Unverified Commit 95d76f67 authored by Dan Yao's avatar Dan Yao Committed by GitHub
Browse files

Merge pull request #845 from ROCmSoftwarePlatform/mha-train-develop-reduce-interface

Mha train develop reduce interface
parents 102c9661 f158f4d4
......@@ -52,8 +52,8 @@ using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......
......@@ -79,8 +79,8 @@ using AccDataType = F32;
using ShuffleDataType = F32;
using LSEDataType = F32;
using ZDataType = U16; // INT32
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......@@ -534,8 +534,8 @@ int run(int argc, char* argv[])
static_cast<InputDataType*>(y_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
nullptr, // p_acc0_biases;
nullptr, // p_acc1_biases;
q_gs_ms_ks_lengths,
q_gs_ms_ks_strides,
k_gs_ns_ks_lengths,
......@@ -594,8 +594,8 @@ int run(int argc, char* argv[])
static_cast<OutputDataType*>(qgrad_device_buf.GetDeviceBuffer()),
static_cast<OutputDataType*>(kgrad_device_buf.GetDeviceBuffer()),
static_cast<OutputDataType*>(vgrad_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
nullptr, // p_acc0_biases;
nullptr, // p_acc1_biases;
q_gs_ms_ks_lengths,
q_gs_ms_ks_strides,
k_gs_ns_ks_lengths,
......
......@@ -52,8 +52,8 @@ using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......
......@@ -78,8 +78,8 @@ using AccDataType = F32;
using ShuffleDataType = F32;
using LSEDataType = F32;
using ZDataType = U16; // INT32
using Acc0BiasDataType = ck::Tuple<>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = void;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......
......@@ -177,8 +177,8 @@ int run(int argc, char* argv[])
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
{}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
nullptr, // std::array<void*, 1> p_acc0_biases;
nullptr, // std::array<void*, 1> p_acc1_biases;
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
......
......@@ -287,8 +287,8 @@ int run(int argc, char* argv[])
p_c,
p_z,
p_lse,
{}, // p_acc0_biases
{}, // p_acc1_biases
nullptr, // p_acc0_biases
nullptr, // p_acc1_biases
problem_descs,
a_element_op,
b0_element_op,
......
......@@ -53,8 +53,8 @@ using CDataType = DataType;
using DDataType = F16;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<DDataType>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = DDataType;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......
......@@ -53,8 +53,8 @@ using CShuffleDataType = F32;
using CDataType = DataType;
using ZDataType = U16; // INT32
using LSEDataType = F32;
using Acc0BiasDataType = ck::Tuple<DDataType>;
using Acc1BiasDataType = ck::Tuple<>;
using Acc0BiasDataType = DDataType;
using Acc1BiasDataType = void;
static constexpr ck::index_t NumDimG = 2;
static constexpr ck::index_t NumDimM = 1;
......
......@@ -137,7 +137,7 @@ int run(int argc, char* argv[])
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_2<ADataType>{-2, 2});
b0_gs_ns_ks.GenerateTensorValue(GeneratorTensor_2<B0DataType>{-2, 2});
b1_gs_os_ns.GenerateTensorValue(GeneratorTensor_2<B1DataType>{-2, 2});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<DDataType>{-2, 2});
d_gs_ms_ns.GenerateTensorValue(GeneratorTensor_2<DDataType>{-1, 1});
break;
case 2:
a_gs_ms_ks.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
......@@ -190,8 +190,8 @@ int run(int argc, char* argv[])
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(nullptr),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{d_device_buf.GetDeviceBuffer()}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
static_cast<DDataType*>(d_device_buf.GetDeviceBuffer()), //
nullptr,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
......@@ -203,10 +203,10 @@ int run(int argc, char* argv[])
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{d_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
d_gs_ms_ns_lengths, // acc0_biases_gs_ms_ns_lengths
d_gs_ms_ns_strides, // acc0_biases_gs_ms_ns_strides
{}, // std::vector<ck::index_t>
{}, // std::vector<ck::index_t>
a_element_op,
b0_element_op,
acc0_element_op,
......@@ -230,7 +230,7 @@ int run(int argc, char* argv[])
std::size_t flop = (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * BatchCount;
std::size_t num_btype = (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(DDataType) * M * N * Acc0BiasDataType::Size()) *
sizeof(DDataType) * M * N * std::is_void<DDataType>::value?1:0) *
BatchCount;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......@@ -250,9 +250,8 @@ int run(int argc, char* argv[])
static_cast<CDataType*>(c_device_buf.GetDeviceBuffer()),
static_cast<ZDataType*>(z_device_buf.GetDeviceBuffer()),
static_cast<LSEDataType*>(lse_device_buf.GetDeviceBuffer()),
std::array<void*, 1>{
d_device_buf.GetDeviceBuffer()}, // std::array<void*, 1> p_acc0_biases;
{}, // std::array<void*, 1> p_acc1_biases;
static_cast<DDataType*>(d_device_buf.GetDeviceBuffer()),
nullptr,
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b0_gs_ns_ks_lengths,
......@@ -264,12 +263,10 @@ int run(int argc, char* argv[])
z_gs_ms_ns_lengths,
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
std::array<std::vector<ck::index_t>, 1>{
d_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::array<std::vector<ck::index_t>, 1>{
d_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_lengths},
{}, // std::array<std::vector<ck::index_t>, 1>{acc1_biases_gs_ms_os_strides},
d_gs_ms_ns_lengths,
d_gs_ms_ns_strides,
{},
{},
a_element_op,
b0_element_op,
acc0_element_op,
......
......@@ -57,7 +57,7 @@ int run(int argc, char* argv[])
std::vector<const void*> p_b0;
std::vector<const void*> p_b1;
std::vector<void*> p_c;
std::vector<std::vector<const void*>> p_d;
std::vector<const void*> p_d;
std::vector<void*> p_z; // for result verification
std::vector<void*> p_z_nullptr; // for time test
std::vector<void*> p_lse;
......@@ -147,10 +147,8 @@ int run(int argc, char* argv[])
z_gs_ms_ns_strides,
lse_gs_ms_lengths,
lse_gs_ms_strides,
std::vector<std::vector<ck::index_t>>{
d_gs_ms_ns_lengths}, // acc0_biases_gs_ms_ns_lengths
std::vector<std::vector<ck::index_t>>{
d_gs_ms_ns_strides}, // acc0_biases_gs_ms_ns_strides
d_gs_ms_ns_lengths, // acc0_biases_gs_ms_ns_lengths
d_gs_ms_ns_strides, // acc0_biases_gs_ms_ns_strides
{}, // acc1_biases_gs_ms_os_lengths
{}}); // acc1_biases_gs_ms_os_strides
......@@ -167,7 +165,7 @@ int run(int argc, char* argv[])
flop += (size_t(M) * N * K * 2 + size_t(M) * N * O * 2) * Batch;
num_byte += (sizeof(ADataType) * M * K + sizeof(B0DataType) * K * N +
sizeof(B1DataType) * N * O + sizeof(CDataType) * M * O +
sizeof(DDataType) * M * N * (Acc0BiasDataType::Size() ? 0 : 1)) *
sizeof(DDataType) * M * N * (std::is_void<Acc0BiasDataType>::value ? 0 : 1)) *
Batch;
if(i < 4)
......@@ -244,9 +242,7 @@ int run(int argc, char* argv[])
p_b0.push_back(b0_tensors_device[i]->GetDeviceBuffer());
p_b1.push_back(b1_tensors_device[i]->GetDeviceBuffer());
p_c.push_back(c_tensors_device[i]->GetDeviceBuffer());
p_d.push_back({d_tensors_device[i]->GetDeviceBuffer()});
// std::cout << "from host group id: " << i << " d address: " <<
// d_tensors_device[i]->GetDeviceBuffer() << std::endl;
p_d.push_back(d_tensors_device[i]->GetDeviceBuffer());
p_z.push_back(z_tensors_device[i]->GetDeviceBuffer());
p_z_nullptr.push_back(nullptr);
p_lse.push_back(lse_tensors_device[i]->GetDeviceBuffer());
......
......@@ -87,9 +87,6 @@ template <index_t NumDimG,
MaskingSpecialization MaskingSpec>
struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
{
static constexpr index_t NumAcc0Bias = Acc0BiasDataType::Size();
static constexpr index_t NumAcc1Bias = Acc1BiasDataType::Size();
virtual std::unique_ptr<BaseArgument> MakeArgumentPointer(
const void* p_a,
const void* p_b0,
......@@ -97,8 +94,8 @@ struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumAcc0Bias> p_acc0_biases,
const std::array<void*, NumAcc1Bias> p_acc1_biases,
const void* p_acc0_biases,
const void* p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -110,11 +107,11 @@ struct DeviceBatchedMultiheadAttentionForward : public BaseOperator
const std::vector<index_t>& z_gs_ms_ns_lengths, // z_gs_ms_os_lengths
const std::vector<index_t>& z_gs_ms_ns_strides, // z_gs_ms_os_strides
const std::vector<index_t>& lse_gs_ms_lengths, // lse_gs_ms_lengths
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<index_t>, NumAcc0Bias> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<index_t>, NumAcc1Bias>
const std::vector<index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<index_t>& acc0_biases_gs_ms_ns_strides,
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<index_t>, NumAcc1Bias>
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
......
......@@ -111,11 +111,11 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std::vector<index_t> lse_gs_ms_lengths;
std::vector<index_t> lse_gs_ms_strides;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_lengths;
std::vector<std::vector<index_t>> acc0_biases_gs_ms_ns_strides;
std::vector<index_t> acc0_biases_gs_ms_ns_lengths;
std::vector<index_t> acc0_biases_gs_ms_ns_strides;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_lengths;
std::vector<std::vector<index_t>> acc1_biases_gs_ms_os_strides;
std::vector<index_t> acc1_biases_gs_ms_os_lengths;
std::vector<index_t> acc1_biases_gs_ms_os_strides;
};
virtual std::unique_ptr<BaseArgument>
......@@ -125,9 +125,9 @@ struct DeviceGroupedMultiheadAttentionForward : public BaseOperator
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
std::vector<const void*> p_acc0_biases_vec,
std::vector<const void*> p_acc1_biases_vec,
std::vector<ProblemDesc>& problem_desc_vec,
AElementwiseOperation a_element_op,
B0ElementwiseOperation b0_element_op,
Acc0ElementwiseOperation acc0_element_op,
......
......@@ -25,7 +25,7 @@ namespace device {
template <typename GridwiseGemm,
typename FloatAB,
typename D0sPointer,
typename D0DataType,
typename FloatC,
typename ZDataType,
typename FloatLSE,
......@@ -37,7 +37,7 @@ template <typename GridwiseGemm,
typename CElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename B1GridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6,
......@@ -56,7 +56,7 @@ __global__ void
kernel_batched_multiheadattention_forward_xdl_cshuffle_v2(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
D0sPointer p_d0s_grid,
const D0DataType* __restrict__ p_d0_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid,
......@@ -68,8 +68,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
......@@ -107,11 +107,15 @@ __global__ void
static_cast<long_index_t>(compute_base_ptr_of_batch.GetZBasePtr(g_idx)));
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetLSEBasePtr(g_idx)));
static_for<0, p_d0s_grid.Size(), 1>{}([&](auto In) {
const long_index_t d0_batch_offset = __builtin_amdgcn_readfirstlane(
static_cast<long_index_t>(compute_base_ptr_of_batch.GetD0BasePtr(g_idx, In)));
p_d0s_grid(In) = p_d0s_grid(In) + d0_batch_offset;
});
static_cast<long_index_t>(compute_base_ptr_of_batch.GetD0BasePtr(g_idx)));
const D0DataType* tmp_p_d0_grid = nullptr;
if constexpr(!is_same<D0DataType, void>::value)
{
tmp_p_d0_grid = p_d0_grid + d0_batch_offset;
}
// const index_t global_thread_id = get_thread_global_1d_id();
ck::philox ph(seed, 0, offset);
......@@ -125,7 +129,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_d0s_grid,
tmp_p_d0_grid,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
p_z_grid == nullptr ? nullptr : p_z_grid + z_batch_offset,
......@@ -138,7 +142,7 @@ __global__ void
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
......@@ -158,7 +162,7 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
p_a_grid + a_batch_offset,
p_b_grid + b_batch_offset,
p_d0s_grid,
tmp_p_d0_grid,
p_b1_grid + b1_batch_offset,
p_c_grid + c_batch_offset,
p_z_grid == nullptr ? nullptr : p_z_grid + z_batch_offset,
......@@ -171,7 +175,7 @@ __global__ void
c_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
......@@ -188,7 +192,7 @@ __global__ void
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_d0s_grid;
ignore = p_d0_grid;
ignore = p_b1_grid;
ignore = p_c_grid;
ignore = p_z_grid;
......@@ -200,7 +204,7 @@ __global__ void
ignore = c_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = b1_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6;
......@@ -318,11 +322,10 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumD0Tensor = Acc0BiasDataType::Size();
static constexpr index_t NumD1Tensor = Acc1BiasDataType::Size();
// TODO ANT: implement bias combination
static_assert(NumD1Tensor == 0, "Acc1 Bias addition is unimplemented");
static_assert(std::is_void<Acc1BiasDataType>::value, "Acc1 Bias addition is unimplemented");
using D0DataType = Acc0BiasDataType;
using D1DataType = Acc1BiasDataType;
#if 0
// TODO ANT: use alias
......@@ -406,40 +409,16 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
}
}
static auto MakeD0sGridDescriptor_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
static auto MakeD0sGridDescriptor_G_M_N(
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using D0sGridDesc_M_N = decltype(MakeD0sGridDescriptor_M_N({}, {}));
using D0GridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using ZGridDesc_M_N = decltype(MakeZGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using D0sGridDesc_G_M_N = decltype(MakeD0sGridDescriptor_G_M_N({}, {}));
using D0GridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
......@@ -465,14 +444,14 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
{
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const D0sGridDesc_G_M_N& d0s_grid_desc_g_m_n,
const D0GridDesc_G_M_N& d0_grid_desc_g_m_n,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
d0s_grid_desc_g_m_n_(d0s_grid_desc_g_m_n),
d0_grid_desc_g_m_n_(d0_grid_desc_g_m_n),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
......@@ -490,11 +469,9 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
template <index_t I>
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx,
Number<I> d0_idx) const
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx) const
{
return d0s_grid_desc_g_m_n_[d0_idx].CalculateOffset(make_multi_index(g_idx, 0, 0));
return d0_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
......@@ -520,7 +497,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
D0GridDesc_G_M_N d0_grid_desc_g_m_n_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
......@@ -545,7 +522,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
D0sGridDesc_M_N,
D0GridDesc_M_N,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
ZGridDesc_M_N,
......@@ -605,15 +582,14 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// FIXME: constness
struct Argument : public BaseArgument
{
Argument(
const ADataType* p_a_grid,
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
const B1DataType* p_b1_grid,
CDataType* p_c_grid,
ZDataType* p_z_grid,
LSEDataType* p_lse_grid,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const D0DataType* p_acc0_biases,
const D1DataType* p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -625,11 +601,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<index_t>& acc0_biases_gs_ms_ns_strides,
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -640,6 +616,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
std::tuple<unsigned long long, unsigned long long> seeds)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_d0_grid_{p_acc0_biases},
p_b1_grid_{p_b1_grid},
p_c_grid_{p_c_grid},
p_z_grid_{p_z_grid},
......@@ -658,8 +635,6 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
Transform::MakeAGridDescriptor_G_M_K(a_gs_ms_ks_lengths, a_gs_ms_ks_strides)},
b_grid_desc_g_n_k_{
Transform::MakeB0GridDescriptor_G_N_K(b_gs_ns_ks_lengths, b_gs_ns_ks_strides)},
d0s_grid_desc_g_m_n_{DeviceOp::MakeD0sGridDescriptor_G_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)},
b1_grid_desc_g_n_k_{Transform::MakeB1GridDescriptor_G_N_K(
b1_gs_gemm1ns_gemm1ks_lengths, b1_gs_gemm1ns_gemm1ks_strides)},
c_grid_desc_g_m_n_{Transform::MakeCGridDescriptor_G_M_N(c_gs_ms_gemm1ns_lengths,
......@@ -690,7 +665,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
compute_base_ptr_of_batch_{
a_grid_desc_g_m_k_,
b_grid_desc_g_n_k_,
d0s_grid_desc_g_m_n_,
d0_grid_desc_g_m_n_,
b1_grid_desc_g_n_k_,
c_grid_desc_g_m_n_,
z_grid_desc_g_m_n_,
......@@ -711,23 +686,22 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
D0sGridDesc_M_N d0s_grid_desc_m_n{DeviceOp::MakeD0sGridDescriptor_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides)};
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0s_grid_desc_m_n);
if constexpr(!is_same<D0DataType, void>::value)
{
d0_grid_desc_m_n_ = Transform::MakeCGridDescriptor_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides);
d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeD0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0_grid_desc_m_n_);
d0_grid_desc_g_m_n_ = Transform::MakeCGridDescriptor_G_M_N(
acc0_biases_gs_ms_ns_lengths, acc0_biases_gs_ms_ns_strides);
d0_n_length_stride_.push_back(acc0_biases_gs_ms_ns_lengths[NumDimG + NumDimM]);
d0_n_length_stride_.push_back(acc0_biases_gs_ms_ns_strides[NumDimG + NumDimM]);
}
}
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, Acc0BiasDataType>>;
// D0 pointer
p_d0s_grid_(i) = static_cast<const D0DataType*>(p_acc0_biases[i]);
// for check
d0s_n_length_stride_[i].push_back(
acc0_biases_gs_ms_ns_lengths[i][NumDimG + NumDimM]);
d0s_n_length_stride_[i].push_back(
acc0_biases_gs_ms_ns_strides[i][NumDimG + NumDimM]);
});
is_dropout_ = p_dropout > 0.0; //
p_dropout_ = 1.f - p_dropout;
p_dropout_in_16bits_ = uint16_t(std::floor(p_dropout_ * 65535.0));
......@@ -758,6 +732,13 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
std::cout << "b_grid_desc_g_n_k_: " << b_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b_grid_desc_g_n_k_.GetLength(I2) << '\n';
std::cout << "d0_grid_desc_g_m_n_: " << d0_grid_desc_g_m_n_.GetLength(I0) << ", "
<< d0_grid_desc_g_m_n_.GetLength(I1) << ", "
<< d0_grid_desc_g_m_n_.GetLength(I2) << '\n';
std::cout << "d0_grid_desc_m_n_: " << d0_grid_desc_m_n_.GetLength(I0) << ", "
<< d0_grid_desc_m_n_.GetLength(I1) << '\n';
std::cout << "b1_grid_desc_g_n_k_: " << b1_grid_desc_g_n_k_.GetLength(I0) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I1) << ", "
<< b1_grid_desc_g_n_k_.GetLength(I2) << '\n';
......@@ -769,7 +750,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::D0sGridPointer p_d0s_grid_;
const D0DataType* p_d0_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
ZDataType* p_z_grid_;
......@@ -778,6 +759,9 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// tensor descriptor
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
D0GridDesc_M_N d0_grid_desc_m_n_;
typename GridwiseGemm::D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
ZGridDesc_M_N z_grid_desc_m_n_;
......@@ -785,9 +769,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
D0GridDesc_G_M_N d0_grid_desc_g_m_n_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
......@@ -833,7 +816,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
index_t n_raw_padded_;
// raw data
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_n_length_stride_;
std::vector<ck::index_t> d0_n_length_stride_;
};
// Invoker
......@@ -864,7 +847,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const auto kernel = kernel_batched_multiheadattention_forward_xdl_cshuffle_v2<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::D0sGridPointer,
D0DataType,
CDataType,
ZDataType,
LSEDataType,
......@@ -876,7 +859,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
CElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename GridwiseGemm::D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
DeviceOp::B1GridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6,
......@@ -897,7 +880,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_d0s_grid_,
arg.p_d0_grid_,
arg.p_b1_grid_,
arg.p_c_grid_,
arg.p_z_grid_,
......@@ -909,7 +892,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
arg.c_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
......@@ -1040,18 +1023,19 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
return false;
}
for(int i = 0; i < NumD0Tensor; i++)
if constexpr(!is_same<D0DataType, void>::value)
{
if(arg.d0s_n_length_stride_[i][1] == 1 &&
arg.d0s_n_length_stride_[i][0] % Acc0BiasTransferSrcScalarPerVector != 0)
if(arg.d0_n_length_stride_[1] == 1 &&
arg.d0_n_length_stride_[0] % Acc0BiasTransferSrcScalarPerVector != 0)
{
return false;
}
if(arg.d0s_n_length_stride_[i][1] != 1 && Acc0BiasTransferSrcScalarPerVector != 1)
if(arg.d0_n_length_stride_[1] != 1 && Acc0BiasTransferSrcScalarPerVector != 1)
{
return false;
}
}
// Note: we need raw lengths since threadwise copy can not handle vector load when part of
// vector is out of bounds
// Note: need lowest dim in Ms/Ns/Ks/Os, not merged M/N/K/O
......@@ -1103,15 +1087,15 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(
const ADataType* p_a,
static auto
MakeArgument(const ADataType* p_a,
const BDataType* p_b,
const B1DataType* p_b1,
CDataType* p_c,
ZDataType* p_z,
LSEDataType* p_lse,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const D0DataType* p_acc0_biases,
const D1DataType* p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -1123,11 +1107,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<index_t>& acc0_biases_gs_ms_ns_strides,
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -1180,8 +1164,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
void* p_c,
void* p_z,
void* p_lse,
const std::array<void*, NumD0Tensor> p_acc0_biases,
const std::array<void*, NumD1Tensor> p_acc1_biases,
const void* p_acc0_biases,
const void* p_acc1_biases,
const std::vector<index_t>& a_gs_ms_ks_lengths,
const std::vector<index_t>& a_gs_ms_ks_strides,
const std::vector<index_t>& b_gs_ns_ks_lengths,
......@@ -1193,11 +1177,11 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const std::vector<index_t>& z_gs_ms_ns_lengths,
const std::vector<index_t>& z_gs_ms_ns_strides,
const std::vector<index_t>& lse_gs_ms_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_lengths,
const std::array<std::vector<ck::index_t>, NumD0Tensor> acc0_biases_gs_ms_ns_strides,
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<index_t>& acc0_biases_gs_ms_ns_strides,
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_lengths, // acc1_biases_gs_ms_os_lengths
const std::array<std::vector<ck::index_t>, NumD1Tensor>
const std::vector<index_t>&
acc1_biases_gs_ms_gemm1ns_strides, // acc1_biases_gs_ms_os_strides
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
......@@ -1207,14 +1191,15 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
float p_dropout,
std::tuple<unsigned long long, unsigned long long> seeds) override
{
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
return std::make_unique<Argument>(
static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<const B1DataType*>(p_b1),
static_cast<CDataType*>(p_c),
static_cast<ZDataType*>(p_z),
static_cast<LSEDataType*>(p_lse),
p_acc0_biases, // cast in struct Argument
p_acc1_biases, // cast in struct Argument
static_cast<const D0DataType*>(p_acc0_biases), // cast in struct Argument
static_cast<const D1DataType*>(p_acc1_biases), // cast in struct Argument
a_gs_ms_ks_lengths,
a_gs_ms_ks_strides,
b_gs_ns_ks_lengths,
......
......@@ -99,14 +99,9 @@ __global__ void
static_cast<long_index_t>(arg_ptr[group_id].compute_base_ptr_of_batch_.GetZBasePtr(g_idx)));
const long_index_t lse_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetLSEBasePtr(g_idx)));
const long_index_t d0_batch_offset = __builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetD0BasePtr(g_idx)));
typename GridwiseGemm::D0sGridPointer p_d0s_grid = arg_ptr[group_id].p_d0s_grid_;
static_for<0, p_d0s_grid.Size(), 1>{}([&](auto In) {
const long_index_t d0_batch_offset =
__builtin_amdgcn_readfirstlane(static_cast<long_index_t>(
arg_ptr[group_id].compute_base_ptr_of_batch_.GetD0BasePtr(g_idx, In)));
p_d0s_grid(In) = p_d0s_grid(In) + d0_batch_offset;
});
if constexpr(Deterministic)
{
for(index_t i = 0; i < num_blocks_per_batch; i++)
......@@ -114,7 +109,9 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
arg_ptr[group_id].p_a_grid_ + a_batch_offset,
arg_ptr[group_id].p_b_grid_ + b_batch_offset,
p_d0s_grid,
arg_ptr[group_id].p_d0_grid_ == nullptr
? nullptr
: arg_ptr[group_id].p_d0_grid_ + d0_batch_offset,
arg_ptr[group_id].p_b1_grid_ + b1_batch_offset,
arg_ptr[group_id].p_c_grid_ + c_batch_offset,
arg_ptr[group_id].p_z_grid_ == nullptr
......@@ -132,7 +129,7 @@ __global__ void
c_element_op,
arg_ptr[group_id].a_grid_desc_ak0_m_ak1_,
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
......@@ -153,7 +150,9 @@ __global__ void
GridwiseGemm::template Run<HasMainKBlockLoop, IsDropout, IsLseStoring>(
arg_ptr[group_id].p_a_grid_ + a_batch_offset,
arg_ptr[group_id].p_b_grid_ + b_batch_offset,
p_d0s_grid,
arg_ptr[group_id].p_d0_grid_ == nullptr
? nullptr
: arg_ptr[group_id].p_d0_grid_ + d0_batch_offset,
arg_ptr[group_id].p_b1_grid_ + b1_batch_offset,
arg_ptr[group_id].p_c_grid_ + c_batch_offset,
arg_ptr[group_id].p_z_grid_ == nullptr ? nullptr
......@@ -170,7 +169,7 @@ __global__ void
c_element_op,
arg_ptr[group_id].a_grid_desc_ak0_m_ak1_,
arg_ptr[group_id].b_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
......@@ -299,11 +298,10 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
static_assert(NumDimG > 0 && NumDimM > 0 && NumDimN > 0 && NumDimK > 0 && NumDimO > 0,
"Number of dimension must be greater than 0");
static constexpr index_t NumD0Tensor = Acc0BiasDataType::Size();
static constexpr index_t NumD1Tensor = Acc1BiasDataType::Size();
using D0DataType = Acc0BiasDataType;
using D1DataType = Acc1BiasDataType;
// TODO ANT: implement bias combination
static_assert(NumD1Tensor == 0, "Acc1 Bias addition is unimplemented");
static_assert(std::is_void<Acc1BiasDataType>::value, "Acc1 Bias addition is unimplemented");
#if 0
// TODO ANT: use alias
......@@ -406,33 +404,27 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
}
}
static auto MakeD0sGridDescriptor_M_N(
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_lengths,
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_strides)
static auto
MakeD0GridDescriptor_M_N(const std::vector<ck::index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<ck::index_t>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
return Transform::MakeCGridDescriptor_M_N(acc0_biases_gs_ms_ns_lengths,
acc0_biases_gs_ms_ns_strides);
}
static auto MakeD0sGridDescriptor_G_M_N(
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_lengths,
const std::vector<std::vector<ck::index_t>>& acc0_biases_gs_ms_ns_strides)
static auto
MakeD0GridDescriptor_G_M_N(const std::vector<ck::index_t>& acc0_biases_gs_ms_ns_lengths,
const std::vector<ck::index_t>& acc0_biases_gs_ms_ns_strides)
{
return generate_tuple(
[&](auto i) {
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths[i],
acc0_biases_gs_ms_ns_strides[i]);
},
Number<NumD0Tensor>{});
return Transform::MakeCGridDescriptor_G_M_N(acc0_biases_gs_ms_ns_lengths,
acc0_biases_gs_ms_ns_strides);
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1({}, {}));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1({}, {}));
using D0sGridDesc_M_N = decltype(MakeD0sGridDescriptor_M_N({}, {}));
using D0GridDesc_M_N = decltype(MakeD0GridDescriptor_M_N({}, {}));
using B1GridDesc_BK0_N_BK1 = decltype(MakeB1GridDescriptor_BK0_N_BK1({}, {}));
using CGridDesc_M_N = decltype(Transform::MakeCGridDescriptor_M_N({}, {}));
using LSEGridDesc_M = decltype(MakeLSEGridDescriptor_M(1));
......@@ -440,7 +432,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
using AGridDesc_G_M_K = decltype(Transform::MakeAGridDescriptor_G_M_K({}, {}));
using BGridDesc_G_N_K = decltype(Transform::MakeB0GridDescriptor_G_N_K({}, {}));
using D0sGridDesc_G_M_N = decltype(MakeD0sGridDescriptor_G_M_N({}, {}));
using D0GridDesc_G_M_N = decltype(MakeD0GridDescriptor_G_M_N({}, {}));
using B1GridDesc_G_N_K = decltype(Transform::MakeB1GridDescriptor_G_N_K({}, {}));
using CGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
using ZGridDesc_G_M_N = decltype(Transform::MakeCGridDescriptor_G_M_N({}, {}));
......@@ -466,14 +458,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
{
ComputeBasePtrOfStridedBatch(const AGridDesc_G_M_K& a_grid_desc_g_m_k,
const BGridDesc_G_N_K& b_grid_desc_g_n_k,
const D0sGridDesc_G_M_N& d0s_grid_desc_g_m_n,
const D0GridDesc_G_M_N& d0_grid_desc_g_m_n,
const B1GridDesc_G_N_K& b1_grid_desc_g_n_k,
const CGridDesc_G_M_N& c_grid_desc_g_m_n,
const ZGridDesc_G_M_N& z_grid_desc_g_m_n,
index_t BatchStrideLSE)
: a_grid_desc_g_m_k_(a_grid_desc_g_m_k),
b_grid_desc_g_n_k_(b_grid_desc_g_n_k),
d0s_grid_desc_g_m_n_(d0s_grid_desc_g_m_n),
d0_grid_desc_g_m_n_(d0_grid_desc_g_m_n),
b1_grid_desc_g_n_k_(b1_grid_desc_g_n_k),
c_grid_desc_g_m_n_(c_grid_desc_g_m_n),
z_grid_desc_g_m_n_(z_grid_desc_g_m_n),
......@@ -491,11 +483,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
return b_grid_desc_g_n_k_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
template <index_t I>
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx,
Number<I> d0_idx) const
__host__ __device__ constexpr long_index_t GetD0BasePtr(index_t g_idx) const
{
return d0s_grid_desc_g_m_n_[d0_idx].CalculateOffset(make_multi_index(g_idx, 0, 0));
return d0_grid_desc_g_m_n_.CalculateOffset(make_multi_index(g_idx, 0, 0));
}
__host__ __device__ constexpr long_index_t GetB1BasePtr(index_t g_idx) const
......@@ -521,7 +511,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
private:
AGridDesc_G_M_K a_grid_desc_g_m_k_;
BGridDesc_G_N_K b_grid_desc_g_n_k_;
D0sGridDesc_G_M_N d0s_grid_desc_g_m_n_;
D0GridDesc_G_M_N d0_grid_desc_g_m_n_;
B1GridDesc_G_N_K b1_grid_desc_g_n_k_;
CGridDesc_G_M_N c_grid_desc_g_m_n_;
ZGridDesc_G_M_N z_grid_desc_g_m_n_;
......@@ -547,7 +537,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
D0sGridDesc_M_N,
D0GridDesc_M_N,
B1GridDesc_BK0_N_BK1,
CGridDesc_M_N,
ZGridDesc_M_N,
......@@ -610,7 +600,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// pointers
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::D0sGridPointer p_d0s_grid_;
const D0DataType* p_d0_grid_;
const B1DataType* p_b1_grid_;
CDataType* p_c_grid_;
ZDataType* p_z_grid_;
......@@ -619,8 +609,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
typename GridwiseGemm::D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
......@@ -660,7 +650,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
CGridDesc_M_N c_grid_desc_m_n_;
// raw data
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_n_length_stride_;
std::vector<ck::index_t> d0_n_length_stride_;
};
// Argument
......@@ -673,9 +663,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
std::vector<const void*> p_acc0_biases_vec,
std::vector<const void*> p_acc1_biases_vec,
std::vector<ProblemDesc>& problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
......@@ -708,21 +698,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
{
const auto p_a_grid = static_cast<const ADataType*>(p_a_vec[i]);
const auto p_b_grid = static_cast<const BDataType*>(p_b_vec[i]);
const auto& problem_desc = problem_desc_vec[i];
std::array<std::vector<ck::index_t>, NumD0Tensor> d0s_n_length_stride;
typename GridwiseGemm::D0sGridPointer p_d0s_grid;
static_for<0, NumD0Tensor, 1>{}([&](auto j) {
using D0DataType = remove_cvref_t<tuple_element_t<j.value, Acc0BiasDataType>>;
// D0 pointer
p_d0s_grid(j) = static_cast<const D0DataType*>(p_acc0_biases_vec[i][j]);
// for check
d0s_n_length_stride[j].push_back(
problem_desc.acc0_biases_gs_ms_ns_lengths[j][NumDimG + NumDimM]);
d0s_n_length_stride[j].push_back(
problem_desc.acc0_biases_gs_ms_ns_strides[j][NumDimG + NumDimM]);
});
const auto p_d0_grid = p_acc0_biases_vec.size() > 0
? static_cast<const D0DataType*>(p_acc0_biases_vec[i])
: nullptr;
const auto p_b1_grid = static_cast<const B1DataType*>(p_b1_vec[i]);
const auto p_c_grid = static_cast<CDataType*>(p_c_vec[i]);
const auto p_z_grid = static_cast<ZDataType*>(p_z_vec[i]);
......@@ -733,16 +711,17 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
is_lse_storing_ = false;
}
const auto& problem_desc = problem_desc_vec[i];
const auto a_grid_desc_ak0_m_ak1 = MakeAGridDescriptor_AK0_M_AK1(
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_bk0_n_bk1 = MakeBGridDescriptor_BK0_N_BK1(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const D0sGridDesc_M_N d0s_grid_desc_m_n{
DeviceOp::MakeD0sGridDescriptor_M_N(problem_desc.acc0_biases_gs_ms_ns_lengths,
const D0GridDesc_M_N d0_grid_desc_m_n{
DeviceOp::MakeD0GridDescriptor_M_N(problem_desc.acc0_biases_gs_ms_ns_lengths,
problem_desc.acc0_biases_gs_ms_ns_strides)};
const auto d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GridwiseGemm::MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0s_grid_desc_m_n);
const auto d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GridwiseGemm::MakeD0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
d0_grid_desc_m_n);
const auto b1_grid_desc_bk0_n_bk1 = MakeB1GridDescriptor_BK0_N_BK1(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
const auto c_grid_desc_m_n = Transform::MakeCGridDescriptor_M_N(
......@@ -756,8 +735,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
problem_desc.a_gs_ms_ks_lengths, problem_desc.a_gs_ms_ks_strides);
const auto b_grid_desc_g_n_k = Transform::MakeB0GridDescriptor_G_N_K(
problem_desc.b0_gs_ns_ks_lengths, problem_desc.b0_gs_ns_ks_strides);
const auto d0s_grid_desc_g_m_n = DeviceOp::MakeD0sGridDescriptor_G_M_N(
problem_desc.acc0_biases_gs_ms_ns_lengths,
const auto d0_grid_desc_g_m_n =
DeviceOp::MakeD0GridDescriptor_G_M_N(problem_desc.acc0_biases_gs_ms_ns_lengths,
problem_desc.acc0_biases_gs_ms_ns_strides);
const auto b1_grid_desc_g_n_k = Transform::MakeB1GridDescriptor_G_N_K(
problem_desc.b1_gs_os_ns_lengths, problem_desc.b1_gs_os_ns_strides);
......@@ -786,7 +765,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
const auto compute_base_ptr_of_batch = ComputeBasePtrOfStridedBatch(
a_grid_desc_g_m_k,
b_grid_desc_g_n_k,
d0s_grid_desc_g_m_n,
d0_grid_desc_g_m_n,
b1_grid_desc_g_n_k,
c_grid_desc_g_m_n,
z_grid_desc_g_m_n,
......@@ -798,18 +777,6 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
grid_size_ += grid_size_grp;
// for each group, make sure acc0_biases_gs_ms_ns_lengths.size() == NumD0Tensor and
// so on
if(!(problem_desc.acc0_biases_gs_ms_ns_lengths.size() == NumD0Tensor &&
problem_desc.acc0_biases_gs_ms_ns_strides.size() == NumD0Tensor &&
problem_desc.acc1_biases_gs_ms_os_lengths.size() == NumD1Tensor &&
problem_desc.acc1_biases_gs_ms_os_strides.size() == NumD1Tensor))
{
throw std::runtime_error(
"wrong! number of biases in function argument does not "
"match that in template argument");
}
const auto raw_m_padded = GridwiseGemm::GetPaddedSize(
problem_desc.a_gs_ms_ks_lengths[NumDimG + NumDimM - 1]);
const auto raw_n_padded = GridwiseGemm::GetPaddedSize(
......@@ -817,14 +784,14 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
group_kernel_args_.push_back({p_a_grid,
p_b_grid,
p_d0s_grid,
p_d0_grid,
p_b1_grid,
p_c_grid,
p_z_grid,
p_lse_grid,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
d0_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
......@@ -843,6 +810,13 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
z_random_matrix_offset =
z_random_matrix_offset + raw_m_padded * raw_n_padded * batch_count;
// for check
std::vector<ck::index_t> d0_n_length_stride;
d0_n_length_stride.push_back(
problem_desc.acc0_biases_gs_ms_ns_lengths[NumDimG + NumDimM]);
d0_n_length_stride.push_back(
problem_desc.acc0_biases_gs_ms_ns_strides[NumDimG + NumDimM]);
group_device_args_.push_back(
{{problem_desc.a_gs_ms_ks_lengths[NumDimG + NumDimM - 1],
problem_desc.b0_gs_ns_ks_lengths[NumDimG + NumDimN - 1],
......@@ -857,7 +831,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
{problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM - 1],
problem_desc.c_gs_ms_os_strides[NumDimG + NumDimM + NumDimO - 1]},
c_grid_desc_m_n,
d0s_n_length_stride});
d0_n_length_stride});
}
is_dropout_ = p_dropout > 0.0; //
......@@ -1077,19 +1051,15 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
return false;
}
for(int In = 0; In < NumD0Tensor; In++)
{
if(device_arg.d0s_n_length_stride_[In][1] == 1 &&
device_arg.d0s_n_length_stride_[In][0] % Acc0BiasTransferSrcScalarPerVector != 0)
if(device_arg.d0_n_length_stride_[1] == 1 &&
device_arg.d0_n_length_stride_[0] % Acc0BiasTransferSrcScalarPerVector != 0)
{
return false;
}
if(device_arg.d0s_n_length_stride_[In][1] != 1 &&
Acc0BiasTransferSrcScalarPerVector != 1)
if(device_arg.d0_n_length_stride_[1] != 1 && Acc0BiasTransferSrcScalarPerVector != 1)
{
return false;
}
}
// Check if having main loop
const auto K = kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) *
kernel_arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
......@@ -1170,9 +1140,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
std::vector<const void*> p_acc0_biases_vec,
std::vector<const void*> p_acc1_biases_vec,
std::vector<ProblemDesc>& problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
......@@ -1209,9 +1179,9 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
std::vector<void*> p_c_vec,
std::vector<void*> p_z_vec,
std::vector<void*> p_lse_vec,
std::vector<std::vector<const void*>> p_acc0_biases_vec,
std::vector<std::vector<const void*>> p_acc1_biases_vec,
std::vector<ProblemDesc> problem_desc_vec,
std::vector<const void*> p_acc0_biases_vec,
std::vector<const void*> p_acc1_biases_vec,
std::vector<ProblemDesc>& problem_desc_vec,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
AccElementwiseOperation acc_element_op,
......
......@@ -25,7 +25,7 @@ namespace ck {
*
*/
template <typename FloatAB,
typename D0sDataType,
typename D0DataType,
typename ZDataType,
typename FloatGemm,
typename FloatGemmAcc,
......@@ -40,7 +40,7 @@ template <typename FloatAB,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename D0sGridDesc_M_N,
typename D0GridDesc_M_N,
typename B1GridDesc_BK0_N_BK1,
typename CGridDesc_M_N,
typename ZGridDesc_M_N,
......@@ -102,7 +102,6 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
D0BlockTransferSrcScalarPerVector == 2 ||
D0BlockTransferSrcScalarPerVector == 4,
"D0BlockTransferSrcScalarPerVector must be 1 or 2 or 4");
static constexpr index_t NumD0Tensor = D0sDataType::Size();
static_assert(LoopSched == LoopScheduler::Default,
"Non-default loop scheduler is currently not supported");
......@@ -441,20 +440,9 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
c_grid_desc_m_n);
}
static constexpr auto MakeD0sGridPointer()
{
return generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return static_cast<const D0DataType*>(nullptr);
},
Number<NumD0Tensor>{});
}
// D0 desc for source in blockwise copy
template <typename D0GridDesc_M_N>
__host__ __device__ static constexpr auto
MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0GridDesc_M_N& d0_grid_desc_m_n)
MakeD0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0GridDesc_M_N& d0_grid_desc_m_n)
{
const auto M = d0_grid_desc_m_n.GetLength(I0);
const auto N = d0_grid_desc_m_n.GetLength(I1);
......@@ -472,20 +460,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7, 8, 9>{}));
}
// D0s desc for source in blockwise copy
__host__ __device__ static constexpr auto
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(const D0sGridDesc_M_N& ds_grid_desc_m_n)
{
return generate_tuple(
[&](auto i) {
return MakeGemm0D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(ds_grid_desc_m_n[i]);
},
Number<NumD0Tensor>{});
}
using D0sGridPointer = decltype(MakeD0sGridPointer());
using D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(D0sGridDesc_M_N{}))>;
using D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeD0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(D0GridDesc_M_N{}))>;
using CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock = remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}))>;
......@@ -544,7 +520,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
typename C0MatrixMask>
__device__ static void Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
D0sGridPointer p_d0s_grid,
const D0DataType* __restrict__ p_d0_grid,
const FloatAB* __restrict__ p_b1_grid,
FloatC* __restrict__ p_c_grid,
ZDataType* __restrict__ p_z_grid,
......@@ -557,8 +533,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const CElementwiseOperation& c_element_op,
const AGridDesc_AK0_M_AK1& a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1& b_grid_desc_bk0_n_bk1,
const D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const D0GridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
......@@ -985,13 +961,10 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
n3, // NInputNum
n4)); // RegisterNum
auto d0s_threadwise_copy = generate_tuple(
[&](auto i) {
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
return ThreadwiseTensorSliceTransfer_v2<
D0DataType,
auto d0_threadwise_copy =
ThreadwiseTensorSliceTransfer_v2<D0DataType,
D0DataType,
decltype(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i]),
decltype(d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
decltype(d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
Sequence<I1, // MBlockId
I1, // NBlockID
......@@ -1007,7 +980,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
9,
D0BlockTransferSrcScalarPerVector,
1,
false>(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
false>(d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(block_work_idx_m, // MBlockId
0, // NBlockId
0, // mrepeat
......@@ -1018,16 +991,6 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
0, // group
wave_m_n_id[I0], // NInputIndex
0)); // register number
},
Number<NumD0Tensor>{});
const auto d0s_grid_buf = generate_tuple(
[&](auto i) {
return make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0s_grid[i],
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i].GetElementSpaceSize());
},
Number<NumD0Tensor>{});
constexpr auto z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 = // for blockwise copy
make_naive_tensor_descriptor_packed(make_tuple(m0, // MRepeat
......@@ -1325,9 +1288,11 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
block_sync_lds(); // wait for lds read in gemm0 blockwise gemm
// add bias
static_for<0, NumD0Tensor, 1>{}([&](auto i) {
if constexpr(!is_same<D0DataType, void>::value)
{
const auto d0_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_d0_grid, d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize());
// get register
using D0DataType = remove_cvref_t<tuple_element_t<i.value, D0sDataType>>;
StaticBuffer<AddressSpaceEnum::Vgpr,
D0DataType,
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
......@@ -1335,20 +1300,20 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
d0_thread_buf;
// load data from global
d0s_threadwise_copy(i).Run(d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
d0s_grid_buf[i],
d0_threadwise_copy.Run(d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
d0_grid_buf,
d0_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
d0_thread_buf);
// acc add bias
static_for<0, m0 * n0 * n2 * n4, 1>{}(
[&](auto j) { acc_thread_buf(j) += d0_thread_buf[j]; });
[&](auto i) { acc_thread_buf(i) += d0_thread_buf[i]; });
d0s_threadwise_copy(i).MoveSrcSliceWindow(
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5[i],
d0_threadwise_copy.MoveSrcSliceWindow(
d0_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(0, 1, 0, 0, 0, 0, 0, 0, 0, 0));
});
}
// softmax
SoftmaxBuf& max = blockwise_softmax.max_value_buf;
SoftmaxBuf& sum = blockwise_softmax.sum_value_buf;
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment