Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8ec065fd
Commit
8ec065fd
authored
Jul 01, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into gemm_bias
parents
698f3a3e
8e374781
Changes
15
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
2482 additions
and
27 deletions
+2482
-27
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+1
-0
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
..._gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
+289
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
+3
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
+16
-4
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
...eration/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
+773
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
+15
-6
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
...tion/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
+1066
-0
include/ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp
...r_operation/gpu/thread/reduction_functions_threadwise.hpp
+2
-0
include/ck/utility/debug.hpp
include/ck/utility/debug.hpp
+9
-4
include/ck/utility/reduction_operator.hpp
include/ck/utility/reduction_operator.hpp
+27
-0
library/include/ck/library/host_tensor/host_tensor.hpp
library/include/ck/library/host_tensor/host_tensor.hpp
+12
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp
...ference_tensor_operation/cpu/reference_gemm_layernorm.hpp
+236
-0
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+15
-6
profiler/src/profile_batched_gemm.cpp
profiler/src/profile_batched_gemm.cpp
+14
-3
test/batched_gemm/batched_gemm_fp16.cpp
test/batched_gemm/batched_gemm_fp16.cpp
+4
-4
No files found.
example/21_gemm_layernorm/CMakeLists.txt
View file @
8ec065fd
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp
)
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
C0DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
struct
Relu
{
template
<
typename
OutT
,
typename
InT
>
__host__
__device__
void
operator
()(
OutT
&
y
,
const
InT
&
x
)
const
{
y
=
x
>
0
?
x
:
0
;
}
};
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using
AccElementOp
=
Relu
;
// Elementwise operation that operates on the output of layer normalization
using
CElementOp
=
Relu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmLayerNorm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| C0Data| GemmAcc| CShuffle| ReduceAcc| A| B| Acc| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadCopy|
//######| | | | Type| Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
>
;
// clang-format on
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmLayernorm
<
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
128
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
AccDataType
>
acc_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_bias
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_m_n_add
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_gamma
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_n_beta
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_bias: "
<<
c0_n_bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n_add: "
<<
c0_m_n_add
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_gamma: "
<<
c0_n_gamma
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_beta: "
<<
c0_n_beta
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_m_n_add
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_n_gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
2
});
c0_n_beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
5
});
c_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
CDataType
>
{
0
});
acc_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_bias_buf
(
sizeof
(
C0DataType
)
*
c0_n_bias
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_add_buf
(
sizeof
(
C0DataType
)
*
c0_m_n_add
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_gamma_buf
(
sizeof
(
C0DataType
)
*
c0_n_gamma
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_beta_buf
(
sizeof
(
C0DataType
)
*
c0_n_beta
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_bias_buf
.
ToDevice
(
c0_n_bias
.
mData
.
data
());
c0_add_buf
.
ToDevice
(
c0_m_n_add
.
mData
.
data
());
c0_gamma_buf
.
ToDevice
(
c0_n_gamma
.
mData
.
data
());
c0_beta_buf
.
ToDevice
(
c0_n_beta
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
acc_element_op
=
AccElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_add_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_bias_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_gamma_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_beta_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
// extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
// excluding reduction steps
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
6
)
*
M
*
N
;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std
::
size_t
bytes
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
2
*
M
*
N
+
sizeof
(
C0DataType
)
*
3
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F32
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
}
else
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F16
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
}
return
pass
?
0
:
1
;
}
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
View file @
8ec065fd
...
@@ -32,6 +32,9 @@ struct DeviceBatchedGemm : public BaseOperator
...
@@ -32,6 +32,9 @@ struct DeviceBatchedGemm : public BaseOperator
ck
::
index_t
StrideA
,
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB
,
ck
::
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
CElementwiseOperation
c_element_op
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
View file @
8ec065fd
...
@@ -341,6 +341,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -341,6 +341,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB
,
index_t
StrideC
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
index_t
M01
,
index_t
M01
,
index_t
N01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
AElementwiseOperation
a_element_op
,
...
@@ -357,10 +360,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -357,10 +360,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
DeviceBatchedGemmXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
)},
DeviceBatchedGemmXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmXdl
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmXdl
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
)},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
compute_ptr_offset_of_batch_
{
compute_ptr_offset_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideC
},
type_convert
<
index_t
>
(
a_grid_desc_k0_m_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
b_grid_desc_k0_n_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
c_grid_desc_m_n_
.
GetElementSpaceSize
())},
block_2_ctile_map_
{
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
)},
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
)},
M01_
{
M01
},
M01_
{
M01
},
...
@@ -543,6 +543,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -543,6 +543,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB
,
index_t
StrideC
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
CElementwiseOperation
c_element_op
,
...
@@ -557,6 +560,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -557,6 +560,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
1
,
1
,
1
,
1
,
a_element_op
,
a_element_op
,
...
@@ -577,6 +583,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -577,6 +583,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideB
,
index_t
StrideC
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
CElementwiseOperation
c_element_op
,
...
@@ -591,6 +600,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
...
@@ -591,6 +600,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
1
,
1
,
1
,
1
,
a_element_op
,
a_element_op
,
...
...
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
0 → 100644
View file @
8ec065fd
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
View file @
8ec065fd
...
@@ -46,13 +46,22 @@ __global__ void
...
@@ -46,13 +46,22 @@ __global__ void
const
auto
gemm_desc_ptr
=
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
index_t
group_id
=
0
;
index_t
left
=
0
;
for
(
index_t
i
=
0
;
i
<
group_count
;
i
++
)
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
gemm_desc_ptr
[
group_id
].
BlockStart_
&&
block_id
<
gemm_desc_ptr
[
group_id
].
BlockEnd_
))
&&
left
<=
right
)
{
{
group_id
=
if
(
block_id
<
gemm_desc_ptr
[
group_id
].
BlockStart_
)
(
block_id
>=
gemm_desc_ptr
[
i
].
BlockStart_
&&
block_id
<
gemm_desc_ptr
[
i
].
BlockEnd_
)
{
?
i
right
=
group_id
;
:
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
}
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
0 → 100644
View file @
8ec065fd
This diff is collapsed.
Click to expand it.
include/ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp
View file @
8ec065fd
...
@@ -30,6 +30,8 @@ struct ThreadwiseReduction
...
@@ -30,6 +30,8 @@ struct ThreadwiseReduction
static_assert
(
src_length_m
==
dst_length_m
,
"lengths of source and dst buffer must match!"
);
static_assert
(
src_length_m
==
dst_length_m
,
"lengths of source and dst buffer must match!"
);
using
Op
=
OpReduce
;
template
<
typename
SrcBufferType
,
typename
DstBufferType
>
template
<
typename
SrcBufferType
,
typename
DstBufferType
>
__device__
static
void
Reduce
(
const
SrcBufferType
&
src_buf
,
DstBufferType
&
dst_buf
)
__device__
static
void
Reduce
(
const
SrcBufferType
&
src_buf
,
DstBufferType
&
dst_buf
)
{
{
...
...
include/ck/utility/debug.hpp
View file @
8ec065fd
...
@@ -12,21 +12,27 @@ template <typename T, typename Enable = void>
...
@@ -12,21 +12,27 @@ template <typename T, typename Enable = void>
struct
PrintAsType
;
struct
PrintAsType
;
template
<
typename
T
>
template
<
typename
T
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
valu
e
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
typ
e
>
{
{
using
type
=
float
;
using
type
=
float
;
__host__
__device__
static
void
Print
(
const
T
&
p
)
{
printf
(
"%.3f "
,
static_cast
<
type
>
(
p
));
}
};
};
template
<
>
template
<
>
struct
PrintAsType
<
ck
::
half_t
,
void
>
struct
PrintAsType
<
ck
::
half_t
,
void
>
{
{
using
type
=
float
;
using
type
=
float
;
__host__
__device__
static
void
Print
(
const
ck
::
half_t
&
p
)
{
printf
(
"%.3f "
,
static_cast
<
type
>
(
p
));
}
};
};
template
<
typename
T
>
template
<
typename
T
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
valu
e
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
typ
e
>
{
{
using
type
=
int
;
using
type
=
int
;
__host__
__device__
static
void
Print
(
const
T
&
p
)
{
printf
(
"%d "
,
static_cast
<
type
>
(
p
));
}
};
};
}
// namespace detail
}
// namespace detail
...
@@ -41,7 +47,6 @@ struct PrintAsType<T, typename std::enable_if<std::is_integral<T>::value>::value
...
@@ -41,7 +47,6 @@ struct PrintAsType<T, typename std::enable_if<std::is_integral<T>::value>::value
template
<
typename
T
,
index_t
element_stride
=
1
,
index_t
row_bytes
=
128
>
template
<
typename
T
,
index_t
element_stride
=
1
,
index_t
row_bytes
=
128
>
__device__
void
print_shared
(
T
const
*
p_shared
,
index_t
num_elements
)
__device__
void
print_shared
(
T
const
*
p_shared
,
index_t
num_elements
)
{
{
using
PrintType
=
typename
detail
::
PrintAsType
<
T
>::
type
;
constexpr
index_t
row_elements
=
row_bytes
/
sizeof
(
T
);
constexpr
index_t
row_elements
=
row_bytes
/
sizeof
(
T
);
static_assert
((
element_stride
>=
1
&&
element_stride
<=
row_elements
),
static_assert
((
element_stride
>=
1
&&
element_stride
<=
row_elements
),
"element_stride should between [1, row_elements]"
);
"element_stride should between [1, row_elements]"
);
...
@@ -63,7 +68,7 @@ __device__ void print_shared(T const* p_shared, index_t num_elements)
...
@@ -63,7 +68,7 @@ __device__ void print_shared(T const* p_shared, index_t num_elements)
printf
(
"elem %5d: "
,
i
);
printf
(
"elem %5d: "
,
i
);
for
(
index_t
j
=
0
;
j
<
row_elements
;
j
+=
element_stride
)
for
(
index_t
j
=
0
;
j
<
row_elements
;
j
+=
element_stride
)
{
{
printf
(
"%.0f "
,
static_cast
<
PrintType
>
(
p_shared
[
i
+
j
])
)
;
detail
::
Print
As
Type
<
T
>::
Print
(
p_shared
[
i
+
j
]);
}
}
printf
(
"
\n
"
);
printf
(
"
\n
"
);
...
...
include/ck/utility/reduction_operator.hpp
View file @
8ec065fd
...
@@ -58,6 +58,33 @@ struct Add
...
@@ -58,6 +58,33 @@ struct Add
}
}
};
};
struct
SquaredAdd
{
template
<
class
T
>
__host__
__device__
static
constexpr
T
GetIdentityValue
()
{
return
type_convert
<
T
>
(
0.0
f
);
};
__host__
__device__
static
constexpr
bool
IsCompatibleInMemoryDataOperation
(
InMemoryDataOperationEnum
operation
)
{
return
operation
==
InMemoryDataOperationEnum
::
AtomicAdd
||
operation
==
InMemoryDataOperationEnum
::
Set
;
};
template
<
class
T
>
__host__
__device__
inline
constexpr
void
operator
()(
T
&
a
,
T
b
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"The data type is not supported by the Max accumulator!"
);
a
=
a
+
b
*
b
;
}
};
struct
Mul
struct
Mul
{
{
template
<
typename
T
>
template
<
typename
T
>
...
...
library/include/ck/library/host_tensor/host_tensor.hpp
View file @
8ec065fd
...
@@ -220,12 +220,24 @@ struct Tensor
...
@@ -220,12 +220,24 @@ struct Tensor
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
template
<
typename
OutT
>
Tensor
<
OutT
>
CopyAsType
()
{
Tensor
<
OutT
>
ret
(
mDesc
);
for
(
size_t
i
=
0
;
i
<
mData
.
size
();
i
++
)
{
ret
.
mData
[
i
]
=
static_cast
<
OutT
>
(
mData
[
i
]);
}
return
ret
;
}
Tensor
(
const
Tensor
&
other
)
:
mDesc
(
other
.
mDesc
),
mData
(
other
.
mData
)
{}
Tensor
(
const
Tensor
&
other
)
:
mDesc
(
other
.
mDesc
),
mData
(
other
.
mData
)
{}
Tensor
&
operator
=
(
const
Tensor
&
other
)
Tensor
&
operator
=
(
const
Tensor
&
other
)
{
{
mDesc
=
other
.
mDesc
;
mDesc
=
other
.
mDesc
;
mData
=
other
.
mData
;
mData
=
other
.
mData
;
return
*
this
;
}
}
template
<
typename
F
>
template
<
typename
F
>
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmLayernorm
:
public
device
::
BaseOperator
{
using
ReferenceGemmInstance
=
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
element_wise
::
PassThrough
>
;
template
<
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
>
static
void
RunLayernorm
(
Tensor
<
OutDataType
>&
result
,
const
Tensor
<
ComputeDataType
>&
acc
,
// MxN
const
Tensor
<
InDataType
>&
gamma
,
// 1xN
const
Tensor
<
InDataType
>&
beta
,
// 1xN
const
InDataType
epsilon
=
1e-5
)
{
assert
(
acc
.
mDesc
.
GetLengths
()[
1
]
==
gamma
.
mDesc
.
GetLengths
()[
0
]
&&
acc
.
mDesc
.
GetLengths
()[
1
]
==
beta
.
mDesc
.
GetLengths
()[
0
]);
size_t
M
=
acc
.
mDesc
.
GetLengths
()[
0
];
size_t
N
=
acc
.
mDesc
.
GetLengths
()[
1
];
Tensor
<
ComputeDataType
>
avg_acc_sq
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
M
})));
Tensor
<
ComputeDataType
>
avg_acc
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
M
})));
Tensor
<
ComputeDataType
>
acc_layernorm
(
acc
);
// reduce N dim
for
(
size_t
i
=
0
;
i
<
M
;
i
++
)
{
ComputeDataType
sum_acc_sq
=
0
;
ComputeDataType
sum_acc
=
0
;
for
(
size_t
j
=
0
;
j
<
N
;
j
++
)
{
sum_acc_sq
+=
acc_layernorm
(
i
,
j
)
*
acc_layernorm
(
i
,
j
);
sum_acc
+=
acc_layernorm
(
i
,
j
);
}
avg_acc_sq
(
i
)
=
sum_acc_sq
/
N
;
avg_acc
(
i
)
=
sum_acc
/
N
;
}
// normalize
acc_layernorm
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
=
(
self
(
idx
[
0
],
idx
[
1
])
-
avg_acc
(
idx
[
0
]))
/
sqrt
(
avg_acc_sq
(
idx
[
0
])
-
avg_acc
(
idx
[
0
])
*
avg_acc
(
idx
[
0
])
+
epsilon
);
});
// affine
acc_layernorm
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
=
self
(
idx
[
0
],
idx
[
1
])
*
gamma
(
idx
[
1
])
+
beta
(
idx
[
1
]);
});
// cast
result
=
acc_layernorm
.
template
CopyAsType
<
OutDataType
>();
}
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
C0DataType
>&
c0_n_bias
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_m_n_add
,
// MxN
const
Tensor
<
C0DataType
>&
c0_n_gamma
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_beta
,
// 1xN
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
,
const
CDataType
epsilon
=
1e-5
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c_m_n_
{
c_m_n
},
c0_n_bias_
{
c0_n_bias
},
c0_m_n_add_
{
c0_m_n_add
},
c0_n_gamma_
{
c0_n_gamma
},
c0_n_beta_
{
c0_n_beta
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
c_element_op_
{
c_element_op
},
epsilon_
{
epsilon
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
const
Tensor
<
C0DataType
>&
c0_n_bias_
;
const
Tensor
<
C0DataType
>&
c0_m_n_add_
;
const
Tensor
<
C0DataType
>&
c0_n_gamma_
;
const
Tensor
<
C0DataType
>&
c0_n_beta_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
CElementwiseOperation
c_element_op_
;
const
CDataType
epsilon_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
// using Argument = ReferenceGemm::Argument;
float
Run
(
const
Argument
&
arg
)
{
Tensor
<
AccDataType
>
acc_m_n
(
arg
.
c_m_n_
.
mDesc
);
acc_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
arg
.
a_m_k_
,
arg
.
b_k_n_
,
acc_m_n
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
element_wise
::
PassThrough
{});
// gemm
ref_invoker
.
Run
(
ref_argument
);
// activation(acc + bias)
acc_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
AccDataType
out
;
arg
.
acc_element_op_
(
out
,
acc_m_n
(
idx
[
0
],
idx
[
1
])
+
arg
.
c0_n_bias_
(
idx
[
1
]));
self
(
idx
[
0
],
idx
[
1
])
=
out
;
});
// add from other layers
acc_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
+=
arg
.
c0_m_n_add_
(
idx
[
0
],
idx
[
1
]);
});
// layernorm
RunLayernorm
(
arg
.
c_m_n_
,
acc_m_n
,
arg
.
c0_n_gamma_
,
arg
.
c0_n_beta_
);
// elementwise op
arg
.
c_m_n_
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
arg
.
c_element_op_
(
self
(
idx
[
0
],
idx
[
1
]),
self
(
idx
[
0
],
idx
[
1
]));
});
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
C0DataType
>&
c0_n_bias
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_m_n_add
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_gamma
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_beta
,
// 1xN
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
,
const
CDataType
epsilon
=
1e-5
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c_m_n
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
,
epsilon
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmLayernorm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profile_batched_gemm_impl.hpp
View file @
8ec065fd
...
@@ -34,6 +34,9 @@ bool profile_batched_gemm_impl(int do_verification,
...
@@ -34,6 +34,9 @@ bool profile_batched_gemm_impl(int do_verification,
int
M
,
int
M
,
int
N
,
int
N
,
int
K
,
int
K
,
int
BatchStrideA
,
int
BatchStrideB
,
int
BatchStrideC
,
int
StrideA
,
int
StrideA
,
int
StrideB
,
int
StrideB
,
int
StrideC
,
int
StrideC
,
...
@@ -45,25 +48,28 @@ bool profile_batched_gemm_impl(int do_verification,
...
@@ -45,25 +48,28 @@ bool profile_batched_gemm_impl(int do_verification,
std
::
size_t
row
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
row
*
stride
,
stride
,
1
}));
std
::
vector
<
std
::
size_t
>
({
batch_
stride
,
stride
,
1
}));
}
}
else
else
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
col
*
stride
,
1
,
stride
}));
std
::
vector
<
std
::
size_t
>
({
batch_
stride
,
1
,
stride
}));
}
}
};
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
ADataType
>
a_g_m_k
(
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BLayout
{}));
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
...
@@ -150,6 +156,9 @@ bool profile_batched_gemm_impl(int do_verification,
...
@@ -150,6 +156,9 @@ bool profile_batched_gemm_impl(int do_verification,
StrideA
,
StrideA
,
StrideB
,
StrideB
,
StrideC
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
...
...
profiler/src/profile_batched_gemm.cpp
View file @
8ec065fd
...
@@ -86,6 +86,14 @@ int profile_batched_gemm(int argc, char* argv[])
...
@@ -86,6 +86,14 @@ int profile_batched_gemm(int argc, char* argv[])
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
const
int
StrideA_
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
const
int
StrideB_
=
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
;
const
int
StrideC_
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
BatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Row
>
?
M
:
K
)
*
StrideA_
;
const
int
BatchStrideB
=
(
ck
::
is_same_v
<
BLayout
,
Row
>
?
K
:
N
)
*
StrideB_
;
const
int
BatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Row
>
?
M
:
N
)
*
StrideC_
;
bool
pass
=
ck
::
profiler
::
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
do_verification
,
...
@@ -95,9 +103,12 @@ int profile_batched_gemm(int argc, char* argv[])
...
@@ -95,9 +103,12 @@ int profile_batched_gemm(int argc, char* argv[])
M
,
M
,
N
,
N
,
K
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
BatchStrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
BatchStrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
BatchStrideC
,
StrideA_
,
StrideB_
,
StrideC_
,
BatchCount
);
BatchCount
);
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
...
...
test/batched_gemm/batched_gemm_fp16.cpp
View file @
8ec065fd
...
@@ -25,19 +25,19 @@ int main()
...
@@ -25,19 +25,19 @@ int main()
pass
=
pass
&&
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
std
::
cout
<<
"test BatchedGEMM fp16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
return
pass
?
0
:
1
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment