Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
98ccb367
Commit
98ccb367
authored
Nov 16, 2022
by
aska-0096
Browse files
tempsave
parent
ab663329
Changes
5
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1802 additions
and
0 deletions
+1802
-0
example/01_gemm/gemm_wmma_fp16.cpp
example/01_gemm/gemm_wmma_fp16.cpp
+39
-0
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
...ude/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
+0
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
.../ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+565
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma_v1r1.hpp
.../ck/tensor_operation/gpu/grid/gridwise_gemm_wmma_v1r1.hpp
+815
-0
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
+383
-0
No files found.
example/01_gemm/gemm_wmma_fp16.cpp
0 → 100644
View file @
98ccb367
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp"
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
float
;
using
CDataType
=
ck
::
half_t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
CLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CElementOp
=
PassThrough
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmWmma
// ######| AData| BData| CData| AccData| ALayout| BLayout| CLayout| A| B| C| GEMM| Block| MPer| NPer| K0Per| K1| MPer| NPer|MWMMA|NMMMA| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CThreadTransfer| CThreadTransfer|
// ######| Type| Type| Type| Type| | | | Elementwise| Elementwise| Elementwise|Spacialization| Size| Block| Block| Block| | WMMA| WMMA| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcDstVectorDim| DstScalar|
// ######| | | | | | | | Operation| Operation| Operation| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | | PerVector|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
ALayout
,
BLayout
,
CLayout
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
256
,
128
,
128
,
4
,
8
,
16
,
16
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
7
,
1
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
#include "run_gemm_example.inc"
int
main
(
int
argc
,
char
*
argv
[])
{
return
!
run_gemm_example
(
argc
,
argv
);
}
include/ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp
0 → 100644
View file @
98ccb367
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
0 → 100644
View file @
98ccb367
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_wmma_v1r1.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
ck
::
index_t
CThreadTransferSrcDstVectorDim
,
ck
::
index_t
CThreadTransferDstScalarPerVector
,
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGemmWmma
:
public
DeviceGemm
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
M1Number
=
Number
<
M1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeCGridDescriptor_M0_N_M1
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
{
assert
(
M
%
M1
==
0
);
const
index_t
M0
=
M
/
M1
;
const
auto
c_grid_desc_m_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
static_assert
(
false
,
"Padding Gemm Not implemented"
);
/* Not implemented yet.
const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_right_pad_transform(M, PadM), make_right_pad_transform(N, PadN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
*/
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
M0
,
M1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
CGridDesc_M0_N_M1
=
decltype
(
MakeCGridDescriptor_M0_N_M1
(
1
,
1
,
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1
<
BlockSize
,
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
CGridDesc_M0_N_M1
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerXDL
,
NPerXDL
,
K1
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
Sequence
<
0
,
2
,
4
,
5
,
6
,
1
,
3
,
7
>
,
// CThreadTransferSrcDstAccessOrder,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
,
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
c_grid_desc_m0_n_m1_
{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmWmma
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmWmma
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
c_grid_desc_m0_n_m1_
=
DeviceGemmWmma
::
MakeCGridDescriptor_M0_N_M1
(
M
,
N
,
StrideC
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m0_n_m1_
,
M01
,
N01
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
c_grid_desc_m0_n_m1_
,
block_2_ctile_map_
))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m0_n_m1_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
CGridDesc_M0_N_M1
c_grid_desc_m0_n_m1_
;
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
;
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
index_t
M01_
;
index_t
N01_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceGemmWmma
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m0_n_m1_{ " << arg.c_grid_desc_m0_n_m1_.GetLength(I0)
<< ", " << arg.c_grid_desc_m0_n_m1_.GetLength(I1) << ", "
<< arg.c_grid_desc_m0_n_m1_.GetLength(I2) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n_m1_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m0_n_m1_
);
const
auto
K
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_wmma_v1r1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmWmma
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmWmma
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
true
>
;
// Last Option is W/O
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_wmma_v1r1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceGemmWmma
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
DeviceGemmWmma
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseGemm
::
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
remove_reference_t
<
typename
GridwiseGemm
::
DefaultBlock2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m0_n_m1_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
1
,
1
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceGemmWmma"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_wmma_v1r1.hpp
0 → 100644
View file @
98ccb367
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_wmma.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r3.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#define DISABLE_C_SHUFFLE
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
CGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
,
#ifndef DISABLE_C_SHUFFLE
typename
C0GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
,
typename
C1GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
,
#endif
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_wmma_v1r1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
FloatC
*
__restrict__
p_c0_grid
,
const
FloatC
*
__restrict__
p_c1_grid
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1
,
const
CGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#ifndef DISABLE_C_SHUFFLE
const
C0GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
const
C1GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#endif
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx1100__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_c0_grid
,
p_c1_grid
,
p_shared
,
a_grid_desc_k0_m_k1
,
b_grid_desc_k0_n_k1
,
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#ifndef DISABLE_C_SHUFFLE
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#endif
a_element_op
,
b_element_op
,
c_element_op
,
block_2_ctile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
p_c0_grid
;
ignore
=
p_c1_grid
;
ignore
=
a_grid_desc_k0_m_k1
;
ignore
=
b_grid_desc_k0_n_k1
;
ignore
=
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
;
ignore
=
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
;
ignore
=
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
ignore
=
block_2_ctile_map
;
#endif // end of if (defined(__gfx1100__))
}
template
<
index_t
BlockSize
,
typename
FloatAB
,
typename
FloatAcc
,
typename
FloatC
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
AGridDesc_K0_M_K1
,
typename
BGridDesc_K0_N_K1
,
typename
CGridDesc_M_N
,
typename
C0GridDesc_M_N
,
typename
C1GridDesc_M_N
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
MPerWmma
,
index_t
NPerWmma
,
index_t
K1Value
,
index_t
MWmmaPerWave
,
index_t
NWmmaPerWave
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMWmmaPerWavePerShuffle
,
index_t
CShuffleNWmmaPerWavePerShuffle
,
typename
CBlockTransferClusterLengths_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
,
index_t
CBlockTransferScalarPerVector_NWaveNPerWmma
,
index_t
NumGemmKPrefetchStage
=
1
,
PipelineVersion
PipelineVer
=
PipelineVersion
::
v1
>
struct
GridwiseGemm_k0mk1_k0nk1_mn_wmmaops_v3r3
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
K1
=
Number
<
K1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
remove_cvref_t
<
decltype
(
GridwiseGemmPipeline_Selector
<
PipelineVer
,
NumGemmKPrefetchStage
>
())
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_K0PerBlock_MPerBlock_K10_K1PerInst
()
{
constexpr
auto
inst_max_size
=
16
/
sizeof
(
FloatAB
);
constexpr
auto
k1perinst
=
(
K1
<
inst_max_size
)
?
K1
:
inst_max_size
;
constexpr
auto
K10
=
K1
/
k1perinst
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k10_k1perinst
=
[
&
]()
{
if
constexpr
(
ABlockLdsExtraM
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K1
),
make_tuple
(
Number
<
MPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
// May have static err
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
MPerBlock
>
{},
K10
,
k1perinst
),
k1perinst
);
}
}();
return
a_block_desc_k0_m_k1
;
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_K0PerBlock_NPerBlock_K10_K1PerInst
()
{
constexpr
auto
inst_max_size
=
16
/
sizeof
(
FloatAB
);
constexpr
auto
k1perinst
=
(
K1
<
inst_max_size
)
?
K1
:
inst_max_size
;
constexpr
auto
K10
=
K1
/
k1perinst
;
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_k0_n_k1
=
[
&
]()
{
if
constexpr
(
BBlockLdsExtraN
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K1
),
make_tuple
(
Number
<
NPerBlock
+
1
>
{}
*
K1
,
K1
,
I1
));
}
else
{
return
make_naive_tensor_descriptor_aligned
(
make_tuple
(
Number
<
K0PerBlock
>
{},
Number
<
NPerBlock
>
{},
K10
,
k1perinst
),
k1perinst
);
}
}();
return
b_block_desc_k0_n_k1
;
}
__host__
__device__
static
constexpr
auto
GetCBlockDescriptor_MBlock_NWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MWmmaPerWave
*
MPerWmma
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NWmmaPerWave
*
NPerWmma
);
constexpr
auto
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMWmmaPerWavePerShuffle
>
{},
Number
<
MWave
*
MPerWmma
>
{},
I1
,
Number
<
CShuffleNWmmaPerWavePerShuffle
>
{},
Number
<
NWave
*
NPerWmma
>
{}));
return
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
;
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_k0_m_k1
=
GetABlockDescriptor_K0PerBlock_MPerBlock_K1
();
constexpr
auto
b_block_desc_k0_n_k1
=
GetBBlockDescriptor_K0PerBlock_NPerBlock_K1
();
constexpr
auto
max_lds_align
=
K1
;
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0_m_k1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_k0_n_k1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
=
GetCBlockDescriptor_MBlock_NWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
();
constexpr
auto
c_block_size
=
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetElementSpaceSize
();
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size
*
sizeof
(
FloatC
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
static_assert
(
is_known_at_compile_time
<
remove_cv_t
<
decltype
(
K1
)
>>::
value
,
"wrong! K1 need to be known at compile-time"
);
static_assert
((
MPerBlock
%
(
MPerWmma
*
MWmmaPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NWmmaPerWave
*
NPerWmma
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_k0_m_k1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_k0_n_k1
.
GetLength
(
I1
);
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)
&&
K0
==
b_grid_desc_k0_n_k1
.
GetLength
(
I0
)
&&
K1
==
a_grid_desc_k0_m_k1
.
GetLength
(
I2
)
&&
K1
==
b_grid_desc_k0_n_k1
.
GetLength
(
I2
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K0
%
K0PerBlock
==
0
))
return
false
;
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K0
/
K0PerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
(
K0PerBlock
*
K1
);
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
template
<
typename
CGridDesc_M_N_
>
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
(
const
CGridDesc_M_N_
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
constexpr
index_t
MWave
=
MPerBlock
/
(
MWmmaPerWave
*
MPerWmma
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NWmmaPerWave
*
NPerWmma
);
const
auto
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MWmmaPerWave
>
{},
Number
<
MWave
*
MPerWmma
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NWmmaPerWave
>
{},
Number
<
NWave
*
NPerWmma
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
,
5
>
{}));
return
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
/* M01 */
,
index_t
/* N01 */
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
CGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
(
CGridDesc_M_N
{}))
>
;
#ifndef DISABLE_C_SHUFFLE
using
C0GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
(
C0GridDesc_M_N
{}))
>
;
using
C1GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
(
C1GridDesc_M_N
{}))
>
;
#endif
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{},
1
,
1
))
>
;
template
<
bool
HasMainKBlockLoop
,
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
FloatC
*
__restrict__
p_c0_grid
,
const
FloatC
*
__restrict__
p_c1_grid
,
void
*
__restrict__
p_shared
,
const
AGridDesc_K0_M_K1
&
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
&
b_grid_desc_k0_n_k1
,
const
CGridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
&
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#ifndef DISABLE_C_SHUFFLE
const
C0GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
&
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
const
C1GridDescriptor_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
&
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
#endif
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_k0_m_k1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_k0_n_k1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetElementSpaceSize
());
#ifndef DISABLE_C_SHUFFLE
auto
c0_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c0_grid
,
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetElementSpaceSize
());
auto
c1_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c1_grid
,
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetElementSpaceSize
());
#endif
const
auto
K0
=
a_grid_desc_k0_m_k1
.
GetLength
(
I0
);
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetLength
(
I0
),
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetLength
(
I3
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
K1
;
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k10_k11
=
GetABlockDescriptor_K0PerBlock_MPerBlock_K10_K1PerInst
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_k0_m_k10_k11
=
GetBBlockDescriptor_K0PerBlock_NPerBlock_K10_K1PerInst
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
MPerBlock
,
K1
>
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_grid_desc_k0_m_k1
),
decltype
(
a_block_desc_k0_m_k1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
a_grid_desc_k0_m_k1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_k0_m_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
K0PerBlock
,
NPerBlock
,
K1
>
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_grid_desc_k0_n_k1
),
decltype
(
b_block_desc_k0_n_k1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
>
(
b_grid_desc_k0_n_k1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_k0_n_k1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
auto
blockwise_gemm
=
BlockwiseGemmWmmaops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1
<
BlockSize
,
FloatAB
,
FloatAcc
,
decltype
(
a_block_desc_k0_m_k1
),
decltype
(
b_block_desc_k0_n_k1
),
MPerWmma
,
NPerWmma
,
MWmmaPerWave
,
NWmmaPerWave
,
K1
>
{};
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_k0_m_k1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_k0_m_k1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_k0_n_k1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
K0PerBlock
,
0
,
0
);
// gridwise GEMM pipeline
const
index_t
K0BlockMainLoop
=
__builtin_amdgcn_readfirstlane
(
K0
/
K0PerBlock
);
GridwiseGemmPipe
::
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_k0_m_k1
,
a_block_desc_k0_m_k1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_k0_n_k1
,
b_block_desc_k0_n_k1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
K0BlockMainLoop
);
// shuffle C and write out
{
static_assert
(
MWmmaPerWave
%
CShuffleMWmmaPerWavePerShuffle
==
0
&&
NWmmaPerWave
%
CShuffleNWmmaPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MWmmaPerWave
*
MPerWmma
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NWmmaPerWave
*
NPerWmma
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
=
GetCBlockDescriptor_MBlock_NWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
();
auto
c_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatC
*>
(
p_shared
),
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
make_tuple
(
make_freeze_transform
(
I0
),
// freeze mblock
make_pass_through_transform
(
Number
<
CShuffleMWmmaPerWavePerShuffle
>
{}),
// M0 (MWmmaPerWave) per
// shuffle
make_unmerge_transform
(
make_tuple
(
M1
,
M2
,
M3
,
M4
)),
// M1 = MWave, M2 * M3 * M4 = MPerWmma
make_freeze_transform
(
I0
),
// freeze nblock
make_pass_through_transform
(
Number
<
CShuffleNWmmaPerWavePerShuffle
>
{}),
// N0 (NWmmaPerWave) per
// shuffle
make_unmerge_transform
(
make_tuple
(
N1
,
N2
))),
// M1 = MWave, M2 * M3 * M4 = MPerWmma
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<
3
,
7
>
{})
);
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatAcc
,
FloatC
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMWmmaPerWavePerShuffle
,
CShuffleNWmmaPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{}};
auto
c_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r3
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMWmmaPerWavePerShuffle
,
MWave
*
MPerWmma
,
1
,
CShuffleNWmmaPerWavePerShuffle
,
NWave
*
NPerWmma
>
,
// BlockSliceLengths,
CBlockTransferClusterLengths_MBlock_MWmmaPerWave_MWaveMPerWmma_NBlock_NWmmaPerWave_NWaveNPerWmma
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
// typename ThreadClusterArrangeOrder,
FloatC
,
// typename Src0Data,
FloatC
,
// typename Src1Data,
FloatC
,
// typename Src2Data,
FloatC
,
// typename DstData,
decltype
(
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
),
decltype
(
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
),
decltype
(
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
),
decltype
(
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
),
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
>
,
// typename DimAccessOrder,
5
,
// index_t VectorDim,
CBlockTransferScalarPerVector_NWaveNPerWmma
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrc0ResetCoordinateAfterRun,
false
,
// bool ThreadTransferSrc1ResetCoordinateAfterRun,
false
,
// bool ThreadTransferSrc2ResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
make_multi_index
(
0
,
0
,
0
,
0
,
0
,
0
),
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
0
,
block_work_idx
[
I1
],
0
,
0
),
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
0
,
block_work_idx
[
I1
],
0
,
0
),
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
0
,
block_work_idx
[
I1
],
0
,
0
),
c_element_op
};
constexpr
auto
mwmmaperwave_forward_step
=
make_multi_index
(
0
,
CShuffleMWmmaPerWavePerShuffle
,
0
,
0
,
0
,
0
);
constexpr
auto
nwmmaperwave_forward_step
=
make_multi_index
(
0
,
0
,
0
,
0
,
CShuffleNWmmaPerWavePerShuffle
,
0
);
constexpr
auto
nwmmaperwave_backward_step
=
make_multi_index
(
0
,
0
,
0
,
0
,
-
CShuffleNWmmaPerWavePerShuffle
,
0
);
static_for
<
0
,
MWmmaPerWave
,
CShuffleMWmmaPerWavePerShuffle
>
{}([
&
](
auto
mwmmaperwave_iter
)
{
constexpr
auto
mwmmaperwave
=
mwmmaperwave_iter
;
static_for
<
0
,
NWmmaPerWave
,
CShuffleNWmmaPerWavePerShuffle
>
{}([
&
](
auto
nwmmaperwave_iter
)
{
constexpr
bool
nwmmaperwave_forward_sweep
=
(
mwmmaperwave
%
(
2
*
CShuffleMWmmaPerWavePerShuffle
)
==
0
);
constexpr
index_t
nwmmaperwave_value
=
nwmmaperwave_forward_sweep
?
nwmmaperwave_iter
:
(
NWmmaPerWave
-
nwmmaperwave_iter
-
CShuffleNWmmaPerWavePerShuffle
);
constexpr
auto
nwmmaperwave
=
Number
<
nwmmaperwave_value
>
{};
// make sure it's safe to do ds_write
block_sync_lds
();
// VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_tuple
(
mwmmaperwave
,
nwmmaperwave
,
I0
,
I0
,
I0
,
I0
,
I0
,
I0
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_block_buf
);
// make sure it's safe to do ds_read
block_sync_lds
();
// LDS to global
c_block_copy_lds_to_global
.
Run
(
c_block_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
c_block_buf
,
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
c0_grid_buf
,
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
c1_grid_buf
,
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
c_grid_buf
);
// move on nwmmaperwave dimension
if
constexpr
(
nwmmaperwave_forward_sweep
&&
(
nwmmaperwave
<
NWmmaPerWave
-
CShuffleNWmmaPerWavePerShuffle
))
{
c_block_copy_lds_to_global
.
MoveSrc1SliceWindow
(
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_forward_step
);
c_block_copy_lds_to_global
.
MoveSrc2SliceWindow
(
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_forward_step
);
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_forward_step
);
}
else
if
constexpr
((
!
nwmmaperwave_forward_sweep
)
&&
(
nwmmaperwave
>
0
))
{
c_block_copy_lds_to_global
.
MoveSrc1SliceWindow
(
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_backward_step
);
c_block_copy_lds_to_global
.
MoveSrc2SliceWindow
(
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_backward_step
);
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
nwmmaperwave_backward_step
);
}
});
// move on mwmmaperwave dimension
if
constexpr
(
mwmmaperwave
<
MWmmaPerWave
-
CShuffleMWmmaPerWavePerShuffle
)
{
c_block_copy_lds_to_global
.
MoveSrc1SliceWindow
(
c0_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
mwmmaperwave_forward_step
);
c_block_copy_lds_to_global
.
MoveSrc2SliceWindow
(
c1_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
mwmmaperwave_forward_step
);
c_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mwmmaperwave_mwavemperwmma_nblock_nwmmaperwave_nwavenperwmma
,
mwmmaperwave_forward_step
);
}
});
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/warp/wmma_gemm.hpp
0 → 100644
View file @
98ccb367
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/utility/math.hpp"
#include "ck/utility/amd_wmma.hpp"
namespace
ck
{
enum
struct
WmmaInstr
{
wmma_f32_16x16x16_f16_w32
=
0
,
wmma_f32_16x16x16_bf16_w32
=
0
,
wmma_f16_16x16x16_f16_w32
=
0
,
wmma_bf16_16x16x16_bf16_w32
=
0
,
wmma_i32_16x16x16_iu8_w32
=
0
,
wmma_i32_16x16x16_iu4_w32
=
0
};
template
<
WmmaInstr
instr
>
struct
wmma_type
;
template
<
>
struct
wmma_type
<
WmmaInstr
::
wmma_f32_16x16x16_f16_w32
>
{
static
constexpr
index_t
m_per_wave
=
16
;
static
constexpr
index_t
n_per_wave
=
16
;
static
constexpr
index_t
k_per_wave
=
16
;
static
constexpr
index_t
wave_size
=
32
;
static
constexpr
index_t
lane_size
=
16
;
static
constexpr
index_t
src_data_size
=
2
;
static
constexpr
index_t
acc_data_size
=
4
;
static
constexpr
index_t
num_srcregs_per_wave
=
8
;
static
constexpr
index_t
num_accregs_per_wave
=
8
;
template
<
index_t
MPerWmma
,
index_t
NPerWmma
,
class
FloatA
,
class
FloatB
,
class
FloatC
>
__device__
void
run
(
const
FloatA
&
a
,
const
FloatB
&
b
,
FloatC
&
reg_c
)
const
{
intrin_wmma_f32_16x16x16_f16_w32
<
MPerWmma
,
NPerWmma
>::
Run
(
a
,
b
,
reg_c
);
}
};
template
<
typename
src_type
,
typename
dst_type
,
index_t
MPerWmma
,
index_t
NPerWmma
>
struct
WmmaSelector
{
template
<
typename
src_type
,
typename
dst_type
,
index_t
MPerWmma_
,
index_t
NPerWmma_
>
static
constexpr
auto
GetWmma
();
template
<
>
static
constexpr
auto
GetWmma
<
half_t
,
float
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_f32_16x16x16_f16_w32
;
}
template
<
>
static
constexpr
auto
GetWmma
<
bhalf_t
,
float
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_f32_16x16x16_bf16_w32
;
}
template
<
>
static
constexpr
auto
GetWmma
<
half_t
,
half_t
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_f16_16x16x16_f16_w32
;
}
template
<
>
static
constexpr
auto
GetWmma
<
bhalf_t
,
bhalf_t
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_bf16_16x16x16_bf16_w32
;
}
template
<
>
static
constexpr
auto
GetWmma
<
int8_t
,
float
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_i32_16x16x16_iu8_w32
;
}
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
template
<
>
static
constexpr
auto
GetWmma
<
int4_t
,
float
,
16
,
16
>
()
{
return
WmmaInstr
::
wmma_i32_16x16x16_iu4_w32
;
}
#endif
static
constexpr
auto
selected_wmma
=
wmma_type
<
GetWmma
<
src_type
,
dst_type
,
MPerWmma
,
NPerWmma
>
()
>
{};
__host__
__device__
constexpr
WmmaSelector
()
{
static_assert
(
selected_wmma
.
m_per_wave
==
selected_wmma
.
n_per_wave
,
"WRONG! WMMA_M must equal to WMMA_N"
);
static_assert
(
selected_wmma
.
m_per_wave
==
selected_wmma
.
k_per_wave
,
"WRONG! WMMA_M must equal to WMMA_K"
);
static_assert
(
selected_wmma
.
k_per_wave
==
16
,
"WRONG! WMMA_M must equal to WMMA_N"
);
static_assert
(
selected_wmma
.
wave_size
*
selected_wmma
.
num_accregs_per_wave
*
selected_wmma
.
acc_data_size
==
selected_wmma
.
m_per_wave
*
selected_wmma
.
n_per_wave
*
4
,
"WRONG! Number of Accumulator Register"
);
static_assert
(
selected_wmma
.
lane_size
*
selected_wmma
.
num_srcregs_per_wave
*
selected_wmma
.
src_data_size
==
selected_wmma
.
m_per_wave
*
selected_wmma
.
k_per_wave
*
4
,
"WRONG! Number of Source Register"
);
}
};
template
<
typename
src_type
,
typename
dst_type
,
index_t
MPerWmma
,
index_t
NPerWmma
,
index_t
KPack
,
bool
TransposeC
=
false
>
struct
WmmaGemm
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
using
CIndex
=
MultiIndex
<
2
>
;
using
CIndex4D
=
MultiIndex
<
4
>
;
__device__
static
constexpr
index_t
GetNumBlks
()
{
return
wmma_instr
.
num_output_blks
;
}
__device__
static
constexpr
index_t
GetNumXdlops
()
{
return
MPerWmma
*
NPerWmma
/
(
wmma_instr
.
m_per_blk
*
wmma_instr
.
n_per_blk
*
wmma_instr
.
num_output_blks
);
}
__host__
__device__
constexpr
WmmaGemm
()
{
static_assert
(
NPerWmma
==
16
&&
MPerWmma
==
16
,
"Only support GemmNPerWmma == 16 and GemmMPerWmma == 16 for wmma"
);
static_assert
(
KPack
%
wmma_instr
.
k_per_wave
==
0
,
"KPack cannot be divided by k_per_wave"
);
}
// XDL output supporting C = A * B
// M2_N2 -> M2_M3_M4_N2
template
<
typename
CDesc_M0_N0_M1_N1_M2_N2
>
__host__
__device__
static
constexpr
auto
MakeCDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
const
CDesc_M0_N0_M1_N1_M2_N2
&
c_desc_m0_n0_m1_n1_m2_n2
)
{
const
auto
M0
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I0
);
const
auto
N0
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I1
);
const
auto
M1
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I2
);
const
auto
N1
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I3
);
return
transform_tensor_descriptor
(
c_desc_m0_n0_m1_n1_m2_n2
,
make_tuple
(
make_pass_through_transform
(
M0
),
make_pass_through_transform
(
N0
),
make_pass_through_transform
(
M1
),
make_pass_through_transform
(
N1
),
make_unmerge_transform
(
make_tuple
(
Number
<
wmma_instr
.
num_groups_per_blk
>
{},
Number
<
wmma_instr
.
num_input_blks
>
{},
Number
<
wmma_instr
.
group_size
>
{})),
make_pass_through_transform
(
Number
<
wmma_instr
.
num_threads_per_blk
>
{})),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
,
5
,
6
>
{},
Sequence
<
7
>
{}));
}
// transposed XDL output supporting C' = B' * A'
// M2_N2 -> M2_N2_N3_N4
template
<
typename
CDesc_M0_N0_M1_N1_M2_N2
>
__host__
__device__
static
constexpr
auto
MakeCDescriptor_M0_N0_M1_N1_M2_N2_N3_N4
(
const
CDesc_M0_N0_M1_N1_M2_N2
&
c_desc_m0_n0_m1_n1_m2_n2
)
{
const
auto
M0
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I0
);
const
auto
N0
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I1
);
const
auto
M1
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I2
);
const
auto
N1
=
c_desc_m0_n0_m1_n1_m2_n2
.
GetLength
(
I3
);
return
transform_tensor_descriptor
(
c_desc_m0_n0_m1_n1_m2_n2
,
make_tuple
(
make_pass_through_transform
(
M0
),
make_pass_through_transform
(
N0
),
make_pass_through_transform
(
M1
),
make_pass_through_transform
(
N1
),
make_pass_through_transform
(
Number
<
wmma_instr
.
num_threads_per_blk
>
{}),
make_unmerge_transform
(
make_tuple
(
Number
<
wmma_instr
.
num_groups_per_blk
>
{},
Number
<
wmma_instr
.
num_input_blks
>
{},
Number
<
wmma_instr
.
group_size
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
,
7
>
{}));
}
template
<
typename
CDesc_G_M0_N0_M1_N1_M2_N2
>
__host__
__device__
static
constexpr
auto
MakeCDescriptor_G_M0_N0_M1_N1_M2_M3_M4_N2
(
const
CDesc_G_M0_N0_M1_N1_M2_N2
&
c_desc_g_m0_n0_m1_n1_m2_n2
)
{
const
auto
G
=
c_desc_g_m0_n0_m1_n1_m2_n2
.
GetLength
(
I0
);
const
auto
M0
=
c_desc_g_m0_n0_m1_n1_m2_n2
.
GetLength
(
I1
);
const
auto
N0
=
c_desc_g_m0_n0_m1_n1_m2_n2
.
GetLength
(
I2
);
const
auto
M1
=
c_desc_g_m0_n0_m1_n1_m2_n2
.
GetLength
(
I3
);
const
auto
N1
=
c_desc_g_m0_n0_m1_n1_m2_n2
.
GetLength
(
I4
);
return
transform_tensor_descriptor
(
c_desc_g_m0_n0_m1_n1_m2_n2
,
make_tuple
(
make_pass_through_transform
(
G
),
make_pass_through_transform
(
M0
),
make_pass_through_transform
(
N0
),
make_pass_through_transform
(
M1
),
make_pass_through_transform
(
N1
),
make_unmerge_transform
(
make_tuple
(
wmma_instr
.
num_groups_per_blk
,
wmma_instr
.
num_input_blks
,
wmma_instr
.
group_size
)),
make_pass_through_transform
(
wmma_instr
.
num_threads_per_blk
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
,
7
>
{},
Sequence
<
8
>
{}));
}
__device__
static
constexpr
index_t
GetRegSizePerXdlops
()
{
return
MPerWmma
*
NPerWmma
/
wmma_instr
.
wave_size
;
}
__device__
static
constexpr
index_t
GetWaveSize
()
{
return
wmma_instr
.
wave_size
;
}
template
<
class
FloatA
,
class
FloatB
,
class
FloatC
>
__device__
void
Run
(
const
FloatA
&
p_a_wave
,
const
FloatB
&
p_b_wave
,
FloatC
&
p_c_thread
)
const
{
static_assert
((
is_same
<
src_type
,
half_t
>::
value
&&
is_same
<
dst_type
,
float
>::
value
)
||
(
is_same
<
src_type
,
bhalf_t
>::
value
&&
is_same
<
dst_type
,
float
>::
value
)
||
(
is_same
<
src_type
,
half_t
>::
value
&&
is_same
<
dst_type
,
half_t
>::
value
)
||
(
is_same
<
src_type
,
bhalf_t
>::
value
&&
is_same
<
dst_type
,
bhalf_t
>::
value
)
||
(
is_same
<
src_type
,
int8_t
>::
value
&&
is_same
<
dst_type
,
int32_t
>::
value
)
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
||
(
is_same
<
src_type
,
int4_t
>::
value
&&
is_same
<
dst_type
,
int32_t
>::
value
)
#endif
,
"base type couple must be (half, float), (bhalf, float), (half, half),
(bhalf, bhalf), (int8, int32) or (int4, int32)!"
);
static_for
<
0
,
KPack
/
wmma_instr
.
k_per_wave
,
1
>
{}([
&
](
auto
k
)
{
if
constexpr
(
!
TransposeC
)
{
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_a_wave
[
k
],
p_b_wave
[
k
],
p_c_thread
);
}
else
{
wmma_instr
.
template
run
<
MPerWmma
,
NPerWmma
>(
p_b_wave
[
k
],
p_a_wave
[
k
],
p_c_thread
);
}
});
}
__device__
static
auto
GetLaneId
()
{
return
get_thread_local_1d_id
()
%
wmma_instr
.
wave_size
;
}
__device__
static
auto
GetBlkIdx
()
{
const
auto
laneId
=
GetLaneId
();
constexpr
auto
threadidx_to_blk_idx_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
1
,
wmma_instr
.
num_input_blks
,
wmma_instr
.
num_threads_per_blk
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
blk_idx
=
threadidx_to_blk_idx_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
laneId
));
const
auto
blk_id
=
blk_idx
[
I1
];
const
auto
blk_td
=
blk_idx
[
I2
];
return
make_tuple
(
blk_id
,
blk_td
);
}
__host__
__device__
static
auto
CalculateAThreadOriginDataIndex
()
{
const
auto
laneId
=
GetLaneId
();
const
auto
blk_idx
=
GetBlkIdx
();
const
auto
blk_id
=
blk_idx
[
I0
];
const
auto
blk_td
=
blk_idx
[
I1
];
if
constexpr
(
wmma_instr
.
is_k_reduction
)
{
return
make_tuple
(
blk_id
,
blk_td
);
}
else
{
return
make_tuple
(
0
,
laneId
);
}
}
__host__
__device__
static
auto
CalculateBThreadOriginDataIndex
()
{
const
auto
laneId
=
GetLaneId
();
const
auto
blk_idx
=
GetBlkIdx
();
const
auto
blk_id
=
blk_idx
[
I0
];
const
auto
blk_td
=
blk_idx
[
I1
];
if
constexpr
(
wmma_instr
.
is_k_reduction
)
{
return
make_tuple
(
blk_id
,
blk_td
);
}
else
{
return
make_tuple
(
0
,
laneId
);
}
}
__device__
static
CIndex
GetBeginOfThreadBlk
(
index_t
xdlops_i
,
index_t
blk_i
)
{
const
auto
blk_idx
=
GetBlkIdx
();
const
auto
blk_id
=
blk_idx
[
I0
];
const
auto
blk_td
=
blk_idx
[
I1
];
index_t
n_offset
=
blk_i
*
wmma_instr
.
n_per_blk
+
blk_td
;
index_t
m_offset
=
xdlops_i
*
wmma_instr
.
m_per_blk
+
blk_id
*
wmma_instr
.
group_size
;
return
TransposeC
?
CIndex
{
n_offset
,
m_offset
}
:
CIndex
{
m_offset
,
n_offset
};
}
__device__
static
CIndex4D
GetBeginOfThreadBlk4D
(
index_t
/* xdlops_i */
,
index_t
/* blk_i */
)
{
const
auto
blk_idx
=
GetBlkIdx
();
const
auto
blk_id
=
blk_idx
[
I0
];
const
auto
blk_td
=
blk_idx
[
I1
];
return
TransposeC
?
CIndex4D
{
blk_td
,
I0
,
blk_id
,
I0
}
:
CIndex4D
{
I0
,
blk_id
,
I0
,
blk_td
};
}
static
constexpr
auto
mfma
=
MfmaSelector
<
base_type
,
MPerWmma
,
NPerWmma
>
{};
static
constexpr
auto
wmma_instr
=
mfma
.
selected_mfma
;
static
constexpr
auto
KPerXdlops
=
mfma
.
GetKPerXdlops
();
static
constexpr
auto
K1PerXdlops
=
mfma
.
GetK1PerXdlops
();
static
constexpr
auto
K0PerXdlops
=
KPerXdlops
/
K1PerXdlops
;
__host__
__device__
static
constexpr
auto
GetCM0M1M2NThreadBlkLengths
()
{
return
make_tuple
(
Number
<
wmma_instr
.
num_groups_per_blk
>
{},
I1
,
Number
<
wmma_instr
.
group_size
>
{},
I1
);
}
};
}
// namespace ck
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment