Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
9697ad4e
Unverified
Commit
9697ad4e
authored
May 31, 2023
by
zjing14
Committed by
GitHub
May 31, 2023
Browse files
Merge branch 'develop' into add_int8_wmma_example_instance
parents
1c97db8a
582e31e8
Changes
170
Hide whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
974 additions
and
0 deletions
+974
-0
test/grouped_gemm/test_grouped_gemm_interface.cpp
test/grouped_gemm/test_grouped_gemm_interface.cpp
+202
-0
test/grouped_gemm/test_grouped_gemm_splitk.cpp
test/grouped_gemm/test_grouped_gemm_splitk.cpp
+34
-0
test/grouped_gemm/test_grouped_gemm_ut_cases.inc
test/grouped_gemm/test_grouped_gemm_ut_cases.inc
+180
-0
test/grouped_gemm/test_grouped_gemm_util.hpp
test/grouped_gemm/test_grouped_gemm_util.hpp
+249
-0
test/pool_fwd/CMakeLists.txt
test/pool_fwd/CMakeLists.txt
+16
-0
test/pool_fwd/test_avg_pool2d_fwd.cpp
test/pool_fwd/test_avg_pool2d_fwd.cpp
+56
-0
test/pool_fwd/test_avg_pool3d_fwd.cpp
test/pool_fwd/test_avg_pool3d_fwd.cpp
+56
-0
test/pool_fwd/test_max_pool2d_fwd.cpp
test/pool_fwd/test_max_pool2d_fwd.cpp
+75
-0
test/pool_fwd/test_max_pool3d_fwd.cpp
test/pool_fwd/test_max_pool3d_fwd.cpp
+75
-0
test/pool_fwd/test_pool_fwd_common.hpp
test/pool_fwd/test_pool_fwd_common.hpp
+31
-0
No files found.
test/grouped_gemm/test_grouped_gemm_interface.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <stdexcept>
#include <vector>
#include "gtest/gtest.h"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "test_grouped_gemm_util.hpp"
class
TestGGemmSplitKInterface_MKNKMN
:
public
::
testing
::
Test
{
protected:
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
ELayout
=
Row
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
CDEBlockTransferScalarPerVector_NPerBlock
>
using
GGemmInstance
=
ck
::
test
::
DeviceGroupedGemmSplitkInstanceWrapper
<
ALayout
,
BLayout
,
ELayout
,
GemmSpec
,
KPerBlock
,
K1
,
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
CDEBlockTransferScalarPerVector_NPerBlock
>
;
using
DefaultGGemmInstance
=
GGemmInstance
<
GemmDefault
,
32
,
8
,
4
,
8
,
8
>
;
};
TEST_F
(
TestGGemmSplitKInterface_MKNKMN
,
TileSize
)
{
std
::
vector
<
int
>
Ms
{
128
,
256
,
188
,
512
};
constexpr
int
N
=
256
;
constexpr
int
K
=
128
;
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
// M % MPerBlock
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ms
=
std
::
vector
<
int
>
{
256
,
128
,
128
,
512
};
Ns
=
std
::
vector
<
int
>
{
256
,
177
,
128
,
512
};
// N % NPerBlock
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
}
TEST_F
(
TestGGemmSplitKInterface_MKNKMN
,
VectorLoadWidth
)
{
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
PaddedGGemmInstance
=
GGemmInstance
<
GemmMNKPadding
,
32
,
8
,
4
,
8
,
8
>
;
std
::
vector
<
int
>
Ms
{
128
,
256
,
256
,
512
};
constexpr
int
N
=
256
;
constexpr
int
K
=
512
;
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
// K % ABlockTransferSrcScalarPerVector
Ks
=
std
::
vector
<
int
>
{
256
,
177
,
128
,
512
};
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ks
=
std
::
vector
<
int
>
{
256
,
164
,
128
,
512
};
// K % BBlockTransferSrcScalarPerVector
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ks
=
std
::
vector
<
int
>
(
4
,
128
);
Ns
=
std
::
vector
<
int
>
{
256
,
127
,
128
,
512
};
// N % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
}
TEST_F
(
TestGGemmSplitKInterface_MKNKMN
,
KLoops
)
{
std
::
vector
<
int
>
Ms
{
128
,
256
,
256
,
512
};
constexpr
int
N
=
256
;
constexpr
int
K
=
128
;
constexpr
int
kbatch
=
4
;
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
// kloops % 2
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
320
,
768
};
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
));
// Not all gemms have same value for main_k0_block_loop!
Ks
=
std
::
vector
<
int
>
{
256
,
512
,
512
,
512
};
EXPECT_THROW
(
DefaultGGemmInstance
{}.
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
),
std
::
runtime_error
);
}
class
TestGGemmSplitKInterface_KMKNNM
:
public
::
testing
::
Test
{
protected:
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ALayout
=
Col
;
using
BLayout
=
Row
;
using
ELayout
=
Col
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
CDEBlockTransferScalarPerVector_NPerBlock
>
using
GGemmInstance
=
ck
::
test
::
DeviceGroupedGemmSplitkInstanceWrapper
<
ALayout
,
BLayout
,
ELayout
,
GemmSpec
,
KPerBlock
,
K1
,
ABlockTransferSrcScalarPerVector
,
BBlockTransferSrcScalarPerVector
,
CDEBlockTransferScalarPerVector_NPerBlock
>
;
using
DefaultGGemmInstance
=
GGemmInstance
<
GemmDefault
,
32
,
8
,
4
,
8
,
4
>
;
};
TEST_F
(
TestGGemmSplitKInterface_KMKNNM
,
TileSize
)
{
std
::
vector
<
int
>
Ms
{
128
,
256
,
188
,
512
};
constexpr
int
N
=
256
;
constexpr
int
K
=
128
;
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
// M % MPerBlock
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ms
=
std
::
vector
<
int
>
{
128
,
256
,
256
,
512
};
Ns
=
std
::
vector
<
int
>
{
256
,
177
,
128
,
512
};
// N % NPerBlock
EXPECT_FALSE
(
DefaultGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
}
TEST_F
(
TestGGemmSplitKInterface_KMKNNM
,
VectorLoadWidth
)
{
static
constexpr
auto
GemmMNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
PaddedGGemmInstance
=
GGemmInstance
<
GemmMNKPadding
,
32
,
8
,
2
,
8
,
4
>
;
std
::
vector
<
int
>
Ms
{
128
,
256
,
256
,
512
};
constexpr
int
N
=
256
;
constexpr
int
K
=
512
;
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
// M % ABlockTransferSrcScalarPerVector
Ms
=
std
::
vector
<
int
>
{
256
,
177
,
128
,
512
};
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ms
=
std
::
vector
<
int
>
{
128
,
256
,
256
,
512
};
Ns
=
std
::
vector
<
int
>
{
256
,
164
,
128
,
512
};
// N % BBlockTransferSrcScalarPerVector
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
Ns
=
std
::
vector
<
int
>
{
128
,
256
,
256
,
512
};
Ms
=
std
::
vector
<
int
>
{
256
,
130
,
128
,
512
};
// M % CBlockTransferScalarPerVector_NWaveNPerXDL
EXPECT_FALSE
(
PaddedGGemmInstance
{}.
IsSupported
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
));
}
test/grouped_gemm/test_grouped_gemm_splitk.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <vector>
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/data_type.hpp"
#include "gtest/gtest.h"
#include "test_grouped_gemm_util.hpp"
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
RRR_F16_F16_F16
=
ck
::
test
::
TestGroupedGemm
<
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
>>
;
using
RCR_F16_F16_F16
=
ck
::
test
::
TestGroupedGemm
<
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
>>
;
using
RRR_F16_F16_F16_LargeK
=
ck
::
test
::
TestGroupedGemm
<
std
::
tuple
<
Row
,
Row
,
Row
,
F16
,
F16
,
F16
>>
;
using
RCR_F16_F16_F16_LargeK
=
ck
::
test
::
TestGroupedGemm
<
std
::
tuple
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
>>
;
const
std
::
vector
<
int
>
KBATCH
{
1
,
2
,
3
,
5
,
8
};
INSTANTIATE_TEST_SUITE_P
(
TestGroupedGemm_splitk_MK_KN
,
RRR_F16_F16_F16
,
testing
::
ValuesIn
(
KBATCH
));
INSTANTIATE_TEST_SUITE_P
(
TestGroupedGemm_splitk_MK_NK
,
RCR_F16_F16_F16
,
testing
::
ValuesIn
(
KBATCH
));
INSTANTIATE_TEST_SUITE_P
(
TestGroupedGemm_splitk_LargeK_MK_KN
,
RRR_F16_F16_F16_LargeK
,
testing
::
Values
(
32
,
64
));
INSTANTIATE_TEST_SUITE_P
(
TestGroupedGemm_splitk_LargeK_MK_NK
,
RCR_F16_F16_F16_LargeK
,
testing
::
Values
(
32
,
64
));
#include "test_grouped_gemm_ut_cases.inc"
test/grouped_gemm/test_grouped_gemm_ut_cases.inc
0 → 100644
View file @
9697ad4e
#pragma once
TEST_P
(
RRR_F16_F16_F16
,
TinyCases
)
{
const
std
::
vector
<
int
>
Ms
{
0
,
1
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RRR_F16_F16_F16
,
SmallCases
)
{
const
std
::
vector
<
int
>
Ms
{
2
,
1
,
3
,
4
,
5
,
0
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RRR_F16_F16_F16
,
MidCases
)
{
const
std
::
vector
<
int
>
Ms
{
167
,
183
,
177
,
153
,
139
,
204
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RRR_F16_F16_F16
,
Regular
)
{
const
std
::
vector
<
int
>
Ms
{
64
,
128
,
256
};
constexpr
int
N
=
768
;
constexpr
int
K
=
320
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RRR_F16_F16_F16
,
MNKPadded
)
{
const
std
::
vector
<
int
>
Ms
{
127
,
150
,
188
,
210
};
constexpr
int
N
=
136
;
constexpr
int
K
=
280
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16
,
TinyCases
)
{
const
std
::
vector
<
int
>
Ms
{
0
,
1
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16
,
SmallCases
)
{
const
std
::
vector
<
int
>
Ms
{
2
,
1
,
3
,
4
,
5
,
0
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16
,
MidCases
)
{
const
std
::
vector
<
int
>
Ms
{
167
,
183
,
177
,
153
,
139
,
204
};
constexpr
int
N
=
768
;
constexpr
int
K
=
544
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16
,
Regular
)
{
const
std
::
vector
<
int
>
Ms
{
32
,
64
,
128
,
256
};
constexpr
int
N
=
768
;
constexpr
int
K
=
320
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16
,
MNKPadded
)
{
const
std
::
vector
<
int
>
Ms
{
127
,
150
,
188
,
210
};
constexpr
int
N
=
136
;
constexpr
int
K
=
280
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RRR_F16_F16_F16_LargeK
,
TestLargeKBatch
)
{
const
std
::
vector
<
int
>
Ms
{
188
,
210
};
constexpr
int
N
=
768
;
constexpr
int
K
=
4096
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
TEST_P
(
RCR_F16_F16_F16_LargeK
,
TestLargeKBatch
)
{
const
std
::
vector
<
int
>
Ms
{
188
,
210
};
constexpr
int
N
=
768
;
constexpr
int
K
=
4096
;
const
std
::
vector
<
int
>
Ns
(
Ms
.
size
(),
N
);
const
std
::
vector
<
int
>
Ks
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideAs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideBs
(
Ms
.
size
(),
K
);
const
std
::
vector
<
int
>
StrideCs
(
Ms
.
size
(),
N
);
this
->
Run
(
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
this
->
GetParam
());
}
test/grouped_gemm/test_grouped_gemm_util.hpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include <string>
#include <sstream>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "ck/ck.hpp"
#include "ck/stream_config.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl_splitk_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/utility/number.hpp"
#include "profiler/profile_grouped_gemm_impl.hpp"
namespace
ck
{
namespace
test
{
template
<
typename
Range
>
std
::
string
serialize_range
(
const
Range
&
range
)
{
std
::
stringstream
ss
;
for
(
auto
&
r
:
range
)
{
ss
<<
r
<<
", "
;
}
std
::
string
str
=
ss
.
str
();
return
std
::
string
(
str
.
begin
(),
str
.
end
()
-
2
);
}
template
<
typename
Tuple
>
class
TestGroupedGemm
:
public
testing
::
TestWithParam
<
int
>
{
protected:
using
ALayout
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
BLayout
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ELayout
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
ADataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
using
BDataType
=
std
::
tuple_element_t
<
4
,
Tuple
>
;
using
EDataType
=
std
::
tuple_element_t
<
5
,
Tuple
>
;
public:
static
constexpr
bool
verify_
=
true
;
static
constexpr
int
init_method_
=
1
;
// decimal value initialization
static
constexpr
bool
log_
=
false
;
static
constexpr
bool
bench_
=
false
;
// measure kernel performance
void
SetUp
()
override
{}
void
Run
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
{
bool
pass
=
ck
::
profiler
::
profile_grouped_gemm_impl
<
ADataType
,
BDataType
,
EDataType
,
float
,
ALayout
,
BLayout
,
ELayout
>
(
verify_
,
init_method_
,
log_
,
bench_
,
Ms
,
Ns
,
Ks
,
StrideAs
,
StrideBs
,
StrideCs
,
kbatch
);
EXPECT_TRUE
(
pass
);
}
};
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
>
struct
DeviceGroupedGemmSplitkInstanceWrapper
{
using
F16
=
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
tensor_operation
::
element_wise
::
PassThrough
;
using
EmptyTuple
=
ck
::
Tuple
<>
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
ck
::
index_t
N
>
using
I
=
ck
::
Number
<
N
>
;
using
ABlockTransferThreadClusterArrageOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
1
,
3
,
2
>>
;
using
ABlockTransferSrcAccessOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
S
<
0
,
2
,
1
,
3
>
,
S
<
0
,
1
,
3
,
2
>>
;
using
ABlockTransferSrcVectorDim
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
3
>
,
I
<
2
>>
;
using
ABlockTransferDstScalarPerVector_K1
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
8
>
,
I
<
2
>>
;
using
ABlockLdsAddExtraM
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
1
>
,
I
<
0
>>
;
using
BBlockTransferThreadClusterArrageOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
2
,
1
,
3
>>
;
using
BBlockTransferSrcAccessOrder
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
S
<
0
,
1
,
3
,
2
>
,
S
<
0
,
2
,
1
,
3
>>
;
using
BBlockTransferSrcVectorDim
=
std
::
conditional_t
<
std
::
is_same_v
<
BLayout
,
Row
>
,
I
<
2
>
,
I
<
3
>>
;
using
BBlockTransferDstScalarPerVector_K1
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
2
>
,
I
<
8
>>
;
using
BBlockLdsAddExtraM
=
std
::
conditional_t
<
std
::
is_same_v
<
ALayout
,
Row
>
,
I
<
0
>
,
I
<
1
>>
;
using
DeviceGroupedGemmSplitKInstance
=
tensor_operation
::
device
::
DeviceGroupedGemmXdlSplitKCShuffle
<
ALayout
,
BLayout
,
EmptyTuple
,
ELayout
,
F16
,
F16
,
F32
,
F16
,
EmptyTuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
KPerBlock
,
K1
,
K1
,
32
,
32
,
4
,
2
,
S
<
1
,
4
,
32
,
1
>
,
ABlockTransferThreadClusterArrageOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
::
value
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
::
value
,
ABlockLdsAddExtraM
::
value
,
S
<
1
,
4
,
32
,
1
>
,
BBlockTransferThreadClusterArrageOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
::
value
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
::
value
,
BBlockLdsAddExtraM
::
value
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
CDEBlockTransferScalarPerVector_NPerBlock
>
;
bool
IsSupported
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
const
{
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
StrideBs
.
size
()
==
n_groups
&&
StrideCs
.
size
()
==
n_groups
)
<<
"The number of groups is not consistent!"
;
std
::
vector
<
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
for
(
std
::
size_t
i
=
0
;
i
<
n_groups
;
++
i
)
{
gemm_descs
.
push_back
(
tensor_operation
::
device
::
GemmDesc
{
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
}
std
::
vector
<
const
void
*>
p_As
(
n_groups
,
nullptr
);
std
::
vector
<
const
void
*>
p_Bs
(
n_groups
,
nullptr
);
std
::
vector
<
void
*>
p_Cs
(
n_groups
,
nullptr
);
auto
p_Ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
return
ggemm_instance
.
IsSupportedArgument
(
argument
);
}
float
Run
(
const
std
::
vector
<
int
>&
Ms
,
const
std
::
vector
<
int
>&
Ns
,
const
std
::
vector
<
int
>&
Ks
,
const
std
::
vector
<
int
>&
StrideAs
,
const
std
::
vector
<
int
>&
StrideBs
,
const
std
::
vector
<
int
>&
StrideCs
,
int
kbatch
=
1
)
const
{
std
::
size_t
n_groups
=
Ms
.
size
();
EXPECT_TRUE
(
Ns
.
size
()
==
n_groups
&&
Ks
.
size
()
==
n_groups
&&
StrideAs
.
size
()
==
n_groups
&&
StrideBs
.
size
()
==
n_groups
&&
StrideCs
.
size
()
==
n_groups
)
<<
"The number of groups is not consistent!"
;
std
::
vector
<
tensor_operation
::
device
::
GemmDesc
>
gemm_descs
;
for
(
std
::
size_t
i
=
0
;
i
<
n_groups
;
++
i
)
{
gemm_descs
.
push_back
(
tensor_operation
::
device
::
GemmDesc
{
Ms
[
i
],
Ns
[
i
],
Ks
[
i
],
StrideAs
[
i
],
StrideBs
[
i
],
StrideCs
[
i
],
{}});
}
std
::
vector
<
const
void
*>
p_As
(
n_groups
,
nullptr
);
std
::
vector
<
const
void
*>
p_Bs
(
n_groups
,
nullptr
);
std
::
vector
<
void
*>
p_Cs
(
n_groups
,
nullptr
);
auto
p_Ds
=
std
::
vector
<
std
::
array
<
const
void
*
,
0
>>
{};
auto
ggemm_instance
=
DeviceGroupedGemmSplitKInstance
{};
auto
argument
=
ggemm_instance
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
if
(
kbatch
>
1
)
{
ggemm_instance
.
SetKBatchSize
(
argument
,
kbatch
);
}
EXPECT_TRUE
(
ggemm_instance
.
IsSupportedArgument
(
argument
));
auto
invoker
=
ggemm_instance
.
MakeInvoker
();
DeviceMem
gemm_desc_workspace
(
ggemm_instance
.
GetWorkSpaceSize
(
&
argument
));
ggemm_instance
.
SetWorkSpacePointer
(
&
argument
,
gemm_desc_workspace
.
GetDeviceBuffer
());
return
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
}
};
}
// namespace test
}
// namespace ck
test/pool_fwd/CMakeLists.txt
0 → 100644
View file @
9697ad4e
add_custom_target
(
test_pool_fwd
)
add_gtest_executable
(
test_avg_pool2d_fwd test_avg_pool2d_fwd.cpp
)
add_gtest_executable
(
test_avg_pool3d_fwd test_avg_pool3d_fwd.cpp
)
add_gtest_executable
(
test_max_pool2d_fwd test_max_pool2d_fwd.cpp
)
add_gtest_executable
(
test_max_pool3d_fwd test_max_pool3d_fwd.cpp
)
target_link_libraries
(
test_avg_pool2d_fwd PRIVATE utility device_pool_fwd_instance
)
target_link_libraries
(
test_avg_pool3d_fwd PRIVATE utility device_pool_fwd_instance
)
target_link_libraries
(
test_max_pool2d_fwd PRIVATE utility device_pool_fwd_instance
)
target_link_libraries
(
test_max_pool3d_fwd PRIVATE utility device_pool_fwd_instance
)
add_dependencies
(
test_pool_fwd test_avg_pool2d_fwd
)
add_dependencies
(
test_pool_fwd test_avg_pool3d_fwd
)
add_dependencies
(
test_pool_fwd test_max_pool2d_fwd
)
add_dependencies
(
test_pool_fwd test_max_pool3d_fwd
)
test/pool_fwd/test_avg_pool2d_fwd.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template
<
typename
Tuple
>
class
TestAvgPool2dFwd
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
IndexDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
PoolingParam
>
params
;
void
Run
()
{
for
(
auto
param
:
params
)
{
bool
success
=
ck
::
profiler
::
profile_pool2d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F32
,
I32
>
,
std
::
tuple
<
F32
,
F32
,
F32
,
I32
>>
;
TYPED_TEST_SUITE
(
TestAvgPool2dFwd
,
KernelTypes
);
TYPED_TEST
(
TestAvgPool2dFwd
,
Test_Pool
)
{
// length, window_length, window_stride, left_pad, right_pad
this
->
params
=
{{{
1
,
1
,
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}},
{{
2
,
16
,
64
,
64
},
{
64
,
64
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}},
{{
2
,
32
,
30
,
30
},
{
2
,
2
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
}}};
this
->
Run
();
}
test/pool_fwd/test_avg_pool3d_fwd.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template
<
typename
Tuple
>
class
TestAvgPool3dFwd
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
IndexDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
PoolingParam
>
params
;
void
Run
()
{
for
(
auto
param
:
params
)
{
bool
success
=
ck
::
profiler
::
profile_pool3d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
AVG
,
false
,
false
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F32
,
I32
>
,
std
::
tuple
<
F32
,
F32
,
F32
,
I32
>>
;
TYPED_TEST_SUITE
(
TestAvgPool3dFwd
,
KernelTypes
);
TYPED_TEST
(
TestAvgPool3dFwd
,
Test_Pool
)
{
// length, window_length, window_stride, left_pad, right_pad
this
->
params
=
{{{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}},
{{
2
,
16
,
64
,
64
,
64
},
{
64
,
64
,
64
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}},
{{
2
,
32
,
30
,
30
,
30
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}}};
this
->
Run
();
}
test/pool_fwd/test_max_pool2d_fwd.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool2d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template
<
typename
Tuple
>
class
TestMaxPool2dFwd
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
IndexDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
PoolingParam
>
params
;
void
Run
()
{
for
(
auto
param
:
params
)
{
// max pool
bool
success
=
ck
::
profiler
::
profile_pool2d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
// max pool + index
success
=
ck
::
profiler
::
profile_pool2d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
false
,
true
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
I32
>
,
std
::
tuple
<
F32
,
F32
,
F32
,
I32
>>
;
TYPED_TEST_SUITE
(
TestMaxPool2dFwd
,
KernelTypes
);
TYPED_TEST
(
TestMaxPool2dFwd
,
Test_Pool
)
{
// length, window_length, window_stride, left_pad, right_pad
this
->
params
=
{{{
1
,
1
,
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}},
{{
2
,
16
,
64
,
64
},
{
64
,
64
},
{
1
,
1
},
{
0
,
0
},
{
0
,
0
}},
{{
2
,
32
,
30
,
30
},
{
2
,
2
},
{
2
,
2
},
{
1
,
1
},
{
1
,
1
}}};
this
->
Run
();
}
test/pool_fwd/test_max_pool3d_fwd.cpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "profiler/profile_pool3d_fwd_impl.hpp"
#include "test_pool_fwd_common.hpp"
template
<
typename
Tuple
>
class
TestMaxPool3dFwd
:
public
::
testing
::
Test
{
protected:
using
InDataType
=
std
::
tuple_element_t
<
0
,
Tuple
>
;
using
OutDataType
=
std
::
tuple_element_t
<
1
,
Tuple
>
;
using
ComputeDataType
=
std
::
tuple_element_t
<
2
,
Tuple
>
;
using
IndexDataType
=
std
::
tuple_element_t
<
3
,
Tuple
>
;
std
::
vector
<
PoolingParam
>
params
;
void
Run
()
{
for
(
auto
param
:
params
)
{
// max pool
bool
success
=
ck
::
profiler
::
profile_pool3d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
false
,
false
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
// max pool + index
success
=
ck
::
profiler
::
profile_pool3d_fwd_impl
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
ck
::
ReduceTensorOp
::
MAX
,
false
,
true
>
(
true
,
2
,
false
,
false
,
param
.
length_
,
param
.
window_spatial_lengths_
,
param
.
window_strides_
,
param
.
input_left_pads_
,
param
.
input_right_pads_
);
EXPECT_TRUE
(
success
);
}
}
};
using
KernelTypes
=
::
testing
::
Types
<
std
::
tuple
<
F16
,
F16
,
F16
,
I32
>
,
std
::
tuple
<
F32
,
F32
,
F32
,
I32
>>
;
TYPED_TEST_SUITE
(
TestMaxPool3dFwd
,
KernelTypes
);
TYPED_TEST
(
TestMaxPool3dFwd
,
Test_Pool
)
{
// length, window_length, window_stride, left_pad, right_pad
this
->
params
=
{{{
1
,
1
,
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}},
{{
2
,
16
,
64
,
64
,
64
},
{
64
,
64
,
64
},
{
1
,
1
,
1
},
{
0
,
0
,
0
},
{
0
,
0
,
0
}},
{{
2
,
32
,
30
,
30
,
30
},
{
2
,
2
,
2
},
{
2
,
2
,
2
},
{
1
,
1
,
1
},
{
1
,
1
,
1
}}};
this
->
Run
();
}
test/pool_fwd/test_pool_fwd_common.hpp
0 → 100644
View file @
9697ad4e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "gtest/gtest.h"
#include "ck/ck.hpp"
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
I32
=
int32_t
;
using
ck
::
index_t
;
struct
PoolingParam
{
PoolingParam
(
const
std
::
vector
<
index_t
>&
length
,
const
std
::
vector
<
index_t
>&
window_spatial_lengths
,
const
std
::
vector
<
index_t
>&
window_strides
,
const
std
::
vector
<
index_t
>&
input_left_pads
,
const
std
::
vector
<
index_t
>&
input_right_pads
)
:
length_
(
length
),
window_spatial_lengths_
(
window_spatial_lengths
),
window_strides_
(
window_strides
),
input_left_pads_
(
input_left_pads
),
input_right_pads_
(
input_right_pads
)
{
}
std
::
vector
<
index_t
>
length_
;
std
::
vector
<
index_t
>
window_spatial_lengths_
;
std
::
vector
<
index_t
>
window_strides_
;
std
::
vector
<
index_t
>
input_left_pads_
;
std
::
vector
<
index_t
>
input_right_pads_
;
};
Prev
1
…
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment