[4]))
{ {
ComputeDataType currVal = ComputeDataType currVal = ck::type_convert<ComputeDataType>(
static_cast<ComputeDataType>(arg.in_(n, c, di, hi, wi)); arg.in_(n, c, di, hi, wi));
IndexDataType currIndex = IndexDataType currIndex =
arg.in_.GetOffsetFromMultiIndex(n, c, di, hi, wi); arg.in_.GetOffsetFromMultiIndex(n, c, di, hi, wi);
...@@ -166,7 +166,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -166,7 +166,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
acc_elementwise_op(accuVal, accuVal); acc_elementwise_op(accuVal, accuVal);
arg.out_(n, c, do_, ho, wo) = accuVal; arg.out_(n, c, do_, ho, wo) = ck::type_convert<OutDataType>(accuVal);
arg.out_indices_(n, c, do_, ho, wo) = accuIndex; arg.out_indices_(n, c, do_, ho, wo) = accuIndex;
}; };
...@@ -212,7 +212,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -212,7 +212,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[3])) wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[3]))
{ {
ComputeDataType currVal = ComputeDataType currVal =
static_cast<ComputeDataType>(arg.in_(n, c, hi, wi)); ck::type_convert<ComputeDataType>(arg.in_(n, c, hi, wi));
in_elementwise_op(currVal, currVal); in_elementwise_op(currVal, currVal);
...@@ -222,7 +222,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -222,7 +222,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
} }
acc_elementwise_op(accuVal, accuVal); acc_elementwise_op(accuVal, accuVal);
arg.out_(n, c, ho, wo) = accuVal; arg.out_(n, c, ho, wo) = ck::type_convert<OutDataType>(accuVal);
}; };
make_ParallelTensorFunctor(f_nchw, make_ParallelTensorFunctor(f_nchw,
...@@ -255,7 +255,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -255,7 +255,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[3])) wi < static_cast<ck::index_t>(arg.in_.mDesc.GetLengths()[3]))
{ {
ComputeDataType currVal = ComputeDataType currVal =
static_cast<ComputeDataType>(arg.in_(n, c, hi, wi)); ck::type_convert<ComputeDataType>(arg.in_(n, c, hi, wi));
IndexDataType currIndex = IndexDataType currIndex =
arg.in_.GetOffsetFromMultiIndex(n, c, hi, wi); arg.in_.GetOffsetFromMultiIndex(n, c, hi, wi);
...@@ -268,7 +268,7 @@ struct ReferencePoolingFwd : public device::BaseOperator ...@@ -268,7 +268,7 @@ struct ReferencePoolingFwd : public device::BaseOperator
} }
acc_elementwise_op(accuVal, accuVal); acc_elementwise_op(accuVal, accuVal);
arg.out_(n, c, ho, wo) = accuVal; arg.out_(n, c, ho, wo) = ck::type_convert<OutDataType>(accuVal);
arg.out_indices_(n, c, ho, wo) = accuIndex; arg.out_indices_(n, c, ho, wo) = accuIndex;
}; };
......
...@@ -30,6 +30,76 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances( ...@@ -30,6 +30,76 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances); PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <ck::index_t NumDimSpatial, template <ck::index_t NumDimSpatial,
typename OutLayout, typename OutLayout,
typename WeiLayout, typename WeiLayout,
...@@ -78,6 +148,35 @@ struct DeviceOperationInstanceFactory< ...@@ -78,6 +148,35 @@ struct DeviceOperationInstanceFactory<
{ {
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs); add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(op_ptrs);
} }
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, F16> && is_same_v<WeiDataType, F16> &&
is_same_v<OutDataType, F16>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, F32> && is_same_v<WeiDataType, F32> &&
is_same_v<OutDataType, F32>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, BF16> && is_same_v<WeiDataType, BF16> &&
is_same_v<OutDataType, BF16>)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(op_ptrs);
}
} }
return op_ptrs; return op_ptrs;
......
...@@ -13,6 +13,7 @@ ...@@ -13,6 +13,7 @@
#include "ck/utility/data_type.hpp" #include "ck/utility/data_type.hpp"
#include "ck/utility/span.hpp" #include "ck/utility/span.hpp"
#include "ck/utility/type_convert.hpp"
#include "ck/library/utility/algorithm.hpp" #include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/ranges.hpp" #include "ck/library/utility/ranges.hpp"
......
add_instance_library(device_grouped_conv2d_bwd_data_instance add_instance_library(device_grouped_conv2d_bwd_data_instance
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instance.cpp
device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_f32_instance.cpp
) )
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_bf16_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_bf16_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT // SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved. // Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp" #include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace ck { namespace ck {
namespace tensor_operation { namespace tensor_operation {
namespace device { namespace device {
namespace instance { namespace instance {
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
using F16 = ck::half_t;
using F32 = float;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdDataDefault =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::Default;
static constexpr auto ConvBwdDataFilter1x1Stride1Pad0 =
ck::tensor_operation::device::ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0;
using device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances = std::tuple<
// clang-format off
// 1. Default
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// 2. Filter1x1Stride1Pad0
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataFilter1x1Stride1Pad0, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
// clang-format on
>;
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances( void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2, std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK, GNHWK,
...@@ -89,8 +23,22 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances( ...@@ -89,8 +23,22 @@ void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances(
PassThrough, PassThrough,
PassThrough>>>& instances) PassThrough>>>& instances)
{ {
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_f16_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances( add_device_operation_instances(
instances, device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f16_instances{}); instances,
device_grouped_conv2d_bwd_data_xdl_f16_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataFilter1x1Stride1Pad0>{});
} }
} // namespace instance } // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for out[g, n, hi, wi, c] * wei[g, k, y, x, c] = in[g, n, ho, wo, k]
void add_device_grouped_conv2d_bwd_data_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_f32_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_f32_instances<GNHWK,
GKYXC,
Empty_Tuple,
GNHWC,
ConvBwdDataFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_data_multiple_d_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using BF16 = ck::bhalf_t;
using F16 = ck::half_t;
using F32 = float;
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using NHWGC = ck::tensor_layout::convolution::NHWGC;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using NHWGK = ck::tensor_layout::convolution::NHWGK;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static constexpr auto ConvBwdDataDefault = ConvolutionBackwardDataSpecialization::Default;
static constexpr auto ConvBwdDataFilter1x1Stride1Pad0 =
ConvolutionBackwardDataSpecialization::Filter1x1Stride1Pad0;
// f16_f16_f32_f16
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionBackwardDataSpecialization ConvSpec>
using device_grouped_conv2d_bwd_data_xdl_f16_instances = std::tuple<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>
#ifdef CK_WORKAROUND_SWDEV_3318619
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, GNHWK, GKYXC, Empty_Tuple, GNHWC, F16, F16, F32, F16, Empty_Tuple, F16, PassThrough, PassThrough, PassThrough, ConvBwdDataDefault, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
#endif
// clang-format on
>;
// bf16_bf16_f32_bf16
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionBackwardDataSpecialization ConvSpec>
using device_grouped_conv2d_bwd_data_xdl_bf16_instances = std::tuple<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 8>
#ifdef CK_WORKAROUND_SWDEV_3318619
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 32, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 8>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, BF16, BF16, F32, BF16, Empty_Tuple, BF16, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>
#endif
// clang-format on
>;
// f32_f32_f32_f32
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
ConvolutionBackwardDataSpecialization ConvSpec>
using device_grouped_conv2d_bwd_data_xdl_f32_instances = std::tuple<
// clang-format off
// ##############################################| NDim| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| AElementwise| BElementwise| CDEElementwise| ConvolutionBackward| DoPad| DoPad| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffleMXdl| CShuffleNXdl| CDEBlockTransfer| CDEBlockTransfer|
// ##############################################| Spatial| | | | | Type| Type| Type| DataType| Type| Type| Operation| Operation| Operation| DataSpecialization| GemmM| GemmN| PrefetchStage| Size| Block| Block| Block| | | XDL| XDL| PerWave| PerWave| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| PerWave| PerWave| _MBlock_MPerBlock| ScalarPerVector|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Lengths_AK0_M_AK1| ArrangeOrder| | | PerVector| PerVector_AK1| | Lengths_BK0_N_BK1| ArrangeOrder| | | PerVector| PerVector_BK1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock|
// ##############################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 2, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, 0, 1, 1, S<1, 32, 1, 8>, 4>
#ifdef CK_WORKAROUND_SWDEV_3318619
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 256, 32, 8, 8, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 64, 128, 32, 8, 8, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 64, 32, 8, 8, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 128, 64, 32, 8, 8, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 256, 64, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 128, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 32, 1, 4>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 128, 32, 128, 32, 8, 8, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 8>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 64, 32, 32, 8, 8, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 4, 4, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 4, 4, 1, 1, 1, S<1, 16, 1, 4>, 4>,
// DeviceGroupedConvBwdDataMultipleD_Xdl_CShuffle_v1< 2, ALayout, BLayout, DsLayout, ELayout, F32, F32, F32, F32, Empty_Tuple, F32, PassThrough, PassThrough, PassThrough, ConvSpec, true, true, 1, 64, 32, 64, 32, 8, 8, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 1, 8, 8, 1, 1, 1, S<1, 16, 1, 4>, 8>,
#endif
// clang-format on
>;
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "device_grouped_conv2d_bwd_data_xdl_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// Compilation parameters for out[n, hi, wi, g, c] * wei[g, k, y, x, c] = in[n, ho, wo, g, k]
void add_device_grouped_conv2d_bwd_data_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvBwdDataMultipleD<2,
NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
BF16,
BF16,
Empty_Tuple,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances)
{
// 1. Default
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_bf16_instances<NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
ConvBwdDataDefault>{});
// 2. Filter1x1Stride1Pad0
add_device_operation_instances(
instances,
device_grouped_conv2d_bwd_data_xdl_bf16_instances<NHWGK,
GKYXC,
Empty_Tuple,
NHWGC,
ConvBwdDataFilter1x1Stride1Pad0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment