Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
930b2872
Commit
930b2872
authored
Oct 11, 2023
by
Harisankar Sadasivan
Browse files
best performing kernel for GEMV codex problem with M=1 with inverted B matrix
parents
a1e17d18
a4f72a31
Changes
365
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1224 additions
and
248 deletions
+1224
-248
include/ck/utility/amd_xdlops.hpp
include/ck/utility/amd_xdlops.hpp
+195
-0
include/ck/utility/dynamic_buffer.hpp
include/ck/utility/dynamic_buffer.hpp
+30
-4
include/ck/utility/is_detected.hpp
include/ck/utility/is_detected.hpp
+34
-0
include/ck/utility/sequence.hpp
include/ck/utility/sequence.hpp
+11
-0
include/ck/utility/tuple.hpp
include/ck/utility/tuple.hpp
+2
-0
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+7
-106
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
...erence_tensor_operation/cpu/reference_column_to_image.hpp
+363
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
...erence_tensor_operation/cpu/reference_conv_bwd_weight.hpp
+12
-9
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_conv_fwd.hpp
+21
-21
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
...library/reference_tensor_operation/cpu/reference_gemm.hpp
+4
-3
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
...erence_tensor_operation/cpu/reference_image_to_column.hpp
+7
-5
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp
...rary/tensor_operation_instance/gpu/batchnorm_backward.hpp
+28
-22
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp
...brary/tensor_operation_instance/gpu/batchnorm_forward.hpp
+25
-19
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp
...library/tensor_operation_instance/gpu/batchnorm_infer.hpp
+25
-19
library/include/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp
...y/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp
+282
-0
library/include/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp
...conv_tensor_rearrange/device_column_to_image_instance.hpp
+106
-0
library/include/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_image_to_column_instance.hpp
...conv_tensor_rearrange/device_image_to_column_instance.hpp
+8
-24
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+43
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
...k/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
+11
-9
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
.../ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
+10
-7
No files found.
include/ck/utility/amd_xdlops.hpp
View file @
930b2872
...
@@ -419,5 +419,200 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
...
@@ -419,5 +419,200 @@ struct intrin_mfma_f32_16x16x32f8f8<16, 16>
}
}
};
};
#endif
#endif
#if defined CK_ENABLE_BF8
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_32x32x16bf8bf8
;
template
<
>
struct
intrin_mfma_f32_32x32x16bf8bf8
<
32
,
32
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
bf8x8_t
&
reg_a
,
const
bf8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float16_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_32x32x16_bf8_bf8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float16_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
bf8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
bf8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_32x32x2f32
<
32
,
32
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_16x16x32bf8bf8
;
template
<
>
struct
intrin_mfma_f32_16x16x32bf8bf8
<
16
,
16
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
bf8x8_t
&
reg_a
,
const
bf8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float4_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_16x16x32_bf8_bf8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float4_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
bf8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
bf8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_16x16x4f32
<
16
,
16
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_32x32x16f8bf8
;
template
<
>
struct
intrin_mfma_f32_32x32x16f8bf8
<
32
,
32
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
f8x8_t
&
reg_a
,
const
bf8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float16_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_32x32x16_fp8_bf8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float16_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
f8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
bf8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
f8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_32x32x2f32
<
32
,
32
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_16x16x32f8bf8
;
template
<
>
struct
intrin_mfma_f32_16x16x32f8bf8
<
16
,
16
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
f8x8_t
&
reg_a
,
const
bf8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float4_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_16x16x32_fp8_bf8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float4_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
f8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
bf8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
f8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_16x16x4f32
<
16
,
16
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
#endif
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_32x32x16bf8f8
;
template
<
>
struct
intrin_mfma_f32_32x32x16bf8f8
<
32
,
32
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
bf8x8_t
&
reg_a
,
const
f8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float16_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_32x32x16_bf8_fp8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float16_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
bf8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
f8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
f8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_32x32x2f32
<
32
,
32
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
template
<
index_t
MPerWave
,
index_t
NPerWave
>
struct
intrin_mfma_f32_16x16x32bf8f8
;
template
<
>
struct
intrin_mfma_f32_16x16x32bf8f8
<
16
,
16
>
{
template
<
class
FloatC
>
__device__
static
void
Run
(
const
bf8x8_t
&
reg_a
,
const
f8x8_t
&
reg_b
,
FloatC
&
reg_c
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
reg_c
.
template
AsType
<
float4_t
>()(
Number
<
0
>
{})
=
__builtin_amdgcn_mfma_f32_16x16x32_bf8_fp8
(
bit_cast
<
long
>
(
reg_a
),
bit_cast
<
long
>
(
reg_b
),
reg_c
.
template
AsType
<
float4_t
>()[
Number
<
0
>
{}],
0
,
0
,
0
);
#else
vector_type
<
bf8_t
,
8
>
reg_a_v
(
reg_a
);
vector_type
<
f8_t
,
8
>
reg_b_v
(
reg_b
);
static_for
<
0
,
8
,
1
>
{}([
&
](
auto
k
)
{
float
reg_a_f32
=
type_convert
<
float
>
(
reg_a_v
.
template
AsType
<
bf8_t
>()[
Number
<
k
>
{}]);
float
reg_b_f32
=
type_convert
<
float
>
(
reg_b_v
.
template
AsType
<
f8_t
>()[
Number
<
k
>
{}]);
intrin_mfma_f32_16x16x4f32
<
16
,
16
>::
Run
(
reg_a_f32
,
reg_b_f32
,
reg_c
);
});
#endif
}
};
#endif
}
// namespace ck
}
// namespace ck
#endif
#endif
include/ck/utility/dynamic_buffer.hpp
View file @
930b2872
...
@@ -140,10 +140,36 @@ struct DynamicBuffer
...
@@ -140,10 +140,36 @@ struct DynamicBuffer
}
}
else
if
constexpr
(
Op
==
InMemoryDataOperationEnum
::
Add
)
else
if
constexpr
(
Op
==
InMemoryDataOperationEnum
::
Add
)
{
{
auto
tmp
=
this
->
template
Get
<
X
>(
i
,
is_valid_element
);
auto
tmp
=
this
->
template
Get
<
X
>(
i
,
is_valid_element
);
this
->
template
Set
<
X
>(
i
,
is_valid_element
,
x
+
tmp
);
using
scalar_t
=
typename
scalar_type
<
remove_cvref_t
<
T
>>::
type
;
// tmp += x;
// handle bfloat addition
// this->template Set<X>(i, is_valid_element, tmp);
if
constexpr
(
is_same_v
<
scalar_t
,
bhalf_t
>
)
{
if
constexpr
(
is_scalar_type
<
X
>::
value
)
{
// Scalar type
auto
result
=
type_convert
<
X
>
(
type_convert
<
float
>
(
x
)
+
type_convert
<
float
>
(
tmp
));
this
->
template
Set
<
X
>(
i
,
is_valid_element
,
result
);
}
else
{
// Vector type
constexpr
auto
vector_size
=
scalar_type
<
remove_cvref_t
<
X
>>::
vector_size
;
const
vector_type
<
scalar_t
,
vector_size
>
a_vector
{
tmp
};
const
vector_type
<
scalar_t
,
vector_size
>
b_vector
{
x
};
static_for
<
0
,
vector_size
,
1
>
{}([
&
](
auto
idx
)
{
auto
result
=
type_convert
<
scalar_t
>
(
type_convert
<
float
>
(
a_vector
.
template
AsType
<
scalar_t
>()[
idx
])
+
type_convert
<
float
>
(
b_vector
.
template
AsType
<
scalar_t
>()[
idx
]));
this
->
template
Set
<
scalar_t
>(
i
+
idx
,
is_valid_element
,
result
);
});
}
}
else
{
this
->
template
Set
<
X
>(
i
,
is_valid_element
,
x
+
tmp
);
}
}
}
}
}
...
...
include/ck/utility/is_detected.hpp
0 → 100755
View file @
930b2872
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
namespace
ck
{
namespace
detail
{
template
<
class
Default
,
class
AlwaysVoid
,
template
<
class
...
>
class
Op
,
class
...
Args
>
struct
detector
{
using
value_t
=
std
::
false_type
;
using
type
=
Default
;
};
template
<
class
Default
,
template
<
class
...
>
class
Op
,
class
...
Args
>
struct
detector
<
Default
,
std
::
void_t
<
Op
<
Args
...
>>
,
Op
,
Args
...
>
{
using
value_t
=
std
::
true_type
;
using
type
=
Op
<
Args
...
>
;
};
}
// namespace detail
struct
nonesuch
{
~
nonesuch
()
=
delete
;
nonesuch
(
nonesuch
const
&
)
=
delete
;
void
operator
=
(
nonesuch
const
&
)
=
delete
;
};
template
<
template
<
class
...
>
class
Op
,
class
...
Args
>
using
is_detected
=
typename
detail
::
detector
<
nonesuch
,
void
,
Op
,
Args
...
>::
value_t
;
}
// namespace ck
include/ck/utility/sequence.hpp
View file @
930b2872
...
@@ -897,3 +897,14 @@ template <index_t NSize, index_t I>
...
@@ -897,3 +897,14 @@ template <index_t NSize, index_t I>
using
uniform_sequence_gen_t
=
typename
uniform_sequence_gen
<
NSize
,
I
>::
type
;
using
uniform_sequence_gen_t
=
typename
uniform_sequence_gen
<
NSize
,
I
>::
type
;
}
// namespace ck
}
// namespace ck
template
<
ck
::
index_t
...
Is
>
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
ck
::
Sequence
<
Is
...
>
)
{
using
S
=
ck
::
Sequence
<
Is
...
>
;
os
<<
"{"
;
ck
::
static_for
<
0
,
S
::
Size
()
-
ck
::
Number
<
1
>
{},
1
>
{}(
[
&
](
auto
i
)
{
os
<<
S
::
At
(
i
).
value
<<
", "
;
});
os
<<
S
::
At
(
S
::
Size
()
-
ck
::
Number
<
1
>
{}).
value
<<
"}"
;
return
os
;
}
include/ck/utility/tuple.hpp
View file @
930b2872
...
@@ -177,6 +177,8 @@ struct Tuple : detail::TupleImpl<typename arithmetic_sequence_gen<0, sizeof...(X
...
@@ -177,6 +177,8 @@ struct Tuple : detail::TupleImpl<typename arithmetic_sequence_gen<0, sizeof...(X
}
}
__host__
__device__
static
constexpr
bool
IsStaticBuffer
()
{
return
true
;
}
__host__
__device__
static
constexpr
bool
IsStaticBuffer
()
{
return
true
;
}
__host__
__device__
static
constexpr
bool
IsTuple
()
{
return
true
;
}
};
};
template
<
>
template
<
>
...
...
include/ck/utility/type_convert.hpp
View file @
930b2872
...
@@ -85,19 +85,6 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
...
@@ -85,19 +85,6 @@ inline __host__ __device__ constexpr bhalf_t type_convert<bhalf_t, int8_t>(int8_
template
<
>
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
float
>
(
float
x
)
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
float
>
(
float
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_pk_fp8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
...
@@ -105,33 +92,20 @@ inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
...
@@ -105,33 +92,20 @@ inline __host__ __device__ f8_t type_convert<f8_t, float>(float x)
return
utils
::
return
utils
::
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
rng
);
#endif
}
}
// convert fp8 to fp32
// convert fp8 to fp32
template
<
>
template
<
>
inline
__host__
__device__
float
type_convert
<
float
,
f8_t
>
(
f8_t
x
)
inline
__host__
__device__
float
type_convert
<
float
,
f8_t
>
(
f8_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
float
fval
;
uint32_t
i32val
=
static_cast
<
uint32_t
>
(
x
);
fval
=
__builtin_amdgcn_cvt_f32_fp8
(
i32val
,
0
);
// asm volatile("v_cvt_f32_fp8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return
fval
;
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
return
utils
::
cast_from_f8
<
f8_t
,
float
,
negative_zero_nan
>
(
x
);
return
utils
::
cast_from_f8
<
f8_t
,
float
,
negative_zero_nan
>
(
x
);
#endif
}
}
// convert fp16 to fp8
// convert fp16 to fp8
template
<
>
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
half_t
>
(
half_t
x
)
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
half_t
>
(
half_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
type_convert
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
...
@@ -139,20 +113,14 @@ inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
...
@@ -139,20 +113,14 @@ inline __host__ __device__ f8_t type_convert<f8_t, half_t>(half_t x)
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
// convert fp8 to fp16
// convert fp8 to fp16
template
<
>
template
<
>
inline
__host__
__device__
half_t
type_convert
<
half_t
,
f8_t
>
(
f8_t
x
)
inline
__host__
__device__
half_t
type_convert
<
half_t
,
f8_t
>
(
f8_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// use native conversion to float and convert to fp16
return
type_convert
<
half_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
return
utils
::
cast_from_f8
<
f8_t
,
half_t
,
negative_zero_nan
>
(
x
);
return
utils
::
cast_from_f8
<
f8_t
,
half_t
,
negative_zero_nan
>
(
x
);
#endif
}
}
#endif
#endif
...
@@ -161,19 +129,6 @@ inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
...
@@ -161,19 +129,6 @@ inline __host__ __device__ half_t type_convert<half_t, f8_t>(f8_t x)
template
<
>
template
<
>
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
float
>
(
float
x
)
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
float
>
(
float
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_pk_bf8_f32
(
val
.
fval
,
val
.
fval
,
ival
,
false
);
// false -> WORD0
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
...
@@ -181,33 +136,20 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x)
...
@@ -181,33 +136,20 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, float>(float x)
return
utils
::
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
// convert bf8 to fp32
// convert bf8 to fp32
template
<
>
template
<
>
inline
__host__
__device__
float
type_convert
<
float
,
bf8_t
>
(
bf8_t
x
)
inline
__host__
__device__
float
type_convert
<
float
,
bf8_t
>
(
bf8_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
float
fval
;
uint32_t
i32val
=
static_cast
<
uint32_t
>
(
x
);
fval
=
__builtin_amdgcn_cvt_f32_bf8
(
i32val
,
0
);
// asm volatile("v_cvt_f32_bf8 %0, %1 src0_sel:BYTE_0" : "=v"(fval) : "v"(i32val));
return
fval
;
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
return
utils
::
cast_from_f8
<
bf8_t
,
float
,
negative_zero_nan
>
(
x
);
return
utils
::
cast_from_f8
<
bf8_t
,
float
,
negative_zero_nan
>
(
x
);
#endif
}
}
// convert fp16 to bf8
// convert fp16 to bf8
template
<
>
template
<
>
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
half_t
>
(
half_t
x
)
inline
__host__
__device__
bf8_t
type_convert
<
bf8_t
,
half_t
>
(
half_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
type_convert
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
standard
;
...
@@ -215,20 +157,14 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
...
@@ -215,20 +157,14 @@ inline __host__ __device__ bf8_t type_convert<bf8_t, half_t>(half_t x)
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
// convert bf8 to fp16
// convert bf8 to fp16
template
<
>
template
<
>
inline
__host__
__device__
half_t
type_convert
<
half_t
,
bf8_t
>
(
bf8_t
x
)
inline
__host__
__device__
half_t
type_convert
<
half_t
,
bf8_t
>
(
bf8_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// use native conversion to float and convert to fp16
return
type_convert
<
half_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
return
utils
::
cast_from_f8
<
bf8_t
,
half_t
,
negative_zero_nan
>
(
x
);
return
utils
::
cast_from_f8
<
bf8_t
,
half_t
,
negative_zero_nan
>
(
x
);
#endif
}
}
#endif
#endif
...
@@ -298,47 +234,30 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
...
@@ -298,47 +234,30 @@ __host__ __device__ constexpr Y f8_convert_sr(X x);
template
<
>
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
float
>
(
float
x
)
{
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_fp8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
// as thread id is not available on host, use 0 for prn generation
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
return
utils
::
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
cast_to_f8
<
float
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
rng
);
#endif
}
}
// convert fp16 to fp8 with stochastic rounding
// convert fp16 to fp8 with stochastic rounding
template
<
>
template
<
>
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
half_t
>
(
half_t
x
)
inline
__host__
__device__
f8_t
f8_convert_sr
<
f8_t
,
half_t
>
(
half_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
constexpr
int
seed
=
42
;
// as thread id is not available on host, use 0 for prn generation
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
uint32_t
rng
=
prand_generator
<
half_t
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
#endif
#endif
...
@@ -347,38 +266,21 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
...
@@ -347,38 +266,21 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
template
<
>
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
float
>
(
float
x
)
{
{
constexpr
int
seed
=
42
;
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
union
{
float
fval
;
uint32_t
i32val
;
uint8_t
i8val
[
4
];
// not endian independent
}
val
;
val
.
fval
=
x
;
uint32_t
ival
=
0
;
ival
=
__builtin_amdgcn_cvt_sr_bf8_f32
(
val
.
fval
,
rng
,
ival
,
0
);
// 0 pos
val
.
i32val
=
ival
;
return
val
.
i8val
[
0
];
// little endian
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
int
seed
=
42
;
// as thread id is not available on host, use 0 for prn generation
uint32_t
rng
=
prand_generator
<
float
,
seed
>
(
reinterpret_cast
<
uintptr_t
>
(
&
x
),
x
);
return
utils
::
return
utils
::
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
float
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
// convert fp16 to bf8 with stochastic rounding
// convert fp16 to bf8 with stochastic rounding
template
<
>
template
<
>
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
half_t
>
(
half_t
x
)
inline
__host__
__device__
bf8_t
f8_convert_sr
<
bf8_t
,
half_t
>
(
half_t
x
)
{
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#else
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
...
@@ -388,7 +290,6 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
...
@@ -388,7 +290,6 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
return
utils
::
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
x
,
rng
);
#endif
}
}
#endif
#endif
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_column_to_image.hpp
0 → 100755
View file @
930b2872
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <type_traits>
#include <sstream>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/utility/host_tensor.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
/**
* \brief Reference implementation for column to image.
*
* Input tensor descriptor has [N * Do * Ho * Wo, Z * Y * X * C] data layout.
* Memory layout is the same.
* Output tensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam ImageLayout Image Layout.
* \tparam InDataType Input Data Type.
* \tparam OutDataType Output Data Type.
*/
template
<
ck
::
index_t
NDimSpatial
,
typename
ImageLayout
,
typename
InDataType
,
typename
OutDataType
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
struct
ReferenceColumnToImage
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
public:
Argument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
:
input_
{
input
},
output_
{
output
},
conv_strides_
{
conv_filter_strides
},
conv_dilations_
{
conv_filter_dilations
},
in_left_pads_
{
input_left_pads
},
in_right_pads_
{
input_right_pads
},
filter_spatial_lengths_
{
filter_spatial_lengths
}
{
initOutputSpatialLengths
();
}
const
Tensor
<
InDataType
>&
input_
;
Tensor
<
OutDataType
>&
output_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
std
::
vector
<
index_t
>
in_left_pads_
;
std
::
vector
<
index_t
>
in_right_pads_
;
std
::
vector
<
index_t
>
filter_spatial_lengths_
;
std
::
vector
<
index_t
>
output_spatial_lengths_
;
private:
void
initOutputSpatialLengths
()
{
constexpr
auto
input_offset_to_spatial
=
3
;
for
(
ck
::
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
// XEff = (X - 1) * conv_dilation_w + 1;
// Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const
ck
::
index_t
x_eff
=
(
filter_spatial_lengths_
[
i
]
-
1
)
*
conv_dilations_
[
i
]
+
1
;
output_spatial_lengths_
.
push_back
(
(
output_
.
GetLengths
()[
i
+
input_offset_to_spatial
]
+
in_left_pads_
[
i
]
+
in_right_pads_
[
i
]
-
x_eff
)
/
conv_strides_
[
i
]
+
1
);
}
}
};
struct
Invoker
:
public
device
::
BaseInvoker
{
using
Argument
=
ReferenceColumnToImage
::
Argument
;
float
Run
(
const
Argument
&
arg
)
{
if
(
!
(
arg
.
output_
.
GetNumOfDimension
()
==
NDimSpatial
+
3
&&
arg
.
input_
.
GetNumOfDimension
()
==
2
))
{
throw
std
::
runtime_error
(
"wrong! inconsistent dimension"
);
}
const
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
if
constexpr
(
NDimSpatial
==
1
)
{
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
0
];
auto
func
=
[
&
](
auto
n
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Wo
+
wo
;
index_t
column
=
0
;
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
0
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
output_
.
GetLengths
()[
3
])
{
float
v_in
=
ck
::
type_convert
<
float
>
(
arg
.
input_
(
row
,
column
));
float
v_out
=
ck
::
type_convert
<
float
>
(
arg
.
output_
(
0
,
n
,
c
,
wi
));
arg
.
output_
(
0
,
n
,
c
,
wi
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
+
v_out
);
}
column
++
;
}
}
}
};
make_ParallelTensorFunctor
(
func
,
N
)(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
else
if
constexpr
(
NDimSpatial
==
2
)
{
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
1
];
auto
func
=
[
&
](
auto
n
)
{
for
(
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
0
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
1
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
1
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
output_
.
GetLengths
()[
3
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
output_
.
GetLengths
()[
4
])
{
float
v_in
=
ck
::
type_convert
<
float
>
(
arg
.
input_
(
row
,
column
));
float
v_out
=
ck
::
type_convert
<
float
>
(
arg
.
output_
(
0
,
n
,
c
,
hi
,
wi
));
arg
.
output_
(
0
,
n
,
c
,
hi
,
wi
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
+
v_out
);
}
column
++
;
}
}
}
}
}
};
make_ParallelTensorFunctor
(
func
,
N
)(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
else
if
constexpr
(
NDimSpatial
==
3
)
{
const
index_t
Do
=
arg
.
output_spatial_lengths_
[
0
];
const
index_t
Ho
=
arg
.
output_spatial_lengths_
[
1
];
const
index_t
Wo
=
arg
.
output_spatial_lengths_
[
2
];
auto
func
=
[
&
](
auto
n
)
{
for
(
index_t
d_o
=
0
;
d_o
<
Do
;
++
d_o
)
{
for
(
index_t
ho
=
0
;
ho
<
Ho
;
++
ho
)
{
for
(
index_t
wo
=
0
;
wo
<
Wo
;
++
wo
)
{
index_t
row
=
n
*
Do
*
Ho
*
Wo
+
d_o
*
Ho
*
Wo
+
ho
*
Wo
+
wo
;
index_t
column
=
0
;
for
(
index_t
z
=
0
;
z
<
arg
.
filter_spatial_lengths_
[
0
];
++
z
)
{
auto
di
=
static_cast
<
ck
::
long_index_t
>
(
d_o
*
arg
.
conv_strides_
[
0
])
+
static_cast
<
ck
::
long_index_t
>
(
z
*
arg
.
conv_dilations_
[
0
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
0
]);
for
(
index_t
y
=
0
;
y
<
arg
.
filter_spatial_lengths_
[
1
];
++
y
)
{
auto
hi
=
static_cast
<
ck
::
long_index_t
>
(
ho
*
arg
.
conv_strides_
[
1
])
+
static_cast
<
ck
::
long_index_t
>
(
y
*
arg
.
conv_dilations_
[
1
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
1
]);
for
(
index_t
x
=
0
;
x
<
arg
.
filter_spatial_lengths_
[
2
];
++
x
)
{
auto
wi
=
static_cast
<
ck
::
long_index_t
>
(
wo
*
arg
.
conv_strides_
[
2
])
+
static_cast
<
ck
::
long_index_t
>
(
x
*
arg
.
conv_dilations_
[
2
])
-
static_cast
<
ck
::
long_index_t
>
(
arg
.
in_left_pads_
[
2
]);
for
(
index_t
c
=
0
;
c
<
C
;
++
c
)
{
if
(
di
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
di
)
<
arg
.
output_
.
GetLengths
()[
3
]
&&
hi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
hi
)
<
arg
.
output_
.
GetLengths
()[
4
]
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
output_
.
GetLengths
()[
5
])
{
float
v_in
=
ck
::
type_convert
<
float
>
(
arg
.
input_
(
row
,
column
));
float
v_out
=
ck
::
type_convert
<
float
>
(
arg
.
output_
(
0
,
n
,
c
,
di
,
hi
,
wi
));
arg
.
output_
(
0
,
n
,
c
,
di
,
hi
,
wi
)
=
ck
::
type_convert
<
OutDataType
>
(
v_in
+
v_out
);
}
column
++
;
}
}
}
}
}
}
}
};
make_ParallelTensorFunctor
(
func
,
N
)(
std
::
thread
::
hardware_concurrency
());
return
0
;
}
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/*stream_config*/
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
using
namespace
tensor_layout
::
convolution
;
if
constexpr
(
!
(
std
::
is_same_v
<
ImageLayout
,
GNWC
>
||
std
::
is_same_v
<
ImageLayout
,
GNHWC
>
||
std
::
is_same_v
<
ImageLayout
,
GNDHWC
>
))
{
return
false
;
}
if
constexpr
(
!
(
NDimSpatial
>=
1
&&
NDimSpatial
<=
3
))
{
return
false
;
}
return
true
;
}
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
const
ck
::
index_t
G
=
arg
.
output_
.
GetLengths
()[
0
];
const
ck
::
index_t
N
=
arg
.
output_
.
GetLengths
()[
1
];
const
ck
::
index_t
C
=
arg
.
output_
.
GetLengths
()[
2
];
const
index_t
NDoHoWo
=
N
*
ck
::
accumulate_n
<
index_t
>
(
arg
.
output_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
const
index_t
CZYX
=
C
*
ck
::
accumulate_n
<
index_t
>
(
arg
.
filter_spatial_lengths_
.
begin
(),
NDimSpatial
,
1
,
std
::
multiplies
<>
());
if
(
!
(
arg
.
input_
.
GetLengths
()[
0
]
==
static_cast
<
std
::
size_t
>
(
NDoHoWo
)
&&
arg
.
input_
.
GetLengths
()[
1
]
==
static_cast
<
std
::
size_t
>
(
CZYX
)))
{
return
false
;
}
if
(
G
!=
1
)
{
return
false
;
}
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
input
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
return
Argument
{
input
,
output
,
filter_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceColumnToImage"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_bwd_weight.hpp
View file @
930b2872
...
@@ -25,6 +25,8 @@ template <ck::index_t NDimSpatial,
...
@@ -25,6 +25,8 @@ template <ck::index_t NDimSpatial,
typename
InElementwiseOperation
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
typename
OutElementwiseOperation
,
typename
ComputeTypeA
=
OutDataType
,
typename
ComputeTypeB
=
InDataType
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
struct
ReferenceConvBwdWeight
:
public
device
::
BaseOperator
struct
ReferenceConvBwdWeight
:
public
device
::
BaseOperator
{
{
...
@@ -98,8 +100,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -98,8 +100,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
if
(
wi
>=
0
&&
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
{
{
float
v_out
;
ComputeTypeA
v_out
;
float
v_in
;
ComputeTypeB
v_in
;
arg
.
out_element_op_
(
arg
.
out_element_op_
(
v_out
,
ck
::
type_convert
<
float
>
(
arg
.
output_
(
g
,
n
,
k
,
wo
)));
v_out
,
ck
::
type_convert
<
float
>
(
arg
.
output_
(
g
,
n
,
k
,
wo
)));
...
@@ -107,7 +109,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -107,7 +109,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
arg
.
in_element_op_
(
arg
.
in_element_op_
(
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
wi
)));
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
wi
)));
v_acc
+=
v_out
*
v_in
;
v_acc
+=
type_convert
<
float
>
(
v_out
)
*
type_convert
<
float
>
(
v_in
)
;
}
}
}
}
}
}
...
@@ -158,8 +160,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -158,8 +160,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
wi
>=
0
&&
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
4
])
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
4
])
{
{
float
v_out
;
ComputeTypeA
v_out
;
float
v_in
;
ComputeTypeB
v_in
;
arg
.
out_element_op_
(
arg
.
out_element_op_
(
v_out
,
v_out
,
...
@@ -168,7 +170,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -168,7 +170,7 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
arg
.
in_element_op_
(
arg
.
in_element_op_
(
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)));
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)));
v_acc
+=
v_out
*
v_in
;
v_acc
+=
type_convert
<
float
>
(
v_out
)
*
type_convert
<
float
>
(
v_in
)
;
}
}
}
}
}
}
...
@@ -226,8 +228,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -226,8 +228,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
5
])
arg
.
input_
.
GetLengths
()[
5
])
{
{
float
v_out
;
ComputeTypeA
v_out
;
float
v_in
;
ComputeTypeB
v_in
;
arg
.
out_element_op_
(
v_out
,
arg
.
out_element_op_
(
v_out
,
ck
::
type_convert
<
float
>
(
ck
::
type_convert
<
float
>
(
...
@@ -237,7 +239,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
...
@@ -237,7 +239,8 @@ struct ReferenceConvBwdWeight : public device::BaseOperator
ck
::
type_convert
<
float
>
(
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)));
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)));
v_acc
+=
v_out
*
v_in
;
v_acc
+=
type_convert
<
float
>
(
v_out
)
*
type_convert
<
float
>
(
v_in
);
}
}
}
}
}
}
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
View file @
930b2872
...
@@ -14,27 +14,27 @@ namespace ck {
...
@@ -14,27 +14,27 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
host
{
namespace
host
{
//
//
/
// @brief Reference implementation for forward convolution.
//
/
@brief Reference implementation for forward convolution.
//
//
/
// @paragraph
//
/
@paragraph
// Tensor descriptor in GNCHW/GKCXY/GNKHW dimensional order
//
/
Tensor descriptor in GNCHW/GKCXY/GNKHW dimensional order
// Supports both GNCHW/NGCHW as well as GNHWC/NHWGC physical layout
//
/
Supports both GNCHW/NGCHW as well as GNHWC/NHWGC physical layout
// as long as dimensions in tensor descriptor is in GNCHW order
//
/
as long as dimensions in tensor descriptor is in GNCHW order
//
//
/
// @tparam InDataType Input tensor data type.
//
/
@tparam InDataType Input tensor data type.
// @tparam WeiDataType Weights tensor data type.
//
/
@tparam WeiDataType Weights tensor data type.
// @tparam OutDataType Output tensor data type.
//
/
@tparam OutDataType Output tensor data type.
// @tparam InElementwiseOperation Functor for input tensor elementwise
//
/
@tparam InElementwiseOperation Functor for input tensor elementwise
// operation.
//
/
operation.
// @tparam WeiElementwiseOperation Functor for weights tensor elementwise
//
/
@tparam WeiElementwiseOperation Functor for weights tensor elementwise
// operation.
//
/
operation.
// @tparam NDimSpatial Number of spatial dimensions.
//
/
@tparam NDimSpatial Number of spatial dimensions.
//
//
/
// input descriptor in [G, N, C, Do, Ho, Wo] order
//
/
input descriptor in [G, N, C, Do, Ho, Wo] order
// weight descriptor in [G, K, C, Z, Y, X] order
//
/
weight descriptor in [G, K, C, Z, Y, X] order
// output descriptor in [G, N, K, Di, Hi, Wi] order
//
/
output descriptor in [G, N, K, Di, Hi, Wi] order
// phyiscal layout is irrelavent
//
/
phyiscal layout is irrelavent
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
InDataType
,
typename
WeiDataType
,
typename
WeiDataType
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm.hpp
View file @
930b2872
...
@@ -21,7 +21,8 @@ template <typename ADataType,
...
@@ -21,7 +21,8 @@ template <typename ADataType,
typename
AElementwiseOperation
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
CElementwiseOperation
,
typename
ComputType
=
ADataType
>
typename
ComputeTypeA
=
ADataType
,
typename
ComputeTypeB
=
ComputeTypeA
>
struct
ReferenceGemm
:
public
device
::
BaseOperator
struct
ReferenceGemm
:
public
device
::
BaseOperator
{
{
// Argument
// Argument
...
@@ -65,8 +66,8 @@ struct ReferenceGemm : public device::BaseOperator
...
@@ -65,8 +66,8 @@ struct ReferenceGemm : public device::BaseOperator
for
(
int
k
=
0
;
k
<
K
;
++
k
)
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
{
ComputType
v_a
;
Comput
e
Type
A
v_a
;
ComputType
v_b
;
Comput
e
Type
B
v_b
;
// use PassThrough instead of ConvertBF16RTN for reference calculation
// use PassThrough instead of ConvertBF16RTN for reference calculation
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
if
constexpr
(
is_same_v
<
AElementwiseOperation
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_image_to_column.hpp
View file @
930b2872
...
@@ -18,16 +18,18 @@ namespace host {
...
@@ -18,16 +18,18 @@ namespace host {
/**
/**
* \brief Reference implementation for image to column.
* \brief Reference implementation for image to column.
*
*
*
T
ensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
*
Input t
ensor descriptor has [G, N, C, Di, Hi, Wi] data layout.
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
* G must be equal to 1. Memory layout is [G, N, Di, Hi, Wi, C].
* Output tensor descriptor has [N * Do * Ho * Wo, Z * Y * X * C] data layout.
* Memory layout is the same.
*
*
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam NDimSpatial Number of spatial dimensions.
* \tparam I
nput
Layout I
nput
Layout.
* \tparam I
mage
Layout I
mage
Layout.
* \tparam InDataType Input Data Type.
* \tparam InDataType Input Data Type.
* \tparam OutDataType Output Data Type.
* \tparam OutDataType Output Data Type.
*/
*/
template
<
ck
::
index_t
NDimSpatial
,
template
<
ck
::
index_t
NDimSpatial
,
typename
I
nput
Layout
,
typename
I
mage
Layout
,
typename
InDataType
,
typename
InDataType
,
typename
OutDataType
,
typename
OutDataType
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
...
@@ -240,8 +242,8 @@ struct ReferenceImageToColumn : public device::BaseOperator
...
@@ -240,8 +242,8 @@ struct ReferenceImageToColumn : public device::BaseOperator
{
{
using
namespace
tensor_layout
::
convolution
;
using
namespace
tensor_layout
::
convolution
;
if
constexpr
(
!
(
std
::
is_same_v
<
I
nput
Layout
,
GNWC
>
||
std
::
is_same_v
<
I
nput
Layout
,
GNHWC
>
||
if
constexpr
(
!
(
std
::
is_same_v
<
I
mage
Layout
,
GNWC
>
||
std
::
is_same_v
<
I
mage
Layout
,
GNHWC
>
||
std
::
is_same_v
<
I
nput
Layout
,
GNDHWC
>
))
std
::
is_same_v
<
I
mage
Layout
,
GNDHWC
>
))
{
{
return
false
;
return
false
;
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_backward.hpp
View file @
930b2872
...
@@ -16,26 +16,26 @@ namespace tensor_operation {
...
@@ -16,26 +16,26 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
//
FP16
#ifdef CK_ENABLE_
FP16
void
add_device_batchnorm_backward_rank_4_3_f16_instances
(
void
add_device_batchnorm_backward_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
DeviceBatchNormBwd
<
F16
,
F32
,
F32
,
F32
,
F16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
FP32
#ifdef CK_ENABLE_
FP32
void
add_device_batchnorm_backward_rank_4_3_f32_instances
(
void
add_device_batchnorm_backward_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
DeviceBatchNormBwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
BF16
#ifdef CK_ENABLE_
BF16
void
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
void
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
DeviceBatchNormBwd
<
BF16
,
F32
,
F32
,
F32
,
BF16
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
FP64
#ifdef CK_ENABLE_
FP64
void
add_device_batchnorm_backward_rank_4_3_f64_instances
(
void
add_device_batchnorm_backward_rank_4_3_f64_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormBwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
);
DeviceBatchNormBwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
);
#endif
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
DyDataType
,
...
@@ -72,7 +72,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -72,7 +72,7 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
...
@@ -83,37 +83,43 @@ struct DeviceOperationInstanceFactory<
...
@@ -83,37 +83,43 @@ struct DeviceOperationInstanceFactory<
add_device_batchnorm_backward_rank_4_3_f16_instances
(
op_ptrs
);
add_device_batchnorm_backward_rank_4_3_f16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
#endif
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
#ifdef CK_ENABLE_FP32
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_backward_rank_4_3_f32_instances
(
op_ptrs
);
add_device_batchnorm_backward_rank_4_3_f32_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
#endif
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
#ifdef CK_ENABLE_BF16
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
DxDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
is_same_v
<
DyDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
DscaleDbiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
op_ptrs
);
add_device_batchnorm_backward_rank_4_3_bf16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
DxDataType
,
F64
>
&&
#endif
is_same_v
<
DyDataType
,
F64
>
&&
is_same_v
<
AccDataType
,
F64
>
&&
#ifdef CK_ENABLE_FP64
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
DscaleDbiasDataType
,
F64
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
DxDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
is_same_v
<
DyDataType
,
F64
>
&&
is_same_v
<
AccDataType
,
F64
>
&&
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
DscaleDbiasDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
DyElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_backward_rank_4_3_f64_instances
(
op_ptrs
);
add_device_batchnorm_backward_rank_4_3_f64_instances
(
op_ptrs
);
}
}
}
}
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_forward.hpp
View file @
930b2872
...
@@ -16,26 +16,26 @@ namespace tensor_operation {
...
@@ -16,26 +16,26 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
//
FP16
#ifdef CK_ENABLE_
FP16
void
add_device_batchnorm_forward_rank_4_3_f16_instances
(
void
add_device_batchnorm_forward_rank_4_3_f16_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F16
,
F16
,
F32
,
F16
,
F16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F16
,
F16
,
F32
,
F16
,
F16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
FP32
#ifdef CK_ENABLE_
FP32
void
add_device_batchnorm_forward_rank_4_3_f32_instances
(
void
add_device_batchnorm_forward_rank_4_3_f32_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
BF16
#ifdef CK_ENABLE_
BF16
void
add_device_batchnorm_forward_rank_4_3_bf16_instances
(
void
add_device_batchnorm_forward_rank_4_3_bf16_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormFwd
<
BF16
,
BF16
,
F32
,
BF16
,
BF16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
std
::
unique_ptr
<
DeviceBatchNormFwd
<
BF16
,
BF16
,
F32
,
BF16
,
BF16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
#endif
//
FP64
#ifdef CK_ENABLE_
FP64
void
add_device_batchnorm_forward_rank_4_3_f64_instances
(
void
add_device_batchnorm_forward_rank_4_3_f64_instances
(
std
::
vector
<
std
::
vector
<
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
);
std
::
unique_ptr
<
DeviceBatchNormFwd
<
F64
,
F64
,
F64
,
F64
,
F64
,
F64
,
PassThrough
,
4
,
3
>>>&
);
#endif
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
YDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccDataType
,
...
@@ -69,7 +69,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -69,7 +69,7 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
YDataType
,
F16
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
YDataType
,
F16
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
BiasDataType
,
F16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
is_same_v
<
BiasDataType
,
F16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
...
@@ -79,34 +79,40 @@ struct DeviceOperationInstanceFactory<
...
@@ -79,34 +79,40 @@ struct DeviceOperationInstanceFactory<
add_device_batchnorm_forward_rank_4_3_f16_instances
(
op_ptrs
);
add_device_batchnorm_forward_rank_4_3_f16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
YDataType
,
F32
>
&&
#endif
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F32
>
&&
#ifdef CK_ENABLE_FP32
is_same_v
<
BiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
YDataType
,
F32
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
BiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_forward_rank_4_3_f32_instances
(
op_ptrs
);
add_device_batchnorm_forward_rank_4_3_f32_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
YDataType
,
BF16
>
&&
#endif
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
BF16
>
&&
#ifdef CK_ENABLE_BF16
is_same_v
<
BiasDataType
,
BF16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
YDataType
,
BF16
>
&&
is_same_v
<
AccDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
BiasDataType
,
BF16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_forward_rank_4_3_bf16_instances
(
op_ptrs
);
add_device_batchnorm_forward_rank_4_3_bf16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
YDataType
,
F64
>
&&
#endif
is_same_v
<
AccDataType
,
F64
>
&&
is_same_v
<
ScaleDataType
,
F64
>
&&
#ifdef CK_ENABLE_FP64
is_same_v
<
BiasDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
YDataType
,
F64
>
&&
is_same_v
<
AccDataType
,
F64
>
&&
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
BiasDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
{
{
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
&&
is_same_v
<
YElementwiseOp
,
PassThrough
>
)
{
{
add_device_batchnorm_forward_rank_4_3_f64_instances
(
op_ptrs
);
add_device_batchnorm_forward_rank_4_3_f64_instances
(
op_ptrs
);
}
}
}
}
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/batchnorm_infer.hpp
View file @
930b2872
...
@@ -16,38 +16,38 @@ namespace tensor_operation {
...
@@ -16,38 +16,38 @@ namespace tensor_operation {
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
//
FP16
#ifdef CK_ENABLE_
FP16
void
add_device_batchnorm_infer_rank_4_f16_instances
(
void
add_device_batchnorm_infer_rank_4_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
F16
,
F32
,
F32
,
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F32
,
F32
,
F16
,
F16
>
,
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
4
>>>&
);
4
>>>&
);
#endif
//
FP32
#ifdef CK_ENABLE_
FP32
void
add_device_batchnorm_infer_rank_4_f32_instances
(
void
add_device_batchnorm_infer_rank_4_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
F32
,
F32
,
F32
,
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
,
F32
,
F32
,
F32
>
,
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
4
>>>&
);
4
>>>&
);
#endif
//
BF16
#ifdef CK_ENABLE_
BF16
void
add_device_batchnorm_infer_rank_4_bf16_instances
(
void
add_device_batchnorm_infer_rank_4_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
BF16
,
F32
,
F32
,
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
F32
,
F32
,
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
>
,
ck
::
Tuple
<
BF16
>
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
4
>>>&
);
4
>>>&
);
#endif
//
FP64
#ifdef CK_ENABLE_
FP64
void
add_device_batchnorm_infer_rank_4_f64_instances
(
void
add_device_batchnorm_infer_rank_4_f64_instances
(
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
std
::
vector
<
std
::
unique_ptr
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
F64
,
F64
,
F64
,
F64
,
F64
>
,
ck
::
Tuple
<
F64
,
F64
,
F64
,
F64
,
F64
>
,
ck
::
Tuple
<
F64
>
,
ck
::
Tuple
<
F64
>
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
ck
::
tensor_operation
::
element_wise
::
NormalizeInInfer
,
4
>>>&
);
4
>>>&
);
#endif
template
<
typename
XDataType
,
template
<
typename
XDataType
,
typename
YDataType
,
typename
YDataType
,
typename
ScaleDataType
,
typename
ScaleDataType
,
...
@@ -69,7 +69,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElemen
...
@@ -69,7 +69,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElemen
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
YDataType
,
F16
>
&&
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
YDataType
,
F16
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
BiasDataType
,
F16
>
&&
is_same_v
<
ScaleDataType
,
F16
>
&&
is_same_v
<
BiasDataType
,
F16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
is_same_v
<
MeanVarDataType
,
F32
>
)
...
@@ -79,34 +79,40 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElemen
...
@@ -79,34 +79,40 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceElemen
add_device_batchnorm_infer_rank_4_f16_instances
(
op_ptrs
);
add_device_batchnorm_infer_rank_4_f16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
YDataType
,
F32
>
&&
#endif
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
BiasDataType
,
F32
>
&&
#ifdef CK_ENABLE_FP32
is_same_v
<
MeanVarDataType
,
F32
>
)
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
YDataType
,
F32
>
&&
is_same_v
<
ScaleDataType
,
F32
>
&&
is_same_v
<
BiasDataType
,
F32
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
)
if
constexpr
(
Rank
==
4
)
{
{
add_device_batchnorm_infer_rank_4_f32_instances
(
op_ptrs
);
add_device_batchnorm_infer_rank_4_f32_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
YDataType
,
BF16
>
&&
#endif
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
BiasDataType
,
BF16
>
&&
#ifdef CK_ENABLE_BF16
is_same_v
<
MeanVarDataType
,
F32
>
)
if
constexpr
(
is_same_v
<
XDataType
,
BF16
>
&&
is_same_v
<
YDataType
,
BF16
>
&&
is_same_v
<
ScaleDataType
,
BF16
>
&&
is_same_v
<
BiasDataType
,
BF16
>
&&
is_same_v
<
MeanVarDataType
,
F32
>
)
{
{
if
constexpr
(
Rank
==
4
)
if
constexpr
(
Rank
==
4
)
{
{
add_device_batchnorm_infer_rank_4_bf16_instances
(
op_ptrs
);
add_device_batchnorm_infer_rank_4_bf16_instances
(
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
YDataType
,
F64
>
&&
#endif
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
BiasDataType
,
F64
>
&&
#ifdef CK_ENABLE_FP64
is_same_v
<
MeanVarDataType
,
F64
>
)
if
constexpr
(
is_same_v
<
XDataType
,
F64
>
&&
is_same_v
<
YDataType
,
F64
>
&&
is_same_v
<
ScaleDataType
,
F64
>
&&
is_same_v
<
BiasDataType
,
F64
>
&&
is_same_v
<
MeanVarDataType
,
F64
>
)
{
{
if
constexpr
(
Rank
==
4
)
if
constexpr
(
Rank
==
4
)
{
{
add_device_batchnorm_infer_rank_4_f64_instances
(
op_ptrs
);
add_device_batchnorm_infer_rank_4_f64_instances
(
op_ptrs
);
}
}
}
}
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange.hpp
0 → 100755
View file @
930b2872
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_tensor_rearrange.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/conv_tensor_rearrange_op.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
conv_tensor_rearrange_op
;
// Image to Column
// nhwc, 1d
void
add_device_image_to_column_nwc_1d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
BF16
,
BF16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nwc_1d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F16
,
F16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nwc_1d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F32
,
F32
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nwc_1d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
int8_t
,
int8_t
,
ImageToColumn
>>>&
instances
);
// nhwc, 2d
void
add_device_image_to_column_nhwc_2d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
BF16
,
BF16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nhwc_2d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F16
,
F16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nhwc_2d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F32
,
F32
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_nhwc_2d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
int8_t
,
int8_t
,
ImageToColumn
>>>&
instances
);
// nhwc, 3d
void
add_device_image_to_column_ndhwc_3d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
BF16
,
BF16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_ndhwc_3d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
F16
,
F16
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_ndhwc_3d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
F32
,
F32
,
ImageToColumn
>>>&
instances
);
void
add_device_image_to_column_ndhwc_3d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
int8_t
,
int8_t
,
ImageToColumn
>>>&
instances
);
// Column to Image
// nhwc, 1d
void
add_device_column_to_image_nwc_1d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nwc_1d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nwc_1d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nwc_1d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
1
,
GNWC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
);
// nhwc, 2d
void
add_device_column_to_image_nhwc_2d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nhwc_2d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nhwc_2d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_nhwc_2d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
2
,
GNHWC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
);
// nhwc, 3d
void
add_device_column_to_image_ndhwc_3d_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
BF16
,
BF16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_ndhwc_3d_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
F16
,
F16
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_ndhwc_3d_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
F32
,
F32
,
ColumnToImage
>>>&
instances
);
void
add_device_column_to_image_ndhwc_3d_i8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceConvTensorRearrange
<
3
,
GNDHWC
,
int8_t
,
int8_t
,
ColumnToImage
>>>&
instances
);
template
<
ck
::
index_t
NumDimSpatial
,
typename
ImageLayout
,
typename
InDataType
,
typename
OutDataType
,
typename
ConvTensorRearrangeOp
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceConvTensorRearrange
<
NumDimSpatial
,
ImageLayout
,
InDataType
,
OutDataType
,
ConvTensorRearrangeOp
>>
{
using
DeviceOp
=
DeviceConvTensorRearrange
<
NumDimSpatial
,
ImageLayout
,
InDataType
,
OutDataType
,
ConvTensorRearrangeOp
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
ConvTensorRearrangeOp
,
ImageToColumn
>
)
{
if
constexpr
(
NumDimSpatial
==
1
&&
is_same_v
<
ImageLayout
,
GNWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_image_to_column_nwc_1d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_image_to_column_nwc_1d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_image_to_column_nwc_1d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_image_to_column_nwc_1d_i8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
ImageLayout
,
GNHWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_image_to_column_nhwc_2d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_image_to_column_nhwc_2d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_image_to_column_nhwc_2d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_image_to_column_nhwc_2d_i8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
ImageLayout
,
GNDHWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_image_to_column_ndhwc_3d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_image_to_column_ndhwc_3d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_image_to_column_ndhwc_3d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_image_to_column_ndhwc_3d_i8_instances
(
op_ptrs
);
}
}
}
else
if
constexpr
(
is_same_v
<
ConvTensorRearrangeOp
,
ColumnToImage
>
)
{
if
constexpr
(
NumDimSpatial
==
1
&&
is_same_v
<
ImageLayout
,
GNWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_column_to_image_nwc_1d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_column_to_image_nwc_1d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_column_to_image_nwc_1d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_column_to_image_nwc_1d_i8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
2
&&
is_same_v
<
ImageLayout
,
GNHWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_column_to_image_nhwc_2d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_column_to_image_nhwc_2d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_column_to_image_nhwc_2d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_column_to_image_nhwc_2d_i8_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
ImageLayout
,
GNDHWC
>
)
{
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
{
add_device_column_to_image_ndhwc_3d_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
{
add_device_column_to_image_ndhwc_3d_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
{
add_device_column_to_image_ndhwc_3d_bf16_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
{
add_device_column_to_image_ndhwc_3d_i8_instances
(
op_ptrs
);
}
}
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/conv_tensor_rearrange/device_column_to_image_instance.hpp
0 → 100755
View file @
930b2872
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_column_to_image_impl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
namespace
ck
::
tensor_layout
::
convolution
;
using
namespace
ck
::
conv_tensor_rearrange_op
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_column_to_image_bf16_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
// generic instance
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_column_to_image_f16_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
// generic instance
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_column_to_image_f32_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
// generic instance
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
// clang-format on
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
>
using
device_column_to_image_i8_instances
=
std
::
tuple
<
// clang-format off
//#####################| Num| InLayout| InDataType| OutDataType| Block| MPer| KPer| Thread| Scalar|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
// generic instance
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
,
DeviceColumnToImageImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
256
,
256
,
S
<
16
,
16
>
,
16
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/
image_to_column
/device_image_to_column_instance.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/
conv_tensor_rearrange
/device_image_to_column_instance.hpp
View file @
930b2872
...
@@ -13,6 +13,7 @@ namespace device {
...
@@ -13,6 +13,7 @@ namespace device {
namespace
instance
{
namespace
instance
{
using
namespace
ck
::
tensor_layout
::
convolution
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
namespace
ck
::
conv_tensor_rearrange_op
;
using
BF16
=
ck
::
bhalf_t
;
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F16
=
ck
::
half_t
;
...
@@ -28,17 +29,12 @@ using device_image_to_column_bf16_instances = std::tuple<
...
@@ -28,17 +29,12 @@ using device_image_to_column_bf16_instances = std::tuple<
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
// generic instance
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
BF16
,
BF16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
...
@@ -52,17 +48,13 @@ using device_image_to_column_f16_instances = std::tuple<
...
@@ -52,17 +48,13 @@ using device_image_to_column_f16_instances = std::tuple<
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
// generic instance
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F16
,
F16
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
...
@@ -76,15 +68,11 @@ using device_image_to_column_f32_instances = std::tuple<
...
@@ -76,15 +68,11 @@ using device_image_to_column_f32_instances = std::tuple<
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
// generic instance
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
F32
,
F32
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
// clang-format on
// clang-format on
...
@@ -97,17 +85,13 @@ using device_image_to_column_i8_instances = std::tuple<
...
@@ -97,17 +85,13 @@ using device_image_to_column_i8_instances = std::tuple<
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Dim| | | | Size| Block| Block| Cluster| Per|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| Spatial| | | | | | | Lengths| Vector|
//#####################| | | | | | | | | |
//#####################| | | | | | | | | |
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
8
,
8
,
S
<
8
,
8
>
,
1
>
,
// generic instance
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
16
,
16
,
S
<
8
,
8
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
32
,
32
,
S
<
8
,
8
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
64
,
64
,
64
,
S
<
8
,
8
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
16
,
16
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
64
,
S
<
8
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
32
,
64
,
S
<
8
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
128
,
64
,
128
,
S
<
8
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
16
,
16
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
1
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
64
,
64
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
4
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
,
DeviceImageToColumnImpl
<
NDimSpatial
,
InLayout
,
int8_t
,
int8_t
,
256
,
128
,
128
,
S
<
16
,
16
>
,
8
>
,
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
930b2872
...
@@ -312,6 +312,23 @@ void add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances(
...
@@ -312,6 +312,23 @@ void add_device_gemm_xdl_f64_f64_f64_mk_nk_mn_instances(
DeviceGemm
<
Row
,
Col
,
Row
,
F64
,
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemm
<
Row
,
Col
,
Row
,
F64
,
F64
,
F64
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
#endif
#endif
#ifdef CK_ENABLE_FP8
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Col
,
Col
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
typename
CLayout
,
typename
CLayout
,
...
@@ -505,6 +522,32 @@ struct DeviceOperationInstanceFactory<
...
@@ -505,6 +522,32 @@ struct DeviceOperationInstanceFactory<
#endif
#endif
}
}
}
}
#endif
#ifdef CK_ENABLE_FP8
else
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
f8_t
>
&&
is_same_v
<
BDataType
,
ck
::
f8_t
>
&&
is_same_v
<
CDataType
,
ck
::
f8_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Col
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances
(
op_ptrs
);
}
}
#endif
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/gemm_bilinear.hpp
View file @
930b2872
...
@@ -11,12 +11,12 @@
...
@@ -11,12 +11,12 @@
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
#ifdef CK_ENABLE_FP16
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
#ifdef CK_ENABLE_FP16
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances
(
void
add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_km_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Col
,
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Col
,
Row
,
Row
,
...
@@ -68,7 +68,8 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance
...
@@ -68,7 +68,8 @@ void add_device_gemm_bilinear_xdl_c_shuffle_f16_f16_f16_f16_mk_nk_mn_mn_instance
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
Bilinear
>>>&
instances
);
#endif
#ifdef CK_ENABLE_INT8
void
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances
(
void
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_mk_kn_mn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmMultipleD
<
Row
,
Row
,
Row
,
...
@@ -120,7 +121,7 @@ void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances(
...
@@ -120,7 +121,7 @@ void add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances(
PassThrough
,
PassThrough
,
PassThrough
,
PassThrough
,
Bilinear
>>>&
instances
);
Bilinear
>>>&
instances
);
#endif
// GEMM + Bilinear
// GEMM + Bilinear
template
<
typename
ALayout
,
template
<
typename
ALayout
,
typename
BLayout
,
typename
BLayout
,
...
@@ -158,7 +159,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
...
@@ -158,7 +159,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
DDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
is_same_v
<
DDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
{
...
@@ -187,8 +188,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
...
@@ -187,8 +188,10 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
op_ptrs
);
op_ptrs
);
}
}
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
std
::
int8_t
>
&&
is_same_v
<
BDataType
,
std
::
int8_t
>
&&
#endif
is_same_v
<
DDataType
,
std
::
int8_t
>
&&
is_same_v
<
EDataType
,
std
::
int8_t
>
)
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
ADataType
,
std
::
int8_t
>
&&
is_same_v
<
BDataType
,
std
::
int8_t
>
&&
is_same_v
<
DDataType
,
std
::
int8_t
>
&&
is_same_v
<
EDataType
,
std
::
int8_t
>
)
{
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
DLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
is_same_v
<
DLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
...
@@ -211,7 +214,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
...
@@ -211,7 +214,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances
(
op_ptrs
);
add_device_gemm_bilinear_wmma_c_shuffle_i8_i8_i8_i8_km_nk_mn_mn_instances
(
op_ptrs
);
}
}
}
}
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
@@ -220,4 +223,3 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
...
@@ -220,4 +223,3 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGemmMu
}
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace tensor_operation
}
// namespace ck
}
// namespace ck
#endif
library/include/ck/library/tensor_operation_instance/gpu/gemm_splitk.hpp
View file @
930b2872
...
@@ -16,7 +16,7 @@ namespace ck {
...
@@ -16,7 +16,7 @@ namespace ck {
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
device
{
namespace
device
{
namespace
instance
{
namespace
instance
{
#ifdef CK_ENABLE_FP16
void
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -36,7 +36,8 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
...
@@ -36,7 +36,8 @@ void add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f32_f32_f32_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -56,8 +57,8 @@ void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
...
@@ -56,8 +57,8 @@ void add_device_gemm_xdl_splitk_f32_f32_f32_mk_nk_mn_instances(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemmSplitK
<
Row
,
Col
,
Row
,
F32
,
F32
,
F32
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
instances
);
#endif
#if defined
CK_ENABLE_FP8
#if
(defined(CK_ENABLE_FP16) ||
defined
(
CK_ENABLE_FP8
))
void
add_device_gemm_xdl_splitk_f8_f16_f16_km_kn_mn_instances
(
void
add_device_gemm_xdl_splitk_f8_f16_f16_km_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
std
::
vector
<
std
::
unique_ptr
<
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
DeviceGemmSplitK
<
Col
,
Row
,
Row
,
F8
,
F16
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
...
@@ -129,7 +130,7 @@ struct DeviceOperationInstanceFactory<
...
@@ -129,7 +130,7 @@ struct DeviceOperationInstanceFactory<
static
auto
GetInstances
()
static
auto
GetInstances
()
{
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
ADataType
,
float
>
&&
is_same_v
<
BDataType
,
float
>
&&
if
constexpr
(
is_same_v
<
ADataType
,
float
>
&&
is_same_v
<
BDataType
,
float
>
&&
is_same_v
<
CDataType
,
float
>
)
is_same_v
<
CDataType
,
float
>
)
{
{
...
@@ -154,6 +155,8 @@ struct DeviceOperationInstanceFactory<
...
@@ -154,6 +155,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f32_f32_f32_km_nk_mn_instances
(
op_ptrs
);
}
}
}
}
#endif
#ifdef CK_ENABLE_FP16
else
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
else
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
is_same_v
<
CDataType
,
half_t
>
)
{
{
...
@@ -178,7 +181,8 @@ struct DeviceOperationInstanceFactory<
...
@@ -178,7 +181,8 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
}
}
#if defined CK_ENABLE_FP8
#endif
#if(defined(CK_ENABLE_FP16) || defined(CK_ENABLE_FP8))
else
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
else
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
CDataType
,
half_t
>
)
is_same_v
<
CDataType
,
half_t
>
)
{
{
...
@@ -228,7 +232,6 @@ struct DeviceOperationInstanceFactory<
...
@@ -228,7 +232,6 @@ struct DeviceOperationInstanceFactory<
}
}
}
}
#endif
#endif
return
op_ptrs
;
return
op_ptrs
;
}
}
};
};
...
...
Prev
1
…
4
5
6
7
8
9
10
11
12
…
19
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment