"example/20_cgemm/cgemm_xdl_bf16.cpp" did not exist on "674f74ad5fb5dcf59e40764949dc9e950ef1f459"
Unverified Commit 9312548e authored by zjing14's avatar zjing14 Committed by GitHub
Browse files

Merge branch 'develop' into sphinx_doc

parents 09908c9f 19490ac4
......@@ -1077,14 +1077,6 @@ struct GridwiseBatchedGemmMultipleDSoftmaxGemm_Xdl_CShuffle
}
} // end gemm1
// workaround compiler issue; see ck/ck.hpp
if constexpr(CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE == 1 &&
is_same_v<FloatAB, bhalf_t> && MPerBlock == 256 && NPerBlock == 128 &&
Gemm1NPerBlock == 128)
{
__builtin_amdgcn_sched_barrier(0);
}
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto cm0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
......
......@@ -879,14 +879,6 @@ struct GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
}
} // end gemm1
// workaround compiler issue; see ck/ck.hpp
if constexpr(CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE == 1 &&
is_same_v<FloatAB, bhalf_t> && MPerBlock == 256 && NPerBlock == 128 &&
Gemm1NPerBlock == 128)
{
__builtin_amdgcn_sched_barrier(0);
}
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
gemm1_blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto cm0 = c_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_naive_variance.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_welford_variance.hpp"
namespace ck {
template <typename GridwiseReduction,
typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K>
__global__ void kernel_normalization(const GridDesc_M_K x_grid_desc_m_k,
const GridDesc_M_K gamma_grid_desc_m_k,
const GridDesc_M_K beta_grid_desc_m_k,
const GridDesc_M_K y_grid_desc_m_k,
index_t num_k_block_tile_iteration,
ComputeDataType epsilon,
const XDataType* const __restrict__ p_x_global,
const GammaDataType* const __restrict__ p_gamma_global,
const BetaDataType* const __restrict__ p_beta_global,
YDataType* const __restrict__ p_y_global,
const YElementwiseOperation y_elementwise_op)
{
GridwiseReduction::Run(x_grid_desc_m_k,
gamma_grid_desc_m_k,
beta_grid_desc_m_k,
y_grid_desc_m_k,
num_k_block_tile_iteration,
epsilon,
p_x_global,
p_gamma_global,
p_beta_global,
p_y_global,
y_elementwise_op);
};
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
typename ComputeDataType,
typename YElementwiseOperation,
typename GridDesc_M_K,
index_t BlockSize,
index_t MThreadClusterSize,
index_t KThreadClusterSize,
index_t MThreadSliceSize,
index_t KThreadSliceSize,
index_t XSrcVectorDim,
index_t XSrcVectorSize,
index_t GammaSrcVectorDim,
index_t GammaSrcVectorSize,
index_t BetaSrcVectorDim,
index_t BetaSrcVectorSize,
index_t YDstVectorDim,
index_t YDstVectorSize,
bool UseWelford>
auto NormalizationKernelSelector(bool isSweepOnce)
{
using GridwiseNormalizationGenericNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceNaive =
GridwiseNormalizationNaiveVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
true>;
using GridwiseNormalizationGenericWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
false>;
using GridwiseNormalizationSweepOnceWelford =
GridwiseNormalizationWelfordVariance_mk_to_mk<XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K,
BlockSize,
MThreadClusterSize,
KThreadClusterSize,
MThreadSliceSize,
KThreadSliceSize,
XSrcVectorDim,
XSrcVectorSize,
GammaSrcVectorDim,
GammaSrcVectorSize,
BetaSrcVectorDim,
BetaSrcVectorSize,
YDstVectorDim,
YDstVectorSize,
true>;
if constexpr(UseWelford)
{
return isSweepOnce ? kernel_normalization<GridwiseNormalizationSweepOnceWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
: kernel_normalization<GridwiseNormalizationGenericWelford,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
}
else
{
return isSweepOnce ? kernel_normalization<GridwiseNormalizationSweepOnceNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>
: kernel_normalization<GridwiseNormalizationGenericNaive,
XDataType,
GammaDataType,
BetaDataType,
YDataType,
ComputeDataType,
YElementwiseOperation,
GridDesc_M_K>;
}
}
} // namespace ck
......@@ -83,6 +83,11 @@ static inline __host__ bool isnan(int4_t x)
};
#endif
static inline __host__ half_t sqrt(half_t x)
{
return static_cast<half_t>(std::sqrt(static_cast<float>(x)));
};
static inline __host__ float sqrt(float x) { return std::sqrt(x); };
static inline __host__ double sqrt(double x) { return std::sqrt(x); };
......@@ -158,6 +163,11 @@ static inline __device__ bool isnan(half_t x)
return (xx & 0x7FFF) > 0x7C00;
};
static inline __device__ half_t sqrt(half_t x)
{
return static_cast<half_t>(__builtin_amdgcn_sqrtf(static_cast<float>(x)));
};
static inline __device__ float sqrt(float x) { return __builtin_amdgcn_sqrtf(x); };
static inline __device__ double sqrt(double x) { return __builtin_amdgcn_sqrt(x); };
......
......@@ -3,4 +3,9 @@ add_instance_library(device_grouped_conv3d_fwd_instance
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_bf16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f16_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_f32_instance.cpp
device_grouped_conv3d_fwd_xdl_ndhwgc_kzyxgc_ndhwgk_int8_instance.cpp
)
......@@ -10,8 +10,8 @@ cmake
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_CXX_FLAGS="-O3 -ftemplate-backtrace-limit=0 -gline-tables-only -save-temps=$PWD" \
-D CMAKE_BUILD_TYPE=Release \
-D BUILD_DEV=ON \
-D GPU_TARGETS="gfx908;gfx90a" \
-D BUILD_DEV=OFF \
-D GPU_TARGETS="gfx90a" \
-D CMAKE_VERBOSE_MAKEFILE:BOOL=ON \
-D USE_BITINT_EXTENSION_INT4=OFF \
${MY_PROJECT_SOURCE}
......
This diff is collapsed.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment