Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
90e186e5
Commit
90e186e5
authored
Oct 13, 2023
by
Jing Zhang
Browse files
merge
parents
7bf9a377
2ce9b56c
Changes
20
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
912 additions
and
1236 deletions
+912
-1236
docs/sphinx/requirements.txt
docs/sphinx/requirements.txt
+2
-2
example/01_gemm/CMakeLists.txt
example/01_gemm/CMakeLists.txt
+5
-9
example/01_gemm/gemm_xdl_fp8.cpp
example/01_gemm/gemm_xdl_fp8.cpp
+3
-3
example/01_gemm/gemm_xdl_fp8_bf8.cpp
example/01_gemm/gemm_xdl_fp8_bf8.cpp
+3
-3
example/60_gemm_multi_ABD/CMakeLists.txt
example/60_gemm_multi_ABD/CMakeLists.txt
+10
-0
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
+363
-0
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+1
-2
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
...tion/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
+2
-2
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp
...k/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp
+2
-1
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
+54
-23
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
+55
-89
include/ck/utility/amd_buffer_addressing.hpp
include/ck/utility/amd_buffer_addressing.hpp
+210
-628
include/ck/utility/is_detected.hpp
include/ck/utility/is_detected.hpp
+9
-0
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+6
-2
test/batched_gemm/CMakeLists.txt
test/batched_gemm/CMakeLists.txt
+2
-16
test/batched_gemm/batched_gemm_bf16.cpp
test/batched_gemm/batched_gemm_bf16.cpp
+0
-114
test/batched_gemm/batched_gemm_fp16.cpp
test/batched_gemm/batched_gemm_fp16.cpp
+0
-114
test/batched_gemm/batched_gemm_fp32.cpp
test/batched_gemm/batched_gemm_fp32.cpp
+0
-114
test/batched_gemm/batched_gemm_int8.cpp
test/batched_gemm/batched_gemm_int8.cpp
+0
-114
test/batched_gemm/test_batched_gemm.cpp
test/batched_gemm/test_batched_gemm.cpp
+185
-0
No files found.
docs/sphinx/requirements.txt
View file @
90e186e5
...
...
@@ -42,7 +42,7 @@ fastjsonschema==2.18.0
# via rocm-docs-core
gitdb==4.0.10
# via gitpython
gitpython==3.1.3
1
gitpython==3.1.3
5
# via rocm-docs-core
idna==3.4
# via requests
...
...
@@ -103,7 +103,7 @@ requests==2.28.2
# via
# pygithub
# sphinx
rocm-docs-core
>
=0.2
0
.0
rocm-docs-core
=
=0.2
4
.0
# via -r requirements.in
six==1.16.0
# via
...
...
example/01_gemm/CMakeLists.txt
View file @
90e186e5
...
...
@@ -66,21 +66,17 @@ endif()
add_example_executable
(
example_gemm_xdl_streamk gemm_xdl_streamk.cpp
)
if
(
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR GPU_TARGETS MATCHES
"gfx942"
)
add_example_executable
(
example_gemm_xdl_fp8 gemm_xdl_fp8.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_gemm_xdl_fp8 gemm_xdl_fp8.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8
)
endif
()
endif
()
if
(
GPU_TARGETS MATCHES
"gfx940"
OR GPU_TARGETS MATCHES
"gfx941"
OR GPU_TARGETS MATCHES
"gfx942"
)
add_example_executable
(
example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp
)
if
(
result EQUAL 0
)
add_example_executable
(
example_gemm_xdl_fp8_bf8 gemm_xdl_fp8_bf8.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp8_bf8
)
endif
()
endif
()
add_example_executable
(
example_gemm_xdl_fp16_fp8 gemm_xdl_fp16_fp8.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_fp8
)
add_dependencies
(
example_gemm_xdl example_gemm_xdl_fp16_fp8
)
endif
()
example/01_gemm/gemm_xdl_fp8.cpp
View file @
90e186e5
...
...
@@ -7,9 +7,9 @@
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
f8_t
;
using
CDataType
=
ck
::
f
8
_t
;
using
CDataType
=
ck
::
hal
f_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_
t
;
using
CShuffleDataType
=
floa
t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
...
...
@@ -27,7 +27,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
>
;
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
...
...
example/01_gemm/gemm_xdl_fp8_bf8.cpp
View file @
90e186e5
...
...
@@ -7,9 +7,9 @@
using
ADataType
=
ck
::
f8_t
;
using
BDataType
=
ck
::
bf8_t
;
using
CDataType
=
ck
::
f
8
_t
;
using
CDataType
=
ck
::
hal
f_t
;
using
AccDataType
=
float
;
using
CShuffleDataType
=
ck
::
f8_
t
;
using
CShuffleDataType
=
floa
t
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
...
...
@@ -31,7 +31,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
// ######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
// ######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
// ######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
16
,
LoopSched
,
PipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
<
ALayout
,
BLayout
,
CLayout
,
ADataType
,
BDataType
,
CDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
BElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
64
,
16
,
16
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
16
,
16
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
,
LoopSched
,
PipelineVer
,
ComputeTypeA
,
ComputeTypeB
>
;
// clang-format on
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
...
...
example/60_gemm_multi_ABD/CMakeLists.txt
0 → 100644
View file @
90e186e5
if
(
DTYPES MATCHES
"fp16"
OR NOT DEFINED DTYPES
)
list
(
APPEND gpu_list2 gfx908 gfx90a gfx940 gfx941 gfx942
)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list2 AND target EQUAL 0
)
add_example_executable
(
example_gemm_multi_ABD_xdl_fp16 gemm_multi_ABD_xdl_fp16.cpp
)
set
(
target 1
)
endif
()
endforeach
()
endif
()
example/60_gemm_multi_ABD/gemm_multi_ABD_xdl_fp16.cpp
0 → 100644
View file @
90e186e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
DDataType
=
F16
;
using
EDataType
=
F16
;
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
DLayout
=
Row
;
using
ELayout
=
Row
;
struct
AddScale
{
static
constexpr
auto
I0
=
ck
::
Number
<
0
>
{};
static
constexpr
auto
I1
=
ck
::
Number
<
1
>
{};
static
constexpr
auto
I2
=
ck
::
Number
<
2
>
{};
static
constexpr
auto
I3
=
ck
::
Number
<
3
>
{};
__host__
__device__
constexpr
void
operator
()(
ck
::
half4_t
&
a
,
const
ck
::
half4_t
&
a0
,
const
ck
::
half4_t
&
a1
)
const
{
const
auto
a0_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a0
};
const
auto
a1_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{
a1
};
auto
r_v_t
=
ck
::
vector_type
<
ck
::
half_t
,
4
>
{};
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I0
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I0
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I1
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I1
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I2
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I2
]);
r_v_t
.
AsType
<
ck
::
half_t
>
()(
I3
)
=
scale
*
(
a0_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]
+
a1_v_t
.
AsType
<
ck
::
half_t
>
()[
I3
]);
a
=
r_v_t
.
AsType
<
ck
::
half4_t
>
()[
I0
];
}
__host__
__device__
constexpr
void
operator
()(
ck
::
half_t
&
a
,
const
ck
::
half_t
&
a0
,
const
ck
::
half_t
&
a1
)
const
{
a
=
scale
*
(
a0
+
a1
);
}
// this attribute controls the copy_function applying element_wise_op with
// pack4_data
constexpr
const
static
bool
is_pack4_invocable
=
true
;
float
scale
=
1.0
;
};
struct
AlphaBetaAdd
{
AlphaBetaAdd
(
float
alpha
,
float
beta
)
:
alpha_
(
alpha
),
beta_
(
beta
){};
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
ck
::
half_t
,
float
,
ck
::
half_t
>
(
ck
::
half_t
&
e
,
const
float
&
c
,
const
ck
::
half_t
&
d
)
const
{
e
=
ck
::
type_convert
<
ck
::
half_t
>
(
alpha_
*
c
+
beta_
*
ck
::
type_convert
<
float
>
(
d
));
};
float
alpha_
;
float
beta_
;
};
using
AElementOp
=
AddScale
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AlphaBetaAdd
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleABD_Xdl_CShuffle
<
ck
::
Tuple
<
ALayout
,
ALayout
>
,
ck
::
Tuple
<
BLayout
>
,
ck
::
Tuple
<
DLayout
>
,
ELayout
,
ck
::
Tuple
<
ADataType
,
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideD
=
4096
;
ck
::
index_t
StrideE
=
4096
;
float
alpha
=
1.0
f
;
float
beta
=
1.0
f
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
6
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
alpha
=
std
::
stof
(
argv
[
4
]);
beta
=
std
::
stof
(
argv
[
5
]);
}
else
if
(
argc
==
13
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideD
=
std
::
stoi
(
argv
[
9
]);
StrideE
=
std
::
stoi
(
argv
[
10
]);
alpha
=
std
::
stof
(
argv
[
11
]);
beta
=
std
::
stof
(
argv
[
12
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD, StrideE, alpha, "
"beta
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
Tensor
<
ADataType
>
a0_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a1_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
DDataType
>
d_m_n
(
f_host_tensor_descriptor
(
M
,
N
,
StrideD
,
DLayout
{}));
Tensor
<
EDataType
>
e_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
Tensor
<
EDataType
>
e_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideE
,
ELayout
{}));
std
::
cout
<<
"a0_m_k: "
<<
a0_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a1_m_k: "
<<
a1_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d_m_n: "
<<
d_m_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"e_m_n: "
<<
e_m_n_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
DDataType
>
{
-
5
,
5
});
break
;
default:
a0_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
a1_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
d_m_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
DDataType
>
{
-
0.5
,
0.5
});
}
DeviceMem
a0_device_buf
(
sizeof
(
ADataType
)
*
a0_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
a1_device_buf
(
sizeof
(
ADataType
)
*
a1_m_k
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
d_device_buf
(
sizeof
(
DDataType
)
*
d_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a0_device_buf
.
ToDevice
(
a0_m_k
.
mData
.
data
());
a1_device_buf
.
ToDevice
(
a1_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d_device_buf
.
ToDevice
(
d_m_n
.
mData
.
data
());
e_device_buf
.
ToDevice
(
e_m_n_device_result
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{
0.2
};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{
alpha
,
beta
};
// do GEMM
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
argument
=
device_op
.
MakeArgument
(
std
::
array
<
const
void
*
,
2
>
{
a0_device_buf
.
GetDeviceBuffer
(),
a1_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_device_buf
.
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d_device_buf
.
GetDeviceBuffer
()},
e_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
std
::
array
<
ck
::
index_t
,
2
>
{
StrideA
,
StrideA
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideB
},
std
::
array
<
ck
::
index_t
,
1
>
{
StrideD
},
StrideE
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
EDataType
)
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_m_n
({
M
,
N
});
Tensor
<
ADataType
>
a_m_k
({
M
,
K
});
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
k
=
0
;
k
<
K
;
++
k
)
{
a_element_op
(
a_m_k
(
m
,
k
),
a0_m_k
(
m
,
k
),
a1_m_k
(
m
,
k
));
}
}
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
ADataType
,
BDataType
,
CShuffleDataType
,
AccDataType
,
PassThrough
,
BElementOp
,
PassThrough
>
;
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n
,
PassThrough
{},
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
cde_element_op
(
e_m_n_host_result
(
m
,
n
),
c_m_n
(
m
,
n
),
d_m_n
(
m
,
n
));
}
}
e_device_buf
.
FromDevice
(
e_m_n_device_result
.
mData
.
data
());
return
ck
::
utils
::
check_err
(
e_m_n_device_result
,
e_m_n_host_result
)
?
0
:
1
;
}
return
0
;
}
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
90e186e5
...
...
@@ -173,8 +173,7 @@ struct PassThrough
template
<
>
__host__
__device__
void
operator
()
<
bf8_t
,
half_t
>
(
bf8_t
&
y
,
const
half_t
&
x
)
const
{
// to-do: fix half_t to bf8_t convert
y
=
ck
::
type_convert
<
bf8_t
>
(
ck
::
type_convert
<
float
>
(
x
));
y
=
ck
::
type_convert
<
bf8_t
>
(
x
);
}
#endif
};
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
View file @
90e186e5
...
...
@@ -658,8 +658,8 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
ComputeDataType
,
ComputeDataType
,
ComputeDataType
,
// ComputeDataType for A
ComputeDataType
,
// ComputeDataType for B
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp
View file @
90e186e5
...
...
@@ -945,7 +945,8 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3_ext
}
}();
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
)
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
MPad
-
M
),
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v3r1.hpp
View file @
90e186e5
...
...
@@ -9,6 +9,7 @@
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor/static_tensor.hpp"
#include "ck/utility/is_detected.hpp"
namespace
ck
{
...
...
@@ -211,10 +212,44 @@ struct ThreadwiseTensorSliceTransfer_v3r1
auto
src_vector_container
=
src_vector_type
{
src_buf
.
template
Get
<
src_vector_t
>(
src_coord_
.
GetOffset
(),
is_src_valid
)};
using
dst_vector_type
=
vector_type_maker_t
<
DstData
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
typename
dst_vector_type
::
type
;
dst_vector_type
op_r_v
;
constexpr
auto
get_elem_op_vec_len
=
[]()
{
if
constexpr
(
is_detected
<
is_pack8_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
src_element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
src_element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
using
src_elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
using
dst_elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
idx
)
{
// apply the src elementwise op and convert to DstData under the hood if needed
src_element_op_
(
op_r_v
.
template
AsType
<
dst_elem_op_vec_t
>()(
idx
),
src_vector_container
.
template
AsType
<
src_elem_op_vec_t
>()[
idx
]);
});
// copy data from src_vector_container into src_thread_scratch_
src_thread_scratch_tuple_
(
thread_scratch_id
)
.
template
SetAsType
<
src
_vector_t
>(
src_data_idx_seq
,
src_vector_container
.
template
AsType
<
src
_vector_t
>()[
I0
]);
.
template
SetAsType
<
dst
_vector_t
>(
src_data_idx_seq
,
op_r_v
.
template
AsType
<
dst
_vector_t
>()[
I0
]);
constexpr
auto
move_on_dim
=
[
&
]()
constexpr
{
...
...
@@ -267,19 +302,15 @@ struct ThreadwiseTensorSliceTransfer_v3r1
{
#if !CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
// convert from SrcData to DstData here
dst_thread_scratch_
(
idx
)
=
type_convert
<
DstData
>
(
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
]);
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
#else
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if
constexpr
(
SrcVectorDim
!=
DstVectorDim
&&
((
is_same
<
half_t
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
((
is_same
<
half_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
2
==
0
&&
DstScalarPerVector
%
2
==
0
)
||
(
is_same
<
int8_t
,
remove_cvref_t
<
SrcData
>>::
value
&&
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
(
is_same
<
int8_t
,
remove_cvref_t
<
DstData
>>::
value
&&
SrcScalarPerVector
%
4
==
0
&&
DstScalarPerVector
%
4
==
0
)))
{
// each transpose does
...
...
@@ -313,7 +344,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
constexpr
auto
data_idx_seq
=
generate_sequence_v2
(
[
&
](
auto
i
)
{
return
Number
<
data_idx
[
i
]
>
{};
},
Number
<
nDim
>
{});
using
src_vector_t
=
vector_type_maker_t
<
Src
Data
,
SrcScalarPerVector
>
;
using
src_vector_t
=
vector_type_maker_t
<
Dst
Data
,
SrcScalarPerVector
>
;
using
dst_vector_t
=
vector_type_maker_t
<
DstData
,
DstScalarPerVector
>
;
// get DstScalarPerVector # of read-only references to src vectors from
...
...
@@ -336,17 +367,16 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Number
<
num_dst_vector
>
{});
// do data transpose
transpose_vectors
<
Src
Data
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
transpose_vectors
<
Dst
Data
,
DstScalarPerVector
,
SrcScalarPerVector
>
{}(
src_vector_refs
,
dst_vector_refs
);
});
}
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
// apply the src elementwise op and convert to DstData under the hood if needed
DstData
dst_v
;
src_element_op_
(
dst_v
,
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
]);
dst_thread_scratch_
(
idx
)
=
dst_v
;
});
else
{
static_ford
<
SliceLengths
>
{}([
&
](
auto
idx
)
{
dst_thread_scratch_
(
idx
)
=
src_thread_scratch_tuple_
[
thread_scratch_id
][
idx
];
});
}
#endif
}
...
...
@@ -761,11 +791,12 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static
constexpr
auto
src_thread_scratch_desc_
=
decltype
(
GetSrcThreadScratchDescriptor
()){};
static
constexpr
auto
dst_thread_scratch_desc_
=
decltype
(
GetDstThreadScratchDescriptor
()){};
using
SrcThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
SrcData
,
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
;
using
SrcThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
// apply data_convert with SrcThreadScratch
SrcScalarPerVector
,
decltype
(
src_thread_scratch_desc_
),
true
>
;
using
DstThreadScratch
=
StaticTensorTupleOfVectorBuffer
<
AddressSpaceEnum
::
Vgpr
,
DstData
,
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
View file @
90e186e5
...
...
@@ -132,9 +132,6 @@ struct ThreadwiseTensorSliceTransfer_v7r2
Number
<
num
>
{});
}
template
<
typename
T
>
using
has_vec_len
=
decltype
(
std
::
declval
<
T
&>
().
vec_len
);
// SrcDescs: Tuple<const SrcDesc0&, const SrcDesc1&, ...>
// SrcBuffers: Tuple<const SrcBuffer0&, const SrcBuffer1&, ...>
template
<
typename
SrcBuffers
,
...
...
@@ -159,94 +156,63 @@ struct ThreadwiseTensorSliceTransfer_v7r2
is_src_valid
);
});
if
constexpr
(
is_detected
<
has_vec_len
,
decltype
(
element_op_
)
>::
value
)
{
constexpr
auto
elem_op_vec_len
=
decltype
(
element_op_
)
::
vec_len
;
static_assert
(
is_same
<
remove_cvref_t
<
decltype
(
elem_op_vec_len
)
>
,
index_t
>::
value
,
"vec_len in element_op_ type is not index_t"
);
constexpr
auto
get_elem_op_vec_len
=
[]()
{
if
constexpr
(
is_detected
<
is_pack8_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack8_invocable
)
return
math
::
min
(
8
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack4_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack4_invocable
)
return
math
::
min
(
4
,
SrcScalarPerVector
);
}
if
constexpr
(
is_detected
<
is_pack2_invocable_t
,
decltype
(
element_op_
)
>::
value
)
{
if
constexpr
(
decltype
(
element_op_
)
::
is_pack2_invocable
)
return
math
::
min
(
2
,
SrcScalarPerVector
);
}
return
1
;
};
constexpr
index_t
elem_op_vec_len
=
get_elem_op_vec_len
();
// apply pointwise function
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
using
SrcData
=
remove_cvref_t
<
tuple_element_t
<
iSrc
.
value
,
SrcDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
return
src_vectors
[
iSrc
].
template
AsType
<
elem_op_vec_t
>()[
i
];
},
Number
<
nSrc
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iDst
)
->
auto
&
{
using
DstData
=
remove_cvref_t
<
tuple_element_t
<
iDst
.
value
,
DstDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
return
dst_vectors
(
iDst
).
template
AsType
<
elem_op_vec_t
>()(
i
);
},
Number
<
nDst
>
{});
static_assert
(
elem_op_vec_len
==
1
||
elem_op_vec_len
==
2
||
elem_op_vec_len
==
4
||
elem_op_vec_len
==
8
,
"vec_len in element_op_ must be 1, 2, 4, 8"
);
static_assert
(
SrcScalarPerVector
%
elem_op_vec_len
==
0
,
"vec_len in element_op_ cannot be divided by SrcScalarPerVector!"
);
// apply pointwise function
static_for
<
0
,
SrcScalarPerVector
/
elem_op_vec_len
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
using
SrcData
=
remove_cvref_t
<
tuple_element_t
<
iSrc
.
value
,
SrcDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
SrcData
,
elem_op_vec_len
>::
type
;
return
src_vectors
[
iSrc
].
template
AsType
<
elem_op_vec_t
>()[
i
];
},
Number
<
nSrc
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iDst
)
->
auto
&
{
using
DstData
=
remove_cvref_t
<
tuple_element_t
<
iDst
.
value
,
DstDatas
>>
;
using
elem_op_vec_t
=
typename
vector_type
<
DstData
,
elem_op_vec_len
>::
type
;
return
dst_vectors
(
iDst
).
template
AsType
<
elem_op_vec_t
>()(
i
);
},
Number
<
nDst
>
{});
// apply pointwise function
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2
(
element_op_
,
dst_data_refs
,
src_data_refs
);
});
}
else
{
// apply pointwise function
static_for
<
0
,
SrcScalarPerVector
,
1
>
{}([
&
](
auto
i
)
{
// get reference to src data
const
auto
src_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iSrc
)
->
const
auto
&
{
using
SrcData
=
remove_cvref_t
<
tuple_element_t
<
iSrc
.
value
,
SrcDatas
>>
;
return
src_vectors
[
iSrc
].
template
AsType
<
SrcData
>()[
i
];
},
Number
<
nSrc
>
{});
// get reference to dst data
auto
dst_data_refs
=
generate_tie
(
// return type should be lvalue
[
&
](
auto
iDst
)
->
auto
&
{
using
DstData
=
remove_cvref_t
<
tuple_element_t
<
iDst
.
value
,
DstDatas
>>
;
return
dst_vectors
(
iDst
).
template
AsType
<
DstData
>()(
i
);
},
Number
<
nDst
>
{});
// apply pointwise function
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2
(
element_op_
,
dst_data_refs
,
src_data_refs
);
});
}
// pointwise function signature:
// element_op_(dst_data_refs[I0],
// dst_data_refs[I1],
// ...,
// src_data_refs[I0],
// src_data_refs[I1],
// ...)
unpack2
(
element_op_
,
dst_data_refs
,
src_data_refs
);
});
dst_vectors_tuple_
(
iAccess
)
=
dst_vectors
;
...
...
include/ck/utility/amd_buffer_addressing.hpp
View file @
90e186e5
...
...
@@ -299,584 +299,255 @@ enum struct AmdBufferCoherenceEnum
GLC_SLC
=
3
,
};
template
<
typename
T
,
index_t
N
,
AmdBufferCoherenceEnum
coherence
=
AmdBufferCoherenceEnum
::
DefaultCoherence
>
__device__
typename
vector_type
<
T
,
N
>::
type
amd_buffer_load_impl
(
int32x4_t
src_wave_buffer_resource
,
index_t
src_thread_addr_offset
,
index_t
src_wave_addr_offset
)
template
<
index_t
N
,
AmdBufferCoherenceEnum
coherence
=
AmdBufferCoherenceEnum
::
DefaultCoherence
>
__device__
typename
vector_type
<
int8_t
,
N
>::
type
amd_buffer_load_impl_raw
(
int32x4_t
src_wave_buffer_resource
,
index_t
src_thread_addr_offset
,
index_t
src_wave_addr_offset
)
{
static_assert
(
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
"wrong! not implemented"
);
static_assert
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
||
N
==
32
||
N
==
64
,
"wrong! not implemented"
);
if
constexpr
(
is_same
<
T
,
double
>::
value
)
if
constexpr
(
N
==
1
)
{
// use fp32 load to mimic fp64 load
if
constexpr
(
N
==
1
)
{
const
float2_t
tmp
=
llvm_amdgcn_raw_buffer_load_fp32x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
double
>
(
tmp
);
}
else
if
constexpr
(
N
==
2
)
{
const
float4_t
tmp
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
double2_t
>
(
tmp
);
}
else
if
constexpr
(
N
==
4
)
{
const
float4_t
f32_0
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
const
float4_t
f32_1
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
float
),
static_cast
<
index_t
>
(
coherence
));
vector_type
<
double
,
4
>
tmp
;
tmp
.
AsType
<
double2_t
>
()(
Number
<
0
>
{})
=
bit_cast
<
double2_t
>
(
f32_0
);
tmp
.
AsType
<
double2_t
>
()(
Number
<
1
>
{})
=
bit_cast
<
double2_t
>
(
f32_1
);
return
tmp
.
AsType
<
double4_t
>
()(
Number
<
0
>
{});
}
return
llvm_amdgcn_raw_buffer_load_i8
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
float
>::
value
)
else
if
constexpr
(
N
==
2
)
{
if
constexpr
(
N
==
1
)
{
return
llvm_amdgcn_raw_buffer_load_fp32
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
return
llvm_amdgcn_raw_buffer_load_fp32x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
return
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
int16_t
tmp
=
llvm_amdgcn_raw_buffer_load_i16
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
float
,
8
>
tmp
;
tmp
.
AsType
<
float4_t
>
()(
Number
<
0
>
{})
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
float4_t
>
()(
Number
<
1
>
{})
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
float
),
static_cast
<
index_t
>
(
coherence
));
return
tmp
.
AsType
<
float8_t
>
()(
Number
<
0
>
{});
}
return
bit_cast
<
int8x2_t
>
(
tmp
);
}
else
if
constexpr
(
is_same
<
T
,
half_t
>::
value
)
else
if
constexpr
(
N
==
4
)
{
if
constexpr
(
N
==
1
)
{
return
llvm_amdgcn_raw_buffer_load_fp16
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
return
llvm_amdgcn_raw_buffer_load_fp16x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
return
llvm_amdgcn_raw_buffer_load_fp16x4
(
src_wave_buffer_resource
,
int32_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
// use fp32 load to mimic fp16 load
float4_t
tmp
=
llvm_amdgcn_raw_buffer_load_fp32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
half8_t
>
(
tmp
);
}
}
else
if
constexpr
(
is_same
<
T
,
bhalf_t
>::
value
)
{
if
constexpr
(
N
==
1
)
{
return
llvm_amdgcn_raw_buffer_load_i16
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
return
llvm_amdgcn_raw_buffer_load_i16x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
return
llvm_amdgcn_raw_buffer_load_i16x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
int32x4_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
bhalf8_t
>
(
tmp
);
}
return
bit_cast
<
int8x4_t
>
(
tmp
);
}
else
if
constexpr
(
is_same
<
T
,
int32_t
>::
value
)
else
if
constexpr
(
N
==
8
)
{
if
constexpr
(
N
==
1
)
{
return
llvm_amdgcn_raw_buffer_load_i32
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
return
llvm_amdgcn_raw_buffer_load_i32x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
return
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
int32_t
,
8
>
tmp
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
0
>
{})
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
1
>
{})
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
int32_t
),
static_cast
<
index_t
>
(
coherence
));
return
tmp
.
AsType
<
int32x8_t
>
()(
Number
<
0
>
{});
}
}
else
if
constexpr
(
is_same
<
T
,
int8_t
>::
value
)
{
if
constexpr
(
N
==
1
)
{
return
llvm_amdgcn_raw_buffer_load_i8
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
return
llvm_amdgcn_raw_buffer_load_i8x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#else
int16_t
tmp
=
llvm_amdgcn_raw_buffer_load_i16
(
src_wave_buffer_resource
,
int32x2_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
int8x2_t
>
(
tmp
);
#endif
}
else
if
constexpr
(
N
==
4
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
return
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#else
int32_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32
(
src_wave_buffer_resource
,
return
bit_cast
<
int8x8_t
>
(
tmp
);
}
else
if
constexpr
(
N
==
16
)
{
int32x4_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
int8x16_t
>
(
tmp
);
}
else
if
constexpr
(
N
==
32
)
{
int32x4_t
tmp0
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
int32x4_t
tmp1
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
int32_t
),
static_cast
<
index_t
>
(
coherence
));
vector_type
<
int32_t
,
8
>
tmp
;
return
bit_cast
<
int8x4_t
>
(
tmp
);
#endif
}
else
if
constexpr
(
N
==
8
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
vector_type
<
int8_t
,
8
>
tmp
;
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
0
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
1
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
int8_t
),
static_cast
<
index_t
>
(
coherence
));
return
tmp
.
AsType
<
int8x8_t
>
()(
Number
<
0
>
{});
#else
int32x2_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32x2
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
0
>
{})
=
tmp0
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
1
>
{})
=
tmp1
;
return
bit_cast
<
int8x8_t
>
(
tmp
);
#endif
}
else
if
constexpr
(
N
==
16
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
vector_type
<
int8_t
,
16
>
tmp
;
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
0
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
1
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
int8_t
),
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
2
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
8
*
sizeof
(
int8_t
),
static_cast
<
index_t
>
(
coherence
));
tmp
.
AsType
<
int8x4_t
>
()(
Number
<
3
>
{})
=
llvm_amdgcn_raw_buffer_load_i8x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
12
*
sizeof
(
int8_t
),
static_cast
<
index_t
>
(
coherence
));
return
tmp
.
AsType
<
int8x16_t
>
()(
Number
<
0
>
{});
#else
int32x4_t
tmp
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
int8x32_t
>
(
tmp
);
}
else
if
constexpr
(
N
==
64
)
{
int32x4_t
tmp0
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
int32x4_t
tmp1
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
4
*
sizeof
(
int32_t
),
static_cast
<
index_t
>
(
coherence
));
int32x4_t
tmp2
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
8
*
sizeof
(
int32_t
),
static_cast
<
index_t
>
(
coherence
));
int32x4_t
tmp3
=
llvm_amdgcn_raw_buffer_load_i32x4
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
+
12
*
sizeof
(
int32_t
),
static_cast
<
index_t
>
(
coherence
));
return
bit_cast
<
int8x16_t
>
(
tmp
);
#endif
}
vector_type
<
int32_t
,
16
>
tmp
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
0
>
{})
=
tmp0
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
1
>
{})
=
tmp1
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
2
>
{})
=
tmp2
;
tmp
.
AsType
<
int32x4_t
>
()(
Number
<
3
>
{})
=
tmp3
;
return
bit_cast
<
int8x64_t
>
(
tmp
);
}
}
template
<
typename
T
,
index_t
N
,
AmdBufferCoherenceEnum
coherence
=
AmdBufferCoherenceEnum
::
DefaultCoherence
>
__device__
void
amd_buffer_store_impl
(
const
typename
vector_type
<
T
,
N
>::
type
src_thread_data
,
int32x4_t
dst_wave_buffer_resource
,
index_t
dst_thread_addr_offset
,
index_t
dst_wave_addr_offset
)
__device__
typename
vector_type
<
T
,
N
>::
type
amd_buffer_load_impl
(
int32x4_t
src_wave_buffer_resource
,
index_t
src_thread_addr_offset
,
index_t
src_wave_addr_offset
)
{
static_assert
(
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
))
||
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
f8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bf8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
"wrong! not implemented"
);
if
constexpr
(
is_same
<
T
,
double
>::
value
)
using
r_t
=
typename
vector_type
<
T
,
N
>::
type
;
auto
raw_data
=
amd_buffer_load_impl_raw
<
sizeof
(
T
)
*
N
,
coherence
>
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
src_wave_addr_offset
);
return
bit_cast
<
r_t
>
(
raw_data
);
}
template
<
index_t
N
,
AmdBufferCoherenceEnum
coherence
=
AmdBufferCoherenceEnum
::
DefaultCoherence
>
__device__
void
amd_buffer_store_impl_raw
(
const
typename
vector_type
<
int8_t
,
N
>::
type
src_thread_data
,
int32x4_t
dst_wave_buffer_resource
,
index_t
dst_thread_addr_offset
,
index_t
dst_wave_addr_offset
)
{
static_assert
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
||
N
==
32
||
N
==
64
,
"wrong! not implemented"
);
if
constexpr
(
N
==
1
)
{
// use fp32 store to mimic fp64 store
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_fp32x2
(
bit_cast
<
float2_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_store_fp32x4
(
bit_cast
<
float4_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
llvm_amdgcn_raw_buffer_store_i8
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
float
>::
value
)
else
if
constexpr
(
N
==
2
)
{
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_fp32
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_store_fp32x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
llvm_amdgcn_raw_buffer_store_fp32x4
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
float
,
8
>
tmp
{
src_thread_data
};
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_fp32x4
(
tmp
.
AsType
<
float4_t
>
()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
4
*
sizeof
(
float
),
static_cast
<
index_t
>
(
coherence
));
}
llvm_amdgcn_raw_buffer_store_i16
(
bit_cast
<
int16_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
half_t
>::
value
)
else
if
constexpr
(
N
==
4
)
{
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_fp16
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_store_fp16x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
llvm_amdgcn_raw_buffer_store_fp16x4
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
#if 0
vector_type<half_t, 8> tmp{src_thread_data};
llvm_amdgcn_raw_buffer_store_fp16x4(tmp.AsType<half4_t>()[Number<0>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset,
static_cast<index_t>(coherence));
llvm_amdgcn_raw_buffer_store_fp16x4(tmp.AsType<half4_t>()[Number<1>{}],
dst_wave_buffer_resource,
dst_thread_addr_offset,
dst_wave_addr_offset + 4 * sizeof(half_t),
static_cast<index_t>(coherence));
#else
llvm_amdgcn_raw_buffer_store_fp32x4
(
bit_cast
<
float4_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#endif
}
llvm_amdgcn_raw_buffer_store_i32
(
bit_cast
<
int32_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
bhalf_t
>::
value
)
else
if
constexpr
(
N
==
8
)
{
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_i16
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_store_i16x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
llvm_amdgcn_raw_buffer_store_i16x4
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
8
)
{
vector_type
<
bhalf_t
,
8
>
tmp
{
src_thread_data
};
llvm_amdgcn_raw_buffer_store_i16x4
(
tmp
.
AsType
<
bhalf4_t
>
()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_i16x4
(
tmp
.
AsType
<
bhalf4_t
>
()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
4
*
sizeof
(
bhalf_t
),
static_cast
<
index_t
>
(
coherence
));
}
llvm_amdgcn_raw_buffer_store_i32x2
(
bit_cast
<
int32x2_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
int32_t
>::
value
)
else
if
constexpr
(
N
==
16
)
{
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_i32
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
llvm_amdgcn_raw_buffer_store_i32x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
4
)
{
llvm_amdgcn_raw_buffer_store_i32x4
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
llvm_amdgcn_raw_buffer_store_i32x4
(
bit_cast
<
int32x4_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
is_same
<
T
,
int8_t
>::
value
)
else
if
constexpr
(
N
==
32
)
{
if
constexpr
(
N
==
1
)
{
llvm_amdgcn_raw_buffer_store_i8
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
2
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
llvm_amdgcn_raw_buffer_store_i8x2
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#else
llvm_amdgcn_raw_buffer_store_i16
(
bit_cast
<
int16_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#endif
}
else
if
constexpr
(
N
==
4
)
{
#if !CK_WORKAROUND_SWDEV_XXXXXX_INT8_BUFFER_LOAD_STORE_ISSUE
llvm_amdgcn_raw_buffer_store_i8x4
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#else
llvm_amdgcn_raw_buffer_store_i32
(
bit_cast
<
int32_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
#endif
}
else
if
constexpr
(
N
==
8
)
{
llvm_amdgcn_raw_buffer_store_i32x2
(
bit_cast
<
int32x2_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
16
)
{
llvm_amdgcn_raw_buffer_store_i32x4
(
bit_cast
<
int32x4_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
}
vector_type
<
int32_t
,
8
>
tmp
{
bit_cast
<
int32x8_t
>
(
src_thread_data
)};
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
sizeof
(
int32_t
)
*
4
,
static_cast
<
index_t
>
(
coherence
));
}
else
if
constexpr
(
N
==
64
)
{
vector_type
<
int32_t
,
16
>
tmp
{
bit_cast
<
int32x16_t
>
(
src_thread_data
)};
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
0
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
1
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
sizeof
(
int32_t
)
*
4
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
2
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
sizeof
(
int32_t
)
*
8
,
static_cast
<
index_t
>
(
coherence
));
llvm_amdgcn_raw_buffer_store_i32x4
(
tmp
.
template
AsType
<
int32x4_t
>()[
Number
<
3
>
{}],
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
+
sizeof
(
int32_t
)
*
12
,
static_cast
<
index_t
>
(
coherence
));
}
}
template
<
typename
T
,
index_t
N
,
AmdBufferCoherenceEnum
coherence
=
AmdBufferCoherenceEnum
::
DefaultCoherence
>
__device__
void
amd_buffer_store_impl
(
const
typename
vector_type
<
T
,
N
>::
type
src_thread_data
,
int32x4_t
dst_wave_buffer_resource
,
index_t
dst_thread_addr_offset
,
index_t
dst_wave_addr_offset
)
{
static_assert
(
(
is_same
<
T
,
double
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
))
||
(
is_same
<
T
,
float
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
half_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bhalf_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int32_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
f8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
bf8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
))
||
(
is_same
<
T
,
int8_t
>::
value
&&
(
N
==
1
||
N
==
2
||
N
==
4
||
N
==
8
||
N
==
16
)),
"wrong! not implemented"
);
using
r_t
=
typename
vector_type
<
int8_t
,
sizeof
(
T
)
*
N
>::
type
;
amd_buffer_store_impl_raw
<
sizeof
(
T
)
*
N
,
coherence
>
(
bit_cast
<
r_t
>
(
src_thread_data
),
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
dst_wave_addr_offset
);
}
template
<
typename
T
,
index_t
N
>
...
...
@@ -1127,54 +798,14 @@ amd_buffer_load_invalid_element_return_zero(const T* p_src_wave,
#if CK_EXPERIMENTAL_USE_BUFFER_LOAD_OOB_CHECK_OFFSET_TRICK
uint32_t
src_addr_shift
=
src_thread_element_valid
?
0
:
0x80000000
;
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
||
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 && !defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
)
#endif
#if !defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
{
auto
tmp
=
amd_buffer_load_impl
<
int8_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_addr_shift
+
src_thread_addr_offset
,
0
);
return
bit_cast
<
vector_t
>
(
tmp
);
}
else
{
#endif
return
amd_buffer_load_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_addr_shift
+
src_thread_addr_offset
,
0
);
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
}
#endif
return
amd_buffer_load_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_addr_shift
+
src_thread_addr_offset
,
0
);
#else
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
||
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 && !defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
)
#endif
#if !defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
{
auto
tmp
=
amd_buffer_load_impl
<
int8_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
0
);
return
src_thread_element_valid
?
bit_cast
<
vector_t
>
(
tmp
)
:
vector_t
(
0
);
}
else
{
#endif
vector_t
tmp
=
amd_buffer_load_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
0
);
return
src_thread_element_valid
?
tmp
:
vector_t
(
0
);
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
}
#endif
vector_t
tmp
=
amd_buffer_load_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_wave_buffer_resource
,
src_thread_addr_offset
,
0
);
return
src_thread_element_valid
?
tmp
:
vector_t
(
0
);
#endif
}
...
...
@@ -1232,62 +863,13 @@ __device__ void amd_buffer_store(const typename vector_type_maker<T, N>::type::t
#if CK_EXPERIMENTAL_USE_BUFFER_STORE_OOB_CHECK_OFFSET_TRICK
uint32_t
dst_addr_shift
=
dst_thread_element_valid
?
0
:
0x80000000
;
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
||
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 && !defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
)
#endif
#if !defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
{
auto
tmp
=
bit_cast
<
typename
vector_type_maker
<
int8_t
,
vector_size
>::
type
::
type
>
(
src_thread_data
);
amd_buffer_store_impl
<
int8_t
,
vector_size
,
coherence
>
(
tmp
,
dst_wave_buffer_resource
,
dst_addr_shift
+
dst_thread_addr_offset
,
0
);
}
else
{
#endif
amd_buffer_store_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_addr_shift
+
dst_thread_addr_offset
,
0
);
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
}
#endif
amd_buffer_store_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_addr_shift
+
dst_thread_addr_offset
,
0
);
#else
if
(
dst_thread_element_valid
)
{
#if defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
||
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 && !defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
f8_t
>::
value
)
#endif
#if !defined CK_ENABLE_FP8 && defined CK_ENABLE_BF8
if
constexpr
(
is_same
<
scalar_t
,
bf8_t
>::
value
)
#endif
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
{
auto
tmp
=
bit_cast
<
typename
vector_type_maker
<
int8_t
,
vector_size
>::
type
::
type
>
(
src_thread_data
);
amd_buffer_store_impl
<
int8_t
,
vector_size
,
coherence
>
(
tmp
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
0
);
}
else
{
#endif
amd_buffer_store_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
0
);
#if defined CK_ENABLE_FP8 || defined CK_ENABLE_BF8
}
#endif
amd_buffer_store_impl
<
scalar_t
,
vector_size
,
coherence
>
(
src_thread_data
,
dst_wave_buffer_resource
,
dst_thread_addr_offset
,
0
);
}
#endif
}
...
...
include/ck/utility/is_detected.hpp
View file @
90e186e5
...
...
@@ -31,4 +31,13 @@ struct nonesuch
template
<
template
<
class
...
>
class
Op
,
class
...
Args
>
using
is_detected
=
typename
detail
::
detector
<
nonesuch
,
void
,
Op
,
Args
...
>::
value_t
;
template
<
typename
T
>
using
is_pack2_invocable_t
=
decltype
(
std
::
declval
<
T
&>
().
is_pack2_invocable
);
template
<
typename
T
>
using
is_pack4_invocable_t
=
decltype
(
std
::
declval
<
T
&>
().
is_pack4_invocable
);
template
<
typename
T
>
using
is_pack8_invocable_t
=
decltype
(
std
::
declval
<
T
&>
().
is_pack8_invocable
);
}
// namespace ck
include/ck/utility/type_convert.hpp
View file @
90e186e5
...
...
@@ -344,7 +344,7 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#el
se
#el
if 0
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
...
...
@@ -353,6 +353,8 @@ inline __host__ __device__ f8_t f8_convert_sr<f8_t, half_t>(half_t x)
return
utils
::
cast_to_f8
<
half_t
,
f8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#else
return
type_convert
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#endif
}
#endif
...
...
@@ -393,7 +395,7 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
// convert to float and use native converion
return
f8_convert_sr
<
f8_t
>
(
type_convert
<
float
>
(
x
));
#el
se
#el
if 0
constexpr
bool
negative_zero_nan
=
true
;
constexpr
bool
clip
=
true
;
constexpr
f8_rounding_mode
rm
=
f8_rounding_mode
::
stochastic
;
...
...
@@ -403,6 +405,8 @@ inline __host__ __device__ bf8_t f8_convert_sr<bf8_t, half_t>(half_t x)
return
utils
::
cast_to_f8
<
half_t
,
bf8_t
,
negative_zero_nan
,
clip
,
(
rm
==
f8_rounding_mode
::
stochastic
)
>
(
x
,
rng
);
#else
return
type_convert
<
bf8_t
>
(
type_convert
<
float
>
(
x
));
#endif
}
#endif
...
...
test/batched_gemm/CMakeLists.txt
View file @
90e186e5
...
...
@@ -2,22 +2,8 @@ list(APPEND gpu_list gfx908 gfx90a gfx940 gfx941 gfx942)
set
(
target 0
)
foreach
(
gpu IN LISTS GPU_TARGETS
)
if
(
gpu IN_LIST gpu_list AND target EQUAL 0
)
add_test_executable
(
test_batched_gemm_fp16 batched_gemm_fp16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_batched_gemm_fp16 PRIVATE utility device_batched_gemm_instance
)
endif
()
add_test_executable
(
test_batched_gemm_fp32 batched_gemm_fp32.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_batched_gemm_fp32 PRIVATE utility device_batched_gemm_instance
)
endif
()
add_test_executable
(
test_batched_gemm_bf16 batched_gemm_bf16.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_batched_gemm_bf16 PRIVATE utility device_batched_gemm_instance
)
endif
()
add_test_executable
(
test_batched_gemm_int8 batched_gemm_int8.cpp
)
if
(
result EQUAL 0
)
target_link_libraries
(
test_batched_gemm_int8 PRIVATE utility device_batched_gemm_instance
)
endif
()
add_gtest_executable
(
test_batched_gemm test_batched_gemm.cpp
)
target_link_libraries
(
test_batched_gemm PRIVATE utility device_batched_gemm_instance
)
set
(
target 1
)
endif
()
endforeach
()
\ No newline at end of file
test/batched_gemm/batched_gemm_bf16.cpp
deleted
100644 → 0
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace
{
using
ADataType
=
ck
::
bhalf_t
;
using
BDataType
=
ck
::
bhalf_t
;
using
CDataType
=
ck
::
bhalf_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
using
namespace
ck
::
tensor_operation
::
device
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM bf16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_fp16.cpp
deleted
100644 → 0
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace
{
using
ADataType
=
ck
::
half_t
;
using
BDataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
}
// namespace
int
main
()
{
int
M
=
512
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
using
namespace
ck
::
tensor_operation
::
device
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_fp32.cpp
deleted
100644 → 0
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace
{
using
ADataType
=
float
;
using
BDataType
=
float
;
using
CDataType
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
using
namespace
ck
::
tensor_operation
::
device
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp32: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/batched_gemm_int8.cpp
deleted
100644 → 0
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
namespace
{
using
ADataType
=
int8_t
;
using
BDataType
=
int8_t
;
using
CDataType
=
int8_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
}
// namespace
int
main
()
{
int
M
=
256
;
int
N
=
256
;
int
K
=
128
;
int
BatchCount
=
3
;
bool
pass
=
true
;
using
namespace
ck
::
tensor_operation
::
device
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM int8: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
}
test/batched_gemm/test_batched_gemm.cpp
0 → 100644
View file @
90e186e5
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iostream>
#include <initializer_list>
#include <tuple>
#include <vector>
#include <gtest/gtest.h>
#include "profiler/profile_batched_gemm_impl.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm.hpp"
struct
GemmParams
{
ck
::
index_t
M
;
ck
::
index_t
N
;
ck
::
index_t
K
;
ck
::
index_t
BatchCount
;
};
class
TestBatchedGemm
:
public
::
testing
::
Test
{
protected:
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
std
::
vector
<
GemmParams
>
params
;
template
<
typename
DataType
>
void
Run
()
{
using
namespace
ck
::
tensor_operation
::
device
;
bool
pass
=
true
;
for
(
auto
&
param
:
params
)
{
const
auto
M
=
param
.
M
;
const
auto
N
=
param
.
N
;
const
auto
K
=
param
.
K
;
const
auto
BatchCount
=
param
.
BatchCount
;
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
DataType
,
DataType
,
DataType
,
Row
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Row
,
Row
,
DataType
,
DataType
,
DataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
DataType
,
DataType
,
DataType
,
Row
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Row
,
Col
,
Row
,
DataType
,
DataType
,
DataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
DataType
,
DataType
,
DataType
,
Col
,
Row
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Row
,
Row
,
DataType
,
DataType
,
DataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
DataType
,
DataType
,
DataType
,
Col
,
Col
,
Row
,
PassThrough
,
PassThrough
,
PassThrough
,
DeviceBatchedGemm
<
Col
,
Col
,
Row
,
DataType
,
DataType
,
DataType
,
PassThrough
,
PassThrough
,
PassThrough
>>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
}
EXPECT_TRUE
(
pass
);
}
};
#ifdef CK_ENABLE_INT8
TEST_F
(
TestBatchedGemm
,
i8
)
{
this
->
params
.
push_back
({
64
,
64
,
64
,
2
});
this
->
params
.
push_back
({
64
,
64
,
64
,
1
});
this
->
params
.
push_back
({
60
,
60
,
60
,
2
});
this
->
params
.
push_back
({
68
,
68
,
68
,
2
});
this
->
params
.
push_back
({
40
,
40
,
40
,
2
});
this
->
params
.
push_back
({
256
,
256
,
128
,
3
});
this
->
template
Run
<
int8_t
>();
}
#endif
#ifdef CK_ENABLE_BF16
TEST_F
(
TestBatchedGemm
,
bf16
)
{
this
->
params
.
push_back
({
64
,
64
,
64
,
2
});
this
->
params
.
push_back
({
64
,
64
,
64
,
1
});
this
->
params
.
push_back
({
60
,
60
,
60
,
2
});
this
->
params
.
push_back
({
68
,
68
,
68
,
2
});
this
->
params
.
push_back
({
40
,
40
,
40
,
2
});
this
->
params
.
push_back
({
256
,
256
,
128
,
3
});
this
->
template
Run
<
ck
::
bhalf_t
>();
}
#endif
#ifdef CK_ENABLE_FP16
TEST_F
(
TestBatchedGemm
,
fp16
)
{
this
->
params
.
push_back
({
64
,
64
,
64
,
2
});
this
->
params
.
push_back
({
64
,
64
,
64
,
1
});
this
->
params
.
push_back
({
60
,
60
,
60
,
2
});
this
->
params
.
push_back
({
68
,
68
,
68
,
2
});
this
->
params
.
push_back
({
40
,
40
,
40
,
2
});
this
->
params
.
push_back
({
256
,
256
,
128
,
3
});
this
->
template
Run
<
ck
::
half_t
>();
}
#endif
#ifdef CK_ENABLE_FP32
TEST_F
(
TestBatchedGemm
,
fp32
)
{
this
->
params
.
push_back
({
64
,
64
,
64
,
2
});
this
->
params
.
push_back
({
64
,
64
,
64
,
1
});
this
->
params
.
push_back
({
60
,
60
,
60
,
2
});
this
->
params
.
push_back
({
68
,
68
,
68
,
2
});
this
->
params
.
push_back
({
40
,
40
,
40
,
2
});
this
->
params
.
push_back
({
256
,
256
,
128
,
3
});
this
->
template
Run
<
float
>();
}
#endif
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment