"example/22_cgemm/cgemm_xdl_int4.cpp" did not exist on "fb0dc35861056cbf08f68fd3208aa787e789230e"
Unverified Commit 9608beee authored by arai713's avatar arai713 Committed by GitHub
Browse files

Merge branch 'develop' into gridwise_2d

parents d179a12a 8a4253ba
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
using Empty_Tuple = ck::Tuple<>;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using GNHWC = ck::tensor_layout::convolution::GNHWC;
using GKYXC = ck::tensor_layout::convolution::GKYXC;
using GNHWK = ck::tensor_layout::convolution::GNHWK;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using Relu = ck::tensor_operation::element_wise::Relu;
using Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<PassThrough>;
using Relu_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Relu>;
static constexpr ck::index_t NDimSpatial = 2;
static constexpr auto GemmSpec = ck::tensor_operation::device::GemmSpecialization::MNKPadding;
static constexpr auto ConvFwdDefault =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Default;
static constexpr auto ConvFwd1x1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Pad0;
static constexpr auto ConvFwd1x1S1P0 =
ck::tensor_operation::device::ConvolutionForwardSpecialization::Filter1x1Stride1Pad0;
// TODO - Add more instances
template <typename OutElementOp, ConvolutionForwardSpecialization ConvSpec>
// clang-format off
using device_conv2d_int8_instances =
std::tuple <
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 256, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 256, 64, 16, 16, 32, 32, 2, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 128, 64, 16, 16, 32, 32, 4, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 64, 128, 64, 16, 16, 32, 32, 2, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 64, 64, 16, 16, 32, 32, 2, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 128, 64, 64, 16, 16, 32, 32, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 256, 64, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 128, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 64, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 128, 32, 128, 64, 16, 16, 32, 32, 1, 2, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 32, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 4>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 64, 32, 64, 16, 16, 32, 32, 2, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle< 2, GNHWC, GKYXC, Empty_Tuple, GNHWK, int8_t, int8_t, int32_t, int32_t, Empty_Tuple, int8_t, PassThrough, PassThrough, OutElementOp, ConvSpec, GemmSpec, 1, 64, 32, 64, 64, 16, 16, 32, 32, 1, 2, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, S<4, 16, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 16, 16, 1, 1, 1, S<1, 32, 1, 2>, 16>
>;
// clang-format on
void add_device_conv2d_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_conv2d_int8_instances<Mul_Clamp, ConvFwdDefault>{});
add_device_operation_instances(instances,
device_conv2d_int8_instances<Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(instances,
device_conv2d_int8_instances<Mul_Clamp, ConvFwd1x1S1P0>{});
}
void add_device_conv2d_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<NDimSpatial,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
Relu_Mul_Clamp>>>& instances)
{
add_device_operation_instances(instances,
device_conv2d_int8_instances<Relu_Mul_Clamp, ConvFwdDefault>{});
add_device_operation_instances(instances,
device_conv2d_int8_instances<Relu_Mul_Clamp, ConvFwd1x1P0>{});
add_device_operation_instances(instances,
device_conv2d_int8_instances<Relu_Mul_Clamp, ConvFwd1x1S1P0>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
add_instance_library(device_softmax_instance
device_softmax_i8_i8_instance.cpp
device_softmax_i8_i8_instance_rank3_reduce1.cpp
device_softmax_i8_i8_instance_rank3_reduce2.cpp
device_softmax_i8_i8_instance_rank3_reduce3.cpp
device_softmax_i8_i8_instance_rank4_reduce1.cpp
device_softmax_i8_i8_instance_rank4_reduce2.cpp
device_softmax_i8_i8_instance_rank4_reduce3.cpp
device_softmax_i8_i8_instance_rank4_reduce4.cpp
device_softmax_f16_f16_instance.cpp
device_softmax_f16_f16_instance_rank3_reduce1.cpp
device_softmax_f16_f16_instance_rank3_reduce2.cpp
device_softmax_f16_f16_instance_rank3_reduce3.cpp
device_softmax_f16_f16_instance_rank4_reduce1.cpp
device_softmax_f16_f16_instance_rank4_reduce2.cpp
device_softmax_f16_f16_instance_rank4_reduce3.cpp
device_softmax_f16_f16_instance_rank4_reduce4.cpp
device_softmax_f32_f32_instance.cpp
device_softmax_f32_f32_instance_rank3_reduce1.cpp
device_softmax_f32_f32_instance_rank3_reduce2.cpp
device_softmax_f32_f32_instance_rank3_reduce3.cpp
device_softmax_f32_f32_instance_rank4_reduce1.cpp
device_softmax_f32_f32_instance_rank4_reduce2.cpp
device_softmax_f32_f32_instance_rank4_reduce3.cpp
device_softmax_f32_f32_instance_rank4_reduce4.cpp
)
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/utility/data_type.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce4.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
namespace {
using F16 = ck::half_t;
using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
} // namespace
template <index_t Rank, index_t Reduce>
using device_softmax_f16_f16_instances = std::tuple<
// clang-format off
// InDataType, AccDataType, OutDataType, InElementwiseOp, AccElementwiseOp, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, InSrcVectorDim, InSrcVectorSize, OutDstVectorSize>
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1>, // fallback kernel
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 8, 8>,
DeviceSoftmaxImpl< F16, F32, F16, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 8, 8>
// clang-format on
>;
void add_device_softmax_f16_f16_rank3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, Pass, Pass, 3>>& instances)
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 3>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<3, 1>{});
add_device_operation_instances(instances, device_softmax_f16_f16_instances<3, 2>{});
add_device_softmax_f16_f16_rank3_reduce1_instances(instances);
add_device_softmax_f16_f16_rank3_reduce2_instances(instances);
add_device_softmax_f16_f16_rank3_reduce3_instances(instances);
}
void add_device_softmax_f16_f16_rank4_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, Pass, Pass, 4>>& instances)
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, 4>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<4, 1>{});
add_device_operation_instances(instances, device_softmax_f16_f16_instances<4, 2>{});
add_device_operation_instances(instances, device_softmax_f16_f16_instances<4, 3>{});
add_device_softmax_f16_f16_rank4_reduce1_instances(instances);
add_device_softmax_f16_f16_rank4_reduce2_instances(instances);
add_device_softmax_f16_f16_rank4_reduce3_instances(instances);
add_device_softmax_f16_f16_rank4_reduce4_instances(instances);
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f16_f16_rank3_reduce1_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f16_f16_rank3_reduce2_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank3_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f16_f16_rank3_reduce3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f16_f16_rank4_reduce1_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f16_f16_rank4_reduce2_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f16_f16_rank4_reduce3_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_rank4_reduce4.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f16_f16_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f16_f16_rank4_reduce4_instances(
std::vector<DeviceSoftmaxPtr<F16, F32, F16, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f16_f16_instances<RANK, 4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <tuple>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_softmax_impl.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce4.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
namespace {
using F32 = float;
using Pass = ck::tensor_operation::element_wise::PassThrough;
} // namespace
template <index_t Rank, index_t Reduce>
using device_softmax_f32_f32_instances = std::tuple<
// clang-format off
// InDataType, AccDataType, OutDataType, InElementwiseOp, AccElementwiseOp, Rank, NumReduceDim, BlockSize, MThreadClusterSize, KThreadClusterSize, MThreadSliceSize, KThreadSliceSize, InSrcVectorDim, InSrcVectorSize, OutDstVectorSize>
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 1, 1>, // fallback kernel
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 8, 32, 1, 8, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 4, 64, 1, 8, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 8, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 16, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 2, 128, 1, 32, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 8, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 16, 1, 4, 4>,
DeviceSoftmaxImpl< F32, F32, F32, Pass, Pass, Rank, Reduce, 256, 1, 256, 1, 32, 1, 4, 4>
// clang-format on
>;
void add_device_softmax_f32_f32_rank3_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, Pass, Pass, 3>>& instances)
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 3>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<3, 1>{});
add_device_operation_instances(instances, device_softmax_f32_f32_instances<3, 2>{});
add_device_softmax_f32_f32_rank3_reduce1_instances(instances);
add_device_softmax_f32_f32_rank3_reduce2_instances(instances);
add_device_softmax_f32_f32_rank3_reduce3_instances(instances);
}
void add_device_softmax_f32_f32_rank4_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, Pass, Pass, 4>>& instances)
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, 4>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<4, 1>{});
add_device_operation_instances(instances, device_softmax_f32_f32_instances<4, 2>{});
add_device_operation_instances(instances, device_softmax_f32_f32_instances<4, 3>{});
add_device_softmax_f32_f32_rank4_reduce1_instances(instances);
add_device_softmax_f32_f32_rank4_reduce2_instances(instances);
add_device_softmax_f32_f32_rank4_reduce3_instances(instances);
add_device_softmax_f32_f32_rank4_reduce4_instances(instances);
}
} // namespace instance
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f32_f32_rank3_reduce1_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f32_f32_rank3_reduce2_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank3_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_f32_f32_rank3_reduce3_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f32_f32_rank4_reduce1_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f32_f32_rank4_reduce2_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 2>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f32_f32_rank4_reduce3_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 3>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_rank4_reduce4.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_f32_f32_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 4;
void add_device_softmax_f32_f32_rank4_reduce4_instances(
std::vector<DeviceSoftmaxPtr<F32, F32, F32, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_f32_f32_instances<RANK, 4>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank3_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank3_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank4_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank4_reduce2.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank4_reduce3.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank4_reduce4.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
void add_device_softmax_i8_i8_rank3_instances(
std::vector<DeviceSoftmaxPtr<I8, F32, I8, PassThrough, PassThrough, 3>>& instances)
{
add_device_softmax_i8_i8_rank3_reduce1_instances(instances);
add_device_softmax_i8_i8_rank3_reduce2_instances(instances);
add_device_softmax_i8_i8_rank3_reduce3_instances(instances);
}
void add_device_softmax_i8_i8_rank4_instances(
std::vector<DeviceSoftmaxPtr<I8, F32, I8, PassThrough, PassThrough, 4>>& instances)
{
add_device_softmax_i8_i8_rank4_reduce1_instances(instances);
add_device_softmax_i8_i8_rank4_reduce2_instances(instances);
add_device_softmax_i8_i8_rank4_reduce3_instances(instances);
add_device_softmax_i8_i8_rank4_reduce4_instances(instances);
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <vector>
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_rank3_reduce1.hpp"
#include "ck/library/tensor_operation_instance/gpu/softmax/device_softmax_i8_i8_instance_type.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
static constexpr index_t RANK = 3;
void add_device_softmax_i8_i8_rank3_reduce1_instances(
std::vector<DeviceSoftmaxPtr<I8, F32, I8, PassThrough, PassThrough, RANK>>& instances)
{
add_device_operation_instances(instances, device_softmax_i8_i8_instances<RANK, 1>{});
}
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment