Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8ec065fd
Commit
8ec065fd
authored
Jul 01, 2022
by
Chao Liu
Browse files
Merge remote-tracking branch 'origin/develop' into gemm_bias
parents
698f3a3e
8e374781
Changes
15
Hide whitespace changes
Inline
Side-by-side
Showing
15 changed files
with
2482 additions
and
27 deletions
+2482
-27
example/21_gemm_layernorm/CMakeLists.txt
example/21_gemm_layernorm/CMakeLists.txt
+1
-0
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
..._gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
+289
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
...de/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
+3
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
+16
-4
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
...eration/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
+773
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
+15
-6
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
...tion/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
+1066
-0
include/ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp
...r_operation/gpu/thread/reduction_functions_threadwise.hpp
+2
-0
include/ck/utility/debug.hpp
include/ck/utility/debug.hpp
+9
-4
include/ck/utility/reduction_operator.hpp
include/ck/utility/reduction_operator.hpp
+27
-0
library/include/ck/library/host_tensor/host_tensor.hpp
library/include/ck/library/host_tensor/host_tensor.hpp
+12
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp
...ference_tensor_operation/cpu/reference_gemm_layernorm.hpp
+236
-0
profiler/include/profile_batched_gemm_impl.hpp
profiler/include/profile_batched_gemm_impl.hpp
+15
-6
profiler/src/profile_batched_gemm.cpp
profiler/src/profile_batched_gemm.cpp
+14
-3
test/batched_gemm/batched_gemm_fp16.cpp
test/batched_gemm/batched_gemm_fp16.cpp
+4
-4
No files found.
example/21_gemm_layernorm/CMakeLists.txt
View file @
8ec065fd
add_example_executable
(
example_gemm_bias_relu_add_layernorm_xdl_fp16 gemm_bias_relu_add_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_layernorm_xdl_fp16 gemm_layernorm_xdl_fp16.cpp
)
add_example_executable
(
example_gemm_xdl_layernorm_single_kernel_fp16 gemm_xdl_layernorm_single_kernel_fp16.cpp
)
example/21_gemm_layernorm/gemm_xdl_layernorm_single_kernel_fp16.cpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include "ck/ck.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/utility/reduction_operator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
// This example demonstrate a single kernel that runs GEMM layer and laynorm in one fused kernel
//
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
C0DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F16
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
struct
Relu
{
template
<
typename
OutT
,
typename
InT
>
__host__
__device__
void
operator
()(
OutT
&
y
,
const
InT
&
x
)
const
{
y
=
x
>
0
?
x
:
0
;
}
};
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
// Elementwise operation that operates on the output of matrix multiplication
// i.e., AccElementOp(A * B + bias)
using
AccElementOp
=
Relu
;
// Elementwise operation that operates on the output of layer normalization
using
CElementOp
=
Relu
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
// clang-format off
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGemmLayerNorm_Xdl_CShuffle
//######| ALayout| BLayout| CLayout| AData| BData| CData| C0Data| GemmAcc| CShuffle| ReduceAcc| A| B| Acc| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadCopy|
//######| | | | Type| Type| Type| Type| DataType| DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
CShuffleDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
2
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
>
;
// clang-format on
using
ReferenceInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemmLayernorm
<
ADataType
,
BDataType
,
CDataType
,
C0DataType
,
AccDataType
,
AElementOp
,
BElementOp
,
AccElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
128
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
128
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
10
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_m_k
(
f_host_tensor_descriptor
(
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_k_n
(
f_host_tensor_descriptor
(
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_m_n_device_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
AccDataType
>
acc_m_n_host_result
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_bias
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_m_n_add
(
f_host_tensor_descriptor
(
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
C0DataType
>
c0_n_gamma
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
Tensor
<
C0DataType
>
c0_n_beta
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
size_t
(
N
)})));
std
::
cout
<<
"a_m_k: "
<<
a_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_k_n: "
<<
b_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_m_n: "
<<
c_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_bias: "
<<
c0_n_bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_m_n_add: "
<<
c0_m_n_add
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_gamma: "
<<
c0_n_gamma
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c0_n_beta: "
<<
c0_n_beta
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
case
2
:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_m_k
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_k_n
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
c0_n_bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_m_n_add
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
-
5
,
5
});
c0_n_gamma
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
2
});
c0_n_beta
.
GenerateTensorValue
(
GeneratorTensor_2
<
C0DataType
>
{
0
,
5
});
c_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
CDataType
>
{
0
});
acc_m_n_host_result
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_bias_buf
(
sizeof
(
C0DataType
)
*
c0_n_bias
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_add_buf
(
sizeof
(
C0DataType
)
*
c0_m_n_add
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_gamma_buf
(
sizeof
(
C0DataType
)
*
c0_n_gamma
.
mDesc
.
GetElementSpace
());
DeviceMem
c0_beta_buf
(
sizeof
(
C0DataType
)
*
c0_n_beta
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
c0_bias_buf
.
ToDevice
(
c0_n_bias
.
mData
.
data
());
c0_add_buf
.
ToDevice
(
c0_m_n_add
.
mData
.
data
());
c0_gamma_buf
.
ToDevice
(
c0_n_gamma
.
mData
.
data
());
c0_beta_buf
.
ToDevice
(
c0_n_beta
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
acc_element_op
=
AccElementOp
{};
auto
c_element_op
=
CElementOp
{};
// do GEMM
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
auto
argument
=
gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_add_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_bias_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_gamma_buf
.
GetDeviceBuffer
()),
static_cast
<
C0DataType
*>
(
c0_beta_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
// extra 6MN flops due to: bias + add + gamma + beta + norm_sub + norm_div,
// excluding reduction steps
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
M
*
N
*
K
+
std
::
size_t
(
6
)
*
M
*
N
;
// extra MN and 3N due to c0_add (MxN), bias (1xN), gamma (1xN), beta (1xN)
std
::
size_t
bytes
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
sizeof
(
CDataType
)
*
2
*
M
*
N
+
sizeof
(
C0DataType
)
*
3
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
bytes
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_m_n_device_result
.
mData
.
data
());
auto
ref_gemm
=
ReferenceInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_m_k
,
b_k_n
,
c_m_n_host_result
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F32
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
);
}
else
if
constexpr
(
std
::
is_same
<
CShuffleDataType
,
F16
>::
value
)
{
pass
&=
ck
::
utils
::
check_err
(
c_m_n_device_result
.
mData
,
c_m_n_host_result
.
mData
,
"Error: Incorrect results c"
,
1e-2
,
1e-2
);
}
}
return
pass
?
0
:
1
;
}
include/ck/tensor_operation/gpu/device/device_batched_gemm.hpp
View file @
8ec065fd
...
...
@@ -32,6 +32,9 @@ struct DeviceBatchedGemm : public BaseOperator
ck
::
index_t
StrideA
,
ck
::
index_t
StrideB
,
ck
::
index_t
StrideC
,
ck
::
index_t
BatchStrideA
,
ck
::
index_t
BatchStrideB
,
ck
::
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
View file @
8ec065fd
...
...
@@ -341,6 +341,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
...
...
@@ -357,10 +360,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
DeviceBatchedGemmXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
)},
c_grid_desc_m_n_
{
DeviceBatchedGemmXdl
::
MakeCGridDescriptor_M_N
(
M
,
N
,
StrideC
)},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
{},
compute_ptr_offset_of_batch_
{
type_convert
<
index_t
>
(
a_grid_desc_k0_m_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
b_grid_desc_k0_n_k1_
.
GetElementSpaceSize
()),
type_convert
<
index_t
>
(
c_grid_desc_m_n_
.
GetElementSpaceSize
())},
compute_ptr_offset_of_batch_
{
BatchStrideA
,
BatchStrideB
,
BatchStrideC
},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
)},
M01_
{
M01
},
...
...
@@ -543,6 +543,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
...
...
@@ -557,6 +560,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
StrideA
,
StrideB
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
1
,
1
,
a_element_op
,
...
...
@@ -577,6 +583,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
...
...
@@ -591,6 +600,9 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
StrideA
,
StrideB
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
1
,
1
,
a_element_op
,
...
...
include/ck/tensor_operation/gpu/device/device_gemm_xdl_layernorm_cshuffle.hpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
//
// Note: inter-wave loop scheduler is rolled out to c-shuffle version first. Becuase non c-shuffle
// version currently has compiler issues with register spill which further causes validation
// failures.
//
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
ReduceAccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
CElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
typename
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
index_t
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGemmLayerNorm_Xdl_CShuffle
:
public
BaseOperator
{
using
DeviceOp
=
DeviceGemmLayerNorm_Xdl_CShuffle
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad both N and K
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
// pad N, but not K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
KPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideC
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MPadding
||
GemmSpec
==
GemmSpecialization
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
static
auto
MakeGridDescriptor_N
(
index_t
NRaw
)
{
const
auto
grid_desc_nraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
NRaw
));
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
NPadding
||
GemmSpec
==
GemmSpecialization
::
MNPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
)
{
// pad N
return
transform_tensor_descriptor
(
grid_desc_nraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad N
return
grid_desc_nraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
using
C0GridDesc_N
=
decltype
(
MakeGridDescriptor_N
(
1
));
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
C0DataType
,
ReduceAccDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
CElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
C0GridDesc_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
LoopSched
>
;
using
Block2CTileMap
=
typename
GridwiseGemm
::
DefaultBlock2CTileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
const
C0DataType
*
p_c0_grid_add
,
const
C0DataType
*
p_c0_grid_bias
,
const
C0DataType
*
p_c0_grid_gamma
,
const
C0DataType
*
p_c0_grid_beta
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
p_c0_grid_bias_
{
p_c0_grid_bias
},
p_c0_grid_add_
{
p_c0_grid_add
},
p_c0_grid_gamma_
{
p_c0_grid_gamma
},
p_c0_grid_beta_
{
p_c0_grid_beta
},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
KRaw
,
NRaw
,
StrideB
)},
c_grid_desc_m_n_
{
DeviceOp
::
MakeCGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideC
)},
c0_grid_desc_n_
{
MakeGridDescriptor_N
(
NRaw
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
c0_grid_desc_nblock_nperblock_
{},
block_2_ctile_map_
{
Block2CTileMap
(
c_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
c_element_op_
{
c_element_op
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
c0_grid_desc_nblock_nperblock_
=
GridwiseGemm
::
MakeC0GridDescriptor_NBlock_NPerBlock
(
c0_grid_desc_n_
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
const
C0DataType
*
p_c0_grid_bias_
;
const
C0DataType
*
p_c0_grid_add_
;
const
C0DataType
*
p_c0_grid_gamma_
;
const
C0DataType
*
p_c0_grid_beta_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
C0GridDesc_N
c0_grid_desc_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
C0GridDescriptor_NBlock_NPerBlock
c0_grid_desc_nblock_nperblock_
;
Block2CTileMap
block_2_ctile_map_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
CElementwiseOperation
c_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_layernorm_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
C0DataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
C0GridDescriptor_NBlock_NPerBlock
,
Block2CTileMap
,
true
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_bias_
,
arg
.
p_c0_grid_add_
,
arg
.
p_c0_grid_gamma_
,
arg
.
p_c0_grid_beta_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
c0_grid_desc_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_layernorm_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
C0DataType
,
AElementwiseOperation
,
BElementwiseOperation
,
AccElementwiseOperation
,
CElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
C0GridDescriptor_NBlock_NPerBlock
,
Block2CTileMap
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_c0_grid_bias_
,
arg
.
p_c0_grid_add_
,
arg
.
p_c0_grid_gamma_
,
arg
.
p_c0_grid_beta_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc_element_op_
,
arg
.
c_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
c0_grid_desc_nblock_nperblock_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
const
C0DataType
*
p_c0_bias
,
const
C0DataType
*
p_c0_add
,
const
C0DataType
*
p_c0_gamma
,
const
C0DataType
*
p_c0_beta
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
p_c0_bias
,
p_c0_add
,
p_c0_gamma
,
p_c0_beta
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
const
void
*
p_c0_bias
,
const
void
*
p_c0_add
,
const
void
*
p_c0_gamma
,
const
void
*
p_c0_beta
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
,
index_t
/* KBatch */
=
1
)
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
static_cast
<
const
C0DataType
*>
(
p_c0_bias
),
static_cast
<
const
C0DataType
*>
(
p_c0_add
),
static_cast
<
const
C0DataType
*>
(
p_c0_gamma
),
static_cast
<
const
C0DataType
*>
(
p_c0_beta
),
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmLayerNorm_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm_xdl.hpp
View file @
8ec065fd
...
...
@@ -46,13 +46,22 @@ __global__ void
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
index_t
group_id
=
0
;
for
(
index_t
i
=
0
;
i
<
group_count
;
i
++
)
index_t
left
=
0
;
index_t
right
=
group_count
;
index_t
group_id
=
index_t
((
left
+
right
)
/
2
);
while
((
!
(
block_id
>=
gemm_desc_ptr
[
group_id
].
BlockStart_
&&
block_id
<
gemm_desc_ptr
[
group_id
].
BlockEnd_
))
&&
left
<=
right
)
{
group_id
=
(
block_id
>=
gemm_desc_ptr
[
i
].
BlockStart_
&&
block_id
<
gemm_desc_ptr
[
i
].
BlockEnd_
)
?
i
:
group_id
;
if
(
block_id
<
gemm_desc_ptr
[
group_id
].
BlockStart_
)
{
right
=
group_id
;
}
else
{
left
=
group_id
;
}
group_id
=
index_t
((
left
+
right
)
/
2
);
}
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
...
...
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_layernorm_cshuffle_v1.hpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/multi_index_transform_helper.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/grid/block_to_ctile_map.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_v1.hpp"
#include "ck/tensor_operation/gpu/block/blockwise_gemm_xdlops.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v4r1.hpp"
#include "ck/tensor_operation/gpu/block/thread_group_tensor_slice_transfer_v6r1.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
namespace
ck
{
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
FloatC0
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
CElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
C0GridDescriptor_NBlock_NPerBlock
,
typename
Block2CTileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_layernorm_xdl_cshuffle_v1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
// MxN
const
FloatC0
*
__restrict__
p_c0_bias_grid
,
// 1xN
const
FloatC0
*
__restrict__
p_c0_add_grid
,
// MxN
const
FloatC0
*
__restrict__
p_c0_gamma_grid
,
// 1xN
const
FloatC0
*
__restrict__
p_c0_beta_grid
,
// 1xN
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
AccElementwiseOperation
acc_element_op
,
const
CElementwiseOperation
c_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C0GridDescriptor_NBlock_NPerBlock
c0_grid_desc_nblock_nperblock
,
const
Block2CTileMap
block_2_ctile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
// TODO ANT: separate into MMA + Epilogue
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_c_grid
,
p_c0_bias_grid
,
p_c0_add_grid
,
p_c0_gamma_grid
,
p_c0_beta_grid
,
p_shared
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_grid_desc_nblock_nperblock
,
block_2_ctile_map
);
// TODO ANT: Run layernorm epilogue here
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_c_grid
;
ignore
=
p_c0_bias_grid
;
ignore
=
p_c0_add_grid
;
ignore
=
p_c0_gamma_grid
;
ignore
=
p_c0_beta_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc_element_op
;
ignore
=
c_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
c0_grid_desc_nblock_nperblock
;
ignore
=
block_2_ctile_map
;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
// The GEMM + Layernorm implementation is a specialized kernel which allows fusing both layers
// together given the condition GEMM extents N of MNK is spanned by a single workgroup. For example,
// a kernel configured with NPerBlock = 128 allows to operate on all GEMM sizes if N <= 128
template
<
typename
FloatAB
,
typename
FloatGemmAcc
,
typename
FloatCShuffle
,
typename
FloatC
,
typename
FloatC0
,
typename
FloatReduceAcc
,
// Data type after shuffle
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
CElementwiseOperation
,
InMemoryDataOperationEnum
CGlobalMemoryDataOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDesc_M_N
,
typename
C0GridDesc_N
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1Value
,
index_t
BK1Value
,
index_t
MPerXdl
,
index_t
NPerXdl
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
AThreadTransferSrcResetCoordinateAfterRun
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BThreadTransferSrcResetCoordinateAfterRun
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
typename
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
index_t
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
>
struct
GridwiseGemmLayernorm_k0mk1_k0nk1_mn_xdl_cshuffle_v1
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
I6
=
Number
<
6
>
{};
static
constexpr
auto
I7
=
Number
<
7
>
{};
// K1 should be Number<...>
static
constexpr
auto
AK0
=
Number
<
KPerBlock
/
AK1Value
>
{};
static
constexpr
auto
BK0
=
Number
<
KPerBlock
/
BK1Value
>
{};
static
constexpr
auto
AK1
=
Number
<
AK1Value
>
{};
static
constexpr
auto
BK1
=
Number
<
BK1Value
>
{};
using
ThisThreadBlock
=
ThisThreadBlock
<
BlockSize
>
;
using
GridwiseGemmPipe
=
GridwiseGemmPipeline_v1
<
NumGemmKPrefetchStage
>
;
__host__
__device__
static
constexpr
auto
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
()
{
// A matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
AK0
,
Number
<
MPerBlock
>
{},
AK1
),
make_tuple
(
Number
<
MPerBlock
+
ABlockLdsExtraM
>
{}
*
AK1
,
AK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
()
{
// B matrix in LDS memory, dst of blockwise copy
return
make_naive_tensor_descriptor
(
make_tuple
(
BK0
,
Number
<
NPerBlock
>
{},
BK1
),
make_tuple
(
Number
<
NPerBlock
+
BBlockLdsExtraN
>
{}
*
BK1
,
BK1
,
I1
));
}
__host__
__device__
static
constexpr
auto
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
()
{
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
>
{},
I1
,
Number
<
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
{}));
return
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
;
}
__host__
__device__
static
constexpr
index_t
GetSharedMemoryNumberOfByte
()
{
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
constexpr
auto
b_block_space_size_aligned
=
math
::
integer_least_multiple
(
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
(),
max_lds_align
);
// LDS allocation for C shuffle in LDS
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
// Align 16 bytes (maximum LDS read/write width)
constexpr
auto
c_block_size_aligned
=
math
::
integer_least_multiple
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
()
*
sizeof
(
FloatCShuffle
),
16
)
/
sizeof
(
FloatCShuffle
);
// LDS allocation for reduction workspace
constexpr
index_t
c_lds_workspace_size
=
BlockSize
;
return
math
::
max
((
a_block_space_size_aligned
+
b_block_space_size_aligned
)
*
sizeof
(
FloatAB
),
c_block_size_aligned
*
sizeof
(
FloatCShuffle
)
+
c_lds_workspace_size
*
sizeof
(
FloatReduceAcc
));
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
template
<
typename
Block2CTileMap
>
__host__
__device__
static
constexpr
bool
CheckValidity
(
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
static_assert
((
MPerBlock
%
(
MPerXdl
*
MXdlPerWave
)
==
0
)
&&
(
NPerBlock
%
(
NXdlPerWave
*
NPerXdl
))
==
0
,
"Invalid tuning param!"
);
const
auto
M
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I1
);
const
auto
N
=
b_grid_desc_bk0_n_bk1
.
GetLength
(
I1
);
const
auto
K
=
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
);
if
(
!
(
M
==
c_grid_desc_m_n
.
GetLength
(
I0
)
&&
N
==
c_grid_desc_m_n
.
GetLength
(
I1
)))
return
false
;
if
(
!
(
M
%
MPerBlock
==
0
&&
N
%
NPerBlock
==
0
&&
K
%
KPerBlock
==
0
))
return
false
;
// in order to reduce N dim without elaborate sync across CUs in single kernel, one
// workgroup must span the entire N extent
if
(
math
::
integer_divide_ceil
(
N
,
NPerBlock
)
>
1
)
{
return
false
;
}
// static check: all waves in the workgroups combined must cover whole N extent in order
// to have efficient N-dim reduction
static_assert
(
CShuffleNXdlPerWavePerShuffle
==
NXdlPerWave
,
"condition not met for efficient layernorm"
);
// check gridwise gemm pipeline
const
auto
num_k_loop
=
K
/
KPerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
return
false
;
}
if
(
!
block_2_ctile_map
.
CheckValidity
(
c_grid_desc_m_n
))
{
return
false
;
}
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return
true
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainKBlockLoop
(
index_t
K
)
{
const
index_t
num_loop
=
K
/
KPerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
__host__
__device__
static
constexpr
auto
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
const
auto
MBlock
=
M
/
MPerBlock
;
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
MBlock
,
Number
<
MPerBlock
>
{})),
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{}));
return
c_grid_desc_mblock_mperblock_nblock_nperblock
;
}
// for bias, beta, gamma
__host__
__device__
static
constexpr
auto
MakeC0GridDescriptor_NBlock_NPerBlock
(
const
C0GridDesc_N
&
c0_grid_desc_n
)
{
const
auto
N
=
c0_grid_desc_n
.
GetLength
(
I0
);
const
auto
NBlock
=
N
/
NPerBlock
;
const
auto
c0_grid_desc_nblock_nperblock
=
transform_tensor_descriptor
(
c0_grid_desc_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
NBlock
,
Number
<
NPerBlock
>
{}))),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{}));
return
c0_grid_desc_nblock_nperblock
;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__
__device__
static
constexpr
auto
MakeDefaultBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
{
return
BlockToCTileMap_M00_N0_M01Adapt
<
MPerBlock
,
NPerBlock
,
CGridDesc_M_N
>
(
c_grid_desc_m_n
);
}
using
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
CGridDesc_M_N
{}))
>
;
using
C0GridDescriptor_NBlock_NPerBlock
=
remove_cvref_t
<
decltype
(
MakeC0GridDescriptor_NBlock_NPerBlock
(
C0GridDesc_N
{}))
>
;
using
DefaultBlock2CTileMap
=
remove_cvref_t
<
decltype
(
MakeDefaultBlock2CTileMap
(
CGridDesc_M_N
{}))
>
;
template
<
bool
HasMainKBlockLoop
,
typename
Block2CTileMap
>
__device__
static
void
Run
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
FloatC0
*
__restrict__
p_c0_bias_grid
,
// 1xN
const
FloatC0
*
__restrict__
p_c0_add_grid
,
// MxN
const
FloatC0
*
__restrict__
p_c0_gamma_grid
,
// 1xN
const
FloatC0
*
__restrict__
p_c0_beta_grid
,
// 1xN
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
AccElementwiseOperation
&
acc_element_op
,
const
CElementwiseOperation
&
c_element_op
,
const
AGridDesc_AK0_M_AK1
&
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
&
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
&
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C0GridDescriptor_NBlock_NPerBlock
&
c0_grid_desc_nblock_nperblock
,
const
Block2CTileMap
&
block_2_ctile_map
)
{
const
auto
a_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_a_grid
,
a_grid_desc_ak0_m_ak1
.
GetElementSpaceSize
());
const
auto
b_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_b_grid
,
b_grid_desc_bk0_n_bk1
.
GetElementSpaceSize
());
auto
c_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
c0_bias_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c0_bias_grid
,
c0_grid_desc_nblock_nperblock
.
GetElementSpaceSize
());
// Note: c0_add is of same layout as c so we don't declare new c0_add_desc here
auto
c0_add_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c0_add_grid
,
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
auto
c0_gamma_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c0_gamma_grid
,
c0_grid_desc_nblock_nperblock
.
GetElementSpaceSize
());
auto
c0_beta_grid_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_c0_beta_grid
,
c0_grid_desc_nblock_nperblock
.
GetElementSpaceSize
());
// divide block work by [M, N]
const
auto
block_work_idx
=
block_2_ctile_map
.
CalculateBottomIndex
(
make_multi_index
(
get_block_1d_id
()));
if
(
!
block_2_ctile_map
.
ValidCTileIndex
(
block_work_idx
,
make_tuple
(
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I2
))))
{
return
;
}
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
const
index_t
n_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I1
]
*
NPerBlock
);
// lds max alignment
constexpr
auto
max_lds_align
=
math
::
lcm
(
AK1
,
BK1
);
// A matrix in LDS memory, dst of blockwise copy
constexpr
auto
a_block_desc_ak0_m_ak1
=
GetABlockDescriptor_AK0PerBlock_MPerBlock_AK1
();
// B matrix in LDS memory, dst of blockwise copy
constexpr
auto
b_block_desc_bk0_n_bk1
=
GetBBlockDescriptor_BK0PerBlock_NPerBlock_BK1
();
// A matrix blockwise copy
auto
a_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
AElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
AK0
,
MPerBlock
,
AK1
>
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
a_grid_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
ABlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
ABlockTransferSrcVectorDim
,
2
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
1
,
1
,
AThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
a_grid_desc_ak0_m_ak1
,
make_multi_index
(
0
,
m_block_data_idx_on_grid
,
0
),
a_element_op
,
a_block_desc_ak0_m_ak1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// B matrix blockwise copy
auto
b_blockwise_copy
=
ThreadGroupTensorSliceTransfer_v4r1
<
ThisThreadBlock
,
BElementwiseOperation
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
InMemoryDataOperationEnum
::
Set
,
Sequence
<
BK0
,
NPerBlock
,
BK1
>
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
FloatAB
,
FloatAB
,
decltype
(
b_grid_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
BBlockTransferSrcAccessOrder
,
Sequence
<
1
,
0
,
2
>
,
BBlockTransferSrcVectorDim
,
2
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
1
,
1
,
BThreadTransferSrcResetCoordinateAfterRun
,
true
,
NumGemmKPrefetchStage
>
(
b_grid_desc_bk0_n_bk1
,
make_multi_index
(
0
,
n_block_data_idx_on_grid
,
0
),
b_element_op
,
b_block_desc_bk0_n_bk1
,
make_multi_index
(
0
,
0
,
0
),
ck
::
tensor_operation
::
element_wise
::
PassThrough
{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
constexpr
index_t
KPack
=
math
::
max
(
math
::
lcm
(
AK1
,
BK1
),
MfmaSelector
<
FloatAB
,
MPerXdl
,
NPerXdl
>::
selected_mfma
.
k_per_blk
);
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
FloatAB
,
FloatGemmAcc
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
MPerXdl
,
NPerXdl
,
MXdlPerWave
,
NXdlPerWave
,
KPack
,
LoopSched
>
();
auto
c_thread_buf
=
blockwise_gemm
.
GetCThreadBuffer
();
// LDS allocation for A and B: be careful of alignment
constexpr
auto
a_block_space_size_aligned
=
math
::
integer_least_multiple
(
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
(),
max_lds_align
);
auto
a_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
),
a_block_desc_ak0_m_ak1
.
GetElementSpaceSize
());
auto
b_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatAB
*>
(
p_shared
)
+
a_block_space_size_aligned
,
b_block_desc_bk0_n_bk1
.
GetElementSpaceSize
());
constexpr
auto
a_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
AK1
,
0
,
0
);
constexpr
auto
b_block_slice_copy_step
=
make_multi_index
(
KPerBlock
/
BK1
,
0
,
0
);
// gridwise GEMM pipeline
const
auto
gridwise_gemm_pipeline
=
GridwiseGemmPipeline_v1_Selector
<
NumGemmKPrefetchStage
,
LoopSched
>
();
const
index_t
num_k_block_main_loop
=
__builtin_amdgcn_readfirstlane
(
(
a_grid_desc_ak0_m_ak1
.
GetLength
(
I0
)
*
a_grid_desc_ak0_m_ak1
.
GetLength
(
I2
))
/
KPerBlock
);
gridwise_gemm_pipeline
.
template
Run
<
HasMainKBlockLoop
>(
a_grid_desc_ak0_m_ak1
,
a_block_desc_ak0_m_ak1
,
a_blockwise_copy
,
a_grid_buf
,
a_block_buf
,
a_block_slice_copy_step
,
b_grid_desc_bk0_n_bk1
,
b_block_desc_bk0_n_bk1
,
b_blockwise_copy
,
b_grid_buf
,
b_block_buf
,
b_block_slice_copy_step
,
blockwise_gemm
,
c_thread_buf
,
num_k_block_main_loop
);
// shuffle C and write out
{
static_assert
(
MXdlPerWave
%
CShuffleMXdlPerWavePerShuffle
==
0
&&
NXdlPerWave
%
CShuffleNXdlPerWavePerShuffle
==
0
,
"wrong!"
);
constexpr
index_t
MWave
=
MPerBlock
/
(
MXdlPerWave
*
MPerXdl
);
constexpr
index_t
NWave
=
NPerBlock
/
(
NXdlPerWave
*
NPerXdl
);
// TODO: hacky, fix it!
constexpr
auto
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
blockwise_gemm
.
GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
=
blockwise_gemm
.
GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
();
constexpr
auto
M0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I0
);
constexpr
auto
N0
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I1
);
constexpr
auto
M1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I2
);
constexpr
auto
N1
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I3
);
constexpr
auto
M2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I4
);
constexpr
auto
M3
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I5
);
constexpr
auto
M4
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I6
);
constexpr
auto
N2
=
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp
.
GetLength
(
I7
);
constexpr
auto
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
=
GetCShuffleBlockDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
();
auto
c_shuffle_block_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
static_cast
<
FloatCShuffle
*>
(
p_shared
),
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
());
constexpr
auto
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleMXdlPerWavePerShuffle
>
{},
// M0 (MXdlPerWave) per shuffle
M1
,
// M1 = MWave
M2
,
// M2 * M3 * M4 = MPerXdl
M3
,
M4
)),
make_freeze_transform
(
I0
),
make_unmerge_transform
(
make_tuple
(
Number
<
CShuffleNXdlPerWavePerShuffle
>
{},
// N0 (NXdlPerWave) per shuffle
N1
,
// N1 = NWave
N2
))),
// N2 = NPerXdl
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
,
2
,
4
,
5
,
6
>
{},
Sequence
<>
{},
Sequence
<
1
,
3
,
7
>
{}));
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
CalculateCThreadOriginDataIndex
(
I0
,
I0
,
I0
,
I0
);
const
index_t
m_thread_data_on_block
=
c_thread_mtx_on_block
[
I0
];
const
index_t
n_thread_data_on_block
=
c_thread_mtx_on_block
[
I1
];
const
auto
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
,
M3
,
M4
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
m_thread_data_on_block_idx
=
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
m_thread_data_on_block
));
const
auto
n_thread_data_on_block_to_n0_n1_n2_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
N0
,
N1
,
N2
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
n_thread_data_on_block_idx
=
n_thread_data_on_block_to_n0_n1_n2_adaptor
.
CalculateBottomIndex
(
make_multi_index
(
n_thread_data_on_block
));
// shuffle: threadwise copy C from VGPR to LDS
auto
c_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatGemmAcc
,
FloatCShuffle
,
decltype
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
decltype
(
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
),
tensor_operation
::
element_wise
::
PassThrough
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
I1
,
I1
,
M2
,
I1
,
M4
,
I1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
7
,
1
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
make_multi_index
(
0
,
0
,
m_thread_data_on_block_idx
[
I1
],
n_thread_data_on_block_idx
[
I1
],
m_thread_data_on_block_idx
[
I2
],
m_thread_data_on_block_idx
[
I3
],
m_thread_data_on_block_idx
[
I4
],
n_thread_data_on_block_idx
[
I2
]),
tensor_operation
::
element_wise
::
PassThrough
{}};
// shuffle: blockwise copy C from LDS to global
auto
c_shuffle_block_copy_lds_to_global
=
ThreadGroupTensorSliceTransfer_v6r1
<
ThisThreadBlock
,
// ThreadGroup
CElementwiseOperation
,
// ElementwiseOperation,
CGlobalMemoryDataOperation
,
// DstInMemOp,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>
,
// BlockSliceLengths,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
Sequence
<
0
,
1
,
2
,
3
>
,
// typename ThreadClusterArrangeOrder,
FloatCShuffle
,
// typename SrcData,
FloatC
,
// typename DstData,
decltype
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
0
,
1
,
2
,
3
>
,
// typename DimAccessOrder,
3
,
// index_t VectorDim,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
// index_t ScalarPerVector,
true
,
// bool ThreadTransferSrcResetCoordinateAfterRun,
false
>
// bool ThreadTransferDstResetCoordinateAfterRun>
{
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
0
,
0
,
0
,
0
),
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I0
],
0
,
block_work_idx
[
I1
],
0
),
c_element_op
};
const
auto
NBlock
=
c0_grid_desc_nblock_nperblock
.
GetLength
(
I0
);
// for broadcasting bias, beta, gamma
const
auto
c0_grid_desc_mblock_mperblock_nblock_nperblock
=
transform_tensor_descriptor
(
c0_grid_desc_nblock_nperblock
,
make_tuple
(
make_insert_transform
(
I1
),
make_insert_transform
(
I1
),
make_pass_through_transform
(
NBlock
),
make_pass_through_transform
(
NPerBlock
)),
make_tuple
(
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
// LDS c_reduce_block_desc_mperblock_nperblock
constexpr
auto
c_reduce_block_desc_mperblock_nperblock
=
transform_tensor_descriptor
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
make_freeze_transform
(
I0
),
make_pass_through_transform
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I1
)),
make_freeze_transform
(
I0
),
make_pass_through_transform
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I3
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{}));
static_assert
(
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
)
*
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
)
==
BlockSize
,
"wrong!"
);
static_assert
((
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
)
%
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
)
==
0
&&
(
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
)
%
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
)
==
0
,
"wrong!"
);
constexpr
index_t
mreduce_per_thread
=
(
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
)
/
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I0
);
constexpr
index_t
nreduce_per_thread
=
(
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
)
/
CReduceThreadClusterLengths_MPerBlock_NPerBlock
::
At
(
I1
);
constexpr
auto
c_reduce_thread_lengths_mperblock_nperblock
=
Sequence
<
mreduce_per_thread
,
nreduce_per_thread
>
{};
// pytorch default
// https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
static
constexpr
FloatReduceAcc
epsilon
=
1e-5
;
// VGPR c_reduce_thread_desc_mperblock_nperblock
constexpr
auto
c_reduce_thread_desc_mperblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
mreduce_per_thread
>
{},
Number
<
nreduce_per_thread
>
{}));
constexpr
auto
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
I1
,
Number
<
mreduce_per_thread
>
{},
I1
,
Number
<
nreduce_per_thread
>
{}));
// VGPR d_reduce_thread_desc_mperblock
constexpr
auto
d_reduce_thread_desc_mperblock
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
mreduce_per_thread
>
{}));
// TODO: this should be implemented as a blockwise reduction
auto
c_reduce_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSpaceSize
());
auto
c0_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatC0
>
(
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSpaceSize
());
// Align 16 bytes (maximum LDS read/write width)
constexpr
auto
c_block_size_aligned
=
math
::
integer_least_multiple
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
.
GetElementSpaceSize
()
*
sizeof
(
FloatCShuffle
),
16
)
/
sizeof
(
FloatCShuffle
);
auto
d_reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
reinterpret_cast
<
FloatReduceAcc
*>
(
static_cast
<
FloatCShuffle
*>
(
p_shared
)
+
c_block_size_aligned
),
BlockSize
);
// Sum thread workspace
auto
d0_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
d_reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
// Squared sum thread workspace
auto
d1_thread_buf
=
make_static_buffer
<
AddressSpaceEnum
::
Vgpr
,
FloatReduceAcc
>
(
d_reduce_thread_desc_mperblock
.
GetElementSpaceSize
());
// reduce: threadwise copy from LDS to VGPR
constexpr
auto
c_reduce_thread_cluster_desc
=
make_cluster_descriptor
(
CReduceThreadClusterLengths_MPerBlock_NPerBlock
{},
Sequence
<
1
,
0
>
{});
const
auto
c_reduce_thread_cluster_idx
=
c_reduce_thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
get_thread_local_1d_id
()));
const
auto
c_reduce_thread_data_idx_begin
=
c_reduce_thread_cluster_idx
*
c_reduce_thread_lengths_mperblock_nperblock
;
auto
c_reduce_thread_copy_lds_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatCShuffle
,
FloatReduceAcc
,
decltype
(
c_reduce_block_desc_mperblock_nperblock
),
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
c_reduce_thread_lengths_mperblock_nperblock
),
Sequence
<
0
,
1
>
,
1
,
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
{
c_reduce_block_desc_mperblock_nperblock
,
c_reduce_thread_data_idx_begin
};
auto
c_reduce_thread_copy_vgpr_to_lds
=
ThreadwiseTensorSliceTransfer_v1r3
<
FloatReduceAcc
,
FloatCShuffle
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
c_reduce_block_desc_mperblock_nperblock
),
tensor_operation
::
element_wise
::
PassThrough
,
decltype
(
c_reduce_thread_lengths_mperblock_nperblock
),
Sequence
<
0
,
1
>
,
1
,
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
{
c_reduce_block_desc_mperblock_nperblock
,
c_reduce_thread_data_idx_begin
,
tensor_operation
::
element_wise
::
PassThrough
{}};
auto
c0_thread_copy_global_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatC0
,
FloatC0
,
decltype
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
I1
,
mreduce_per_thread
,
I1
,
nreduce_per_thread
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I0
],
c_reduce_thread_data_idx_begin
[
I0
],
block_work_idx
[
I1
],
c_reduce_thread_data_idx_begin
[
I1
]));
// Note: c0_add is of same layout as c so we don't declare new c0_add_desc here
auto
c0_add_thread_copy_global_to_vgpr
=
ThreadwiseTensorSliceTransfer_v2
<
FloatC0
,
FloatC0
,
decltype
(
c_grid_desc_mblock_mperblock_nblock_nperblock
),
decltype
(
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
),
Sequence
<
I1
,
mreduce_per_thread
,
I1
,
nreduce_per_thread
>
,
Sequence
<
0
,
1
,
2
,
3
>
,
3
,
CReduceThreadCopySrcDstScalarPerVector_NPerBlock
,
1
,
true
>
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
make_multi_index
(
block_work_idx
[
I0
],
c_reduce_thread_data_idx_begin
[
I0
],
block_work_idx
[
I1
],
c_reduce_thread_data_idx_begin
[
I1
]));
// space filling curve for threadwise C in VGPR
constexpr
auto
sfc_c_vgpr
=
SpaceFillingCurve
<
Sequence
<
MXdlPerWave
,
NXdlPerWave
,
1
,
1
,
M2
,
1
,
M4
,
1
>
,
Sequence
<
0
,
1
,
2
,
3
,
4
,
5
,
6
,
7
>
,
Sequence
<
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
1
,
1
,
M2
,
1
,
M4
,
1
>>
{};
// space filling curve for shuffled blockwise C in global mem
constexpr
auto
sfc_c_global
=
SpaceFillingCurve
<
Sequence
<
1
,
MPerBlock
,
1
,
NPerBlock
>
,
Sequence
<
0
,
2
,
1
,
3
>
,
Sequence
<
1
,
CShuffleMXdlPerWavePerShuffle
*
MWave
*
MPerXdl
,
1
,
CShuffleNXdlPerWavePerShuffle
*
NWave
*
NPerXdl
>>
{};
constexpr
index_t
num_access
=
sfc_c_vgpr
.
GetNumOfAccess
();
static_assert
(
num_access
==
sfc_c_global
.
GetNumOfAccess
(),
"wrong!"
);
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
access_id
)
{
// make sure it's safe to write to LDS
block_sync_lds
();
// each thread write its data from VGPR to LDS
c_thread_copy_vgpr_to_lds
.
Run
(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
sfc_c_vgpr
.
GetIndexTupleOfNumber
(
access_id
),
c_thread_buf
,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
c_shuffle_block_buf
);
block_sync_lds
();
// load from LDS and global, add bias
c_reduce_thread_copy_lds_to_vgpr
.
Run
(
c_reduce_block_desc_mperblock_nperblock
,
c_shuffle_block_buf
,
c_reduce_thread_desc_mperblock_nperblock
,
make_tuple
(
I0
,
I0
),
c_reduce_thread_buf
);
c0_thread_copy_global_to_vgpr
.
Run
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_bias_grid_buf
,
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c0_thread_buf
);
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
FloatReduceAcc
out
;
acc_element_op
(
out
,
c_reduce_thread_buf
(
i
)
+
static_cast
<
FloatReduceAcc
>
(
c0_thread_buf
(
i
)));
c_reduce_thread_buf
(
i
)
=
out
;
// acc_element_op(acc + bias)
});
c0_add_thread_copy_global_to_vgpr
.
Run
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_add_grid_buf
,
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c0_thread_buf
);
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
c_reduce_thread_buf
(
i
)
+=
static_cast
<
FloatReduceAcc
>
(
c0_thread_buf
(
i
));
// add
});
// layernorm
{
using
ThreadwiseReduceD0
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
d_reduce_thread_desc_mperblock
),
reduce
::
Add
,
false
>
;
using
ThreadwiseReduceD1
=
ThreadwiseReduction
<
FloatReduceAcc
,
decltype
(
c_reduce_thread_desc_mperblock_nperblock
),
decltype
(
d_reduce_thread_desc_mperblock
),
reduce
::
SquaredAdd
,
false
>
;
const
auto
d0_zeroVal
=
ThreadwiseReduceD0
::
Op
::
template
GetIdentityValue
<
FloatReduceAcc
>();
const
auto
d1_zeroVal
=
ThreadwiseReduceD1
::
Op
::
template
GetIdentityValue
<
FloatReduceAcc
>();
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
i
)
{
d0_thread_buf
(
i
)
=
d0_zeroVal
;
});
static_for
<
0
,
mreduce_per_thread
,
1
>
{}(
[
&
](
auto
i
)
{
d1_thread_buf
(
i
)
=
d1_zeroVal
;
});
// reduce sum in VGPR
ThreadwiseReduceD0
::
Reduce
(
c_reduce_thread_buf
,
d0_thread_buf
);
// reduce squared sum in VGPR
ThreadwiseReduceD1
::
Reduce
(
c_reduce_thread_buf
,
d1_thread_buf
);
// reduce within workgroup
using
BlockwiseReduce
=
PartitionedBlockwiseReduction
<
FloatReduceAcc
,
BlockSize
,
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
// ThreadClusterLengths_M_K
Sequence
<
1
,
0
>
,
// ThreadClusterArrangeOrder
reduce
::
Add
,
false
>
;
static_for
<
0
,
mreduce_per_thread
,
1
>
{}([
&
](
auto
i
)
{
block_sync_lds
();
BlockwiseReduce
::
Reduce
(
d_reduce_work_buf
,
d0_thread_buf
(
i
));
// blockwise reduced sum
block_sync_lds
();
BlockwiseReduce
::
Reduce
(
d_reduce_work_buf
,
d1_thread_buf
(
i
));
// blockwise reduced squared sum
});
// normalize
const
index_t
NRaw
=
c_grid_desc_mblock_mperblock_nblock_nperblock
.
GetTransforms
()[
I0
]
.
GetUpperLengths
()[
I1
];
// TODO: proper handle
static_for
<
0
,
mreduce_per_thread
,
1
>
{}([
&
](
auto
im
)
{
static_for
<
0
,
nreduce_per_thread
,
1
>
{}([
&
](
auto
in
)
{
constexpr
auto
dst_offset
=
Number
<
c_reduce_thread_desc_mperblock_nperblock
.
CalculateOffset
(
make_tuple
(
im
,
in
))
>
{};
constexpr
auto
src_offset
=
Number
<
d_reduce_thread_desc_mperblock
.
CalculateOffset
(
make_tuple
(
im
))
>
{};
FloatReduceAcc
avg_sum
=
d0_thread_buf
(
src_offset
)
/
NRaw
;
FloatReduceAcc
avg_squared_sum
=
d1_thread_buf
(
src_offset
)
/
NRaw
;
FloatReduceAcc
numerator
=
c_reduce_thread_buf
(
dst_offset
)
-
avg_sum
;
FloatReduceAcc
divisor
=
epsilon
+
avg_squared_sum
-
avg_sum
*
avg_sum
;
FloatReduceAcc
divisor_sqrt
;
tensor_operation
::
element_wise
::
UnarySqrt
{}(
divisor_sqrt
,
divisor
);
c_reduce_thread_buf
(
dst_offset
)
=
numerator
/
divisor_sqrt
;
});
});
// scaling
c0_thread_copy_global_to_vgpr
.
Run
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_gamma_grid_buf
,
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c0_thread_buf
);
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
c_reduce_thread_buf
(
i
)
*=
static_cast
<
FloatReduceAcc
>
(
c0_thread_buf
(
i
));
// * gamma
});
c0_thread_copy_global_to_vgpr
.
Run
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c0_beta_grid_buf
,
c_reduce_thread_desc_mblock_mperblock_nblock_nperblock
,
make_tuple
(
I0
,
I0
,
I0
,
I0
),
c0_thread_buf
);
static_for
<
0
,
c_reduce_thread_desc_mperblock_nperblock
.
GetElementSize
(),
1
>
{}(
[
&
](
auto
i
)
{
c_reduce_thread_buf
(
i
)
+=
static_cast
<
FloatReduceAcc
>
(
c0_thread_buf
(
i
));
// + beta
});
block_sync_lds
();
c_reduce_thread_copy_vgpr_to_lds
.
Run
(
c_reduce_thread_desc_mperblock_nperblock
,
make_tuple
(
I0
,
I0
),
c_reduce_thread_buf
,
c_reduce_block_desc_mperblock_nperblock
,
c_shuffle_block_buf
);
}
// end layernorm
block_sync_lds
();
// each block copy its data from LDS to global
c_shuffle_block_copy_lds_to_global
.
Run
(
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock
,
c_shuffle_block_buf
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_grid_buf
);
if
constexpr
(
access_id
<
num_access
-
1
)
{
constexpr
auto
c_global_step
=
sfc_c_global
.
GetForwardStep
(
access_id
);
// move on C
c_shuffle_block_copy_lds_to_global
.
MoveDstSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
// move on C0
c0_thread_copy_global_to_vgpr
.
MoveSrcSliceWindow
(
c0_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
// move on C0_add
c0_add_thread_copy_global_to_vgpr
.
MoveSrcSliceWindow
(
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c_global_step
);
}
});
}
}
};
}
// namespace ck
include/ck/tensor_operation/gpu/thread/reduction_functions_threadwise.hpp
View file @
8ec065fd
...
...
@@ -30,6 +30,8 @@ struct ThreadwiseReduction
static_assert
(
src_length_m
==
dst_length_m
,
"lengths of source and dst buffer must match!"
);
using
Op
=
OpReduce
;
template
<
typename
SrcBufferType
,
typename
DstBufferType
>
__device__
static
void
Reduce
(
const
SrcBufferType
&
src_buf
,
DstBufferType
&
dst_buf
)
{
...
...
include/ck/utility/debug.hpp
View file @
8ec065fd
...
...
@@ -12,21 +12,27 @@ template <typename T, typename Enable = void>
struct
PrintAsType
;
template
<
typename
T
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
valu
e
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_floating_point
<
T
>::
value
>::
typ
e
>
{
using
type
=
float
;
__host__
__device__
static
void
Print
(
const
T
&
p
)
{
printf
(
"%.3f "
,
static_cast
<
type
>
(
p
));
}
};
template
<
>
struct
PrintAsType
<
ck
::
half_t
,
void
>
{
using
type
=
float
;
__host__
__device__
static
void
Print
(
const
ck
::
half_t
&
p
)
{
printf
(
"%.3f "
,
static_cast
<
type
>
(
p
));
}
};
template
<
typename
T
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
valu
e
>
struct
PrintAsType
<
T
,
typename
std
::
enable_if
<
std
::
is_integral
<
T
>::
value
>::
typ
e
>
{
using
type
=
int
;
__host__
__device__
static
void
Print
(
const
T
&
p
)
{
printf
(
"%d "
,
static_cast
<
type
>
(
p
));
}
};
}
// namespace detail
...
...
@@ -41,7 +47,6 @@ struct PrintAsType<T, typename std::enable_if<std::is_integral<T>::value>::value
template
<
typename
T
,
index_t
element_stride
=
1
,
index_t
row_bytes
=
128
>
__device__
void
print_shared
(
T
const
*
p_shared
,
index_t
num_elements
)
{
using
PrintType
=
typename
detail
::
PrintAsType
<
T
>::
type
;
constexpr
index_t
row_elements
=
row_bytes
/
sizeof
(
T
);
static_assert
((
element_stride
>=
1
&&
element_stride
<=
row_elements
),
"element_stride should between [1, row_elements]"
);
...
...
@@ -63,7 +68,7 @@ __device__ void print_shared(T const* p_shared, index_t num_elements)
printf
(
"elem %5d: "
,
i
);
for
(
index_t
j
=
0
;
j
<
row_elements
;
j
+=
element_stride
)
{
printf
(
"%.0f "
,
static_cast
<
PrintType
>
(
p_shared
[
i
+
j
])
)
;
detail
::
Print
As
Type
<
T
>::
Print
(
p_shared
[
i
+
j
]);
}
printf
(
"
\n
"
);
...
...
include/ck/utility/reduction_operator.hpp
View file @
8ec065fd
...
...
@@ -58,6 +58,33 @@ struct Add
}
};
struct
SquaredAdd
{
template
<
class
T
>
__host__
__device__
static
constexpr
T
GetIdentityValue
()
{
return
type_convert
<
T
>
(
0.0
f
);
};
__host__
__device__
static
constexpr
bool
IsCompatibleInMemoryDataOperation
(
InMemoryDataOperationEnum
operation
)
{
return
operation
==
InMemoryDataOperationEnum
::
AtomicAdd
||
operation
==
InMemoryDataOperationEnum
::
Set
;
};
template
<
class
T
>
__host__
__device__
inline
constexpr
void
operator
()(
T
&
a
,
T
b
)
const
{
static_assert
(
is_same
<
T
,
float
>::
value
||
is_same
<
T
,
double
>::
value
||
is_same
<
T
,
half_t
>::
value
||
is_same
<
T
,
int32_t
>::
value
||
is_same
<
T
,
int8_t
>::
value
,
"The data type is not supported by the Max accumulator!"
);
a
=
a
+
b
*
b
;
}
};
struct
Mul
{
template
<
typename
T
>
...
...
library/include/ck/library/host_tensor/host_tensor.hpp
View file @
8ec065fd
...
...
@@ -220,12 +220,24 @@ struct Tensor
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
template
<
typename
OutT
>
Tensor
<
OutT
>
CopyAsType
()
{
Tensor
<
OutT
>
ret
(
mDesc
);
for
(
size_t
i
=
0
;
i
<
mData
.
size
();
i
++
)
{
ret
.
mData
[
i
]
=
static_cast
<
OutT
>
(
mData
[
i
]);
}
return
ret
;
}
Tensor
(
const
Tensor
&
other
)
:
mDesc
(
other
.
mDesc
),
mData
(
other
.
mData
)
{}
Tensor
&
operator
=
(
const
Tensor
&
other
)
{
mDesc
=
other
.
mDesc
;
mData
=
other
.
mData
;
return
*
this
;
}
template
<
typename
F
>
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_gemm_layernorm.hpp
0 → 100644
View file @
8ec065fd
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
// D = Layernorm(acc_element_op(A * B + broadcast(bias)) + add) * broadcast(gamma) + broadcast(beta)
template
<
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
C0DataType
,
typename
AccDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
AccElementwiseOperation
,
typename
CElementwiseOperation
>
struct
ReferenceGemmLayernorm
:
public
device
::
BaseOperator
{
using
ReferenceGemmInstance
=
ReferenceGemm
<
ADataType
,
BDataType
,
AccDataType
,
AccDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
element_wise
::
PassThrough
>
;
template
<
typename
InDataType
,
typename
OutDataType
,
typename
ComputeDataType
>
static
void
RunLayernorm
(
Tensor
<
OutDataType
>&
result
,
const
Tensor
<
ComputeDataType
>&
acc
,
// MxN
const
Tensor
<
InDataType
>&
gamma
,
// 1xN
const
Tensor
<
InDataType
>&
beta
,
// 1xN
const
InDataType
epsilon
=
1e-5
)
{
assert
(
acc
.
mDesc
.
GetLengths
()[
1
]
==
gamma
.
mDesc
.
GetLengths
()[
0
]
&&
acc
.
mDesc
.
GetLengths
()[
1
]
==
beta
.
mDesc
.
GetLengths
()[
0
]);
size_t
M
=
acc
.
mDesc
.
GetLengths
()[
0
];
size_t
N
=
acc
.
mDesc
.
GetLengths
()[
1
];
Tensor
<
ComputeDataType
>
avg_acc_sq
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
M
})));
Tensor
<
ComputeDataType
>
avg_acc
(
HostTensorDescriptor
(
std
::
vector
<
size_t
>
({
M
})));
Tensor
<
ComputeDataType
>
acc_layernorm
(
acc
);
// reduce N dim
for
(
size_t
i
=
0
;
i
<
M
;
i
++
)
{
ComputeDataType
sum_acc_sq
=
0
;
ComputeDataType
sum_acc
=
0
;
for
(
size_t
j
=
0
;
j
<
N
;
j
++
)
{
sum_acc_sq
+=
acc_layernorm
(
i
,
j
)
*
acc_layernorm
(
i
,
j
);
sum_acc
+=
acc_layernorm
(
i
,
j
);
}
avg_acc_sq
(
i
)
=
sum_acc_sq
/
N
;
avg_acc
(
i
)
=
sum_acc
/
N
;
}
// normalize
acc_layernorm
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
=
(
self
(
idx
[
0
],
idx
[
1
])
-
avg_acc
(
idx
[
0
]))
/
sqrt
(
avg_acc_sq
(
idx
[
0
])
-
avg_acc
(
idx
[
0
])
*
avg_acc
(
idx
[
0
])
+
epsilon
);
});
// affine
acc_layernorm
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
=
self
(
idx
[
0
],
idx
[
1
])
*
gamma
(
idx
[
1
])
+
beta
(
idx
[
1
]);
});
// cast
result
=
acc_layernorm
.
template
CopyAsType
<
OutDataType
>();
}
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
C0DataType
>&
c0_n_bias
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_m_n_add
,
// MxN
const
Tensor
<
C0DataType
>&
c0_n_gamma
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_beta
,
// 1xN
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
,
const
CDataType
epsilon
=
1e-5
)
:
a_m_k_
{
a_m_k
},
b_k_n_
{
b_k_n
},
c_m_n_
{
c_m_n
},
c0_n_bias_
{
c0_n_bias
},
c0_m_n_add_
{
c0_m_n_add
},
c0_n_gamma_
{
c0_n_gamma
},
c0_n_beta_
{
c0_n_beta
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc_element_op_
{
acc_element_op
},
c_element_op_
{
c_element_op
},
epsilon_
{
epsilon
}
{
}
const
Tensor
<
ADataType
>&
a_m_k_
;
const
Tensor
<
BDataType
>&
b_k_n_
;
Tensor
<
CDataType
>&
c_m_n_
;
const
Tensor
<
C0DataType
>&
c0_n_bias_
;
const
Tensor
<
C0DataType
>&
c0_m_n_add_
;
const
Tensor
<
C0DataType
>&
c0_n_gamma_
;
const
Tensor
<
C0DataType
>&
c0_n_beta_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
AccElementwiseOperation
acc_element_op_
;
CElementwiseOperation
c_element_op_
;
const
CDataType
epsilon_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
// using Argument = ReferenceGemm::Argument;
float
Run
(
const
Argument
&
arg
)
{
Tensor
<
AccDataType
>
acc_m_n
(
arg
.
c_m_n_
.
mDesc
);
acc_m_n
.
GenerateTensorValue
(
GeneratorTensor_1
<
AccDataType
>
{
0
});
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
arg
.
a_m_k_
,
arg
.
b_k_n_
,
acc_m_n
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
element_wise
::
PassThrough
{});
// gemm
ref_invoker
.
Run
(
ref_argument
);
// activation(acc + bias)
acc_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
AccDataType
out
;
arg
.
acc_element_op_
(
out
,
acc_m_n
(
idx
[
0
],
idx
[
1
])
+
arg
.
c0_n_bias_
(
idx
[
1
]));
self
(
idx
[
0
],
idx
[
1
])
=
out
;
});
// add from other layers
acc_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
self
(
idx
[
0
],
idx
[
1
])
+=
arg
.
c0_m_n_add_
(
idx
[
0
],
idx
[
1
]);
});
// layernorm
RunLayernorm
(
arg
.
c_m_n_
,
acc_m_n
,
arg
.
c0_n_gamma_
,
arg
.
c0_n_beta_
);
// elementwise op
arg
.
c_m_n_
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
arg
.
c_element_op_
(
self
(
idx
[
0
],
idx
[
1
]),
self
(
idx
[
0
],
idx
[
1
]));
});
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
ADataType
>&
a_m_k
,
const
Tensor
<
BDataType
>&
b_k_n
,
Tensor
<
CDataType
>&
c_m_n
,
const
Tensor
<
C0DataType
>&
c0_n_bias
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_m_n_add
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_gamma
,
// 1xN
const
Tensor
<
C0DataType
>&
c0_n_beta
,
// 1xN
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
AccElementwiseOperation
acc_element_op
,
CElementwiseOperation
c_element_op
,
const
CDataType
epsilon
=
1e-5
)
{
return
Argument
{
a_m_k
,
b_k_n
,
c_m_n
,
c0_n_bias
,
c0_m_n_add
,
c0_n_gamma
,
c0_n_beta
,
a_element_op
,
b_element_op
,
acc_element_op
,
c_element_op
,
epsilon
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGemmLayernorm"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
profiler/include/profile_batched_gemm_impl.hpp
View file @
8ec065fd
...
...
@@ -34,6 +34,9 @@ bool profile_batched_gemm_impl(int do_verification,
int
M
,
int
N
,
int
K
,
int
BatchStrideA
,
int
BatchStrideB
,
int
BatchStrideC
,
int
StrideA
,
int
StrideB
,
int
StrideC
,
...
...
@@ -45,25 +48,28 @@ bool profile_batched_gemm_impl(int do_verification,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
std
::
size_t
batch_stride
,
auto
layout
)
{
if
(
is_same
<
decltype
(
layout
),
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
row
*
stride
,
stride
,
1
}));
std
::
vector
<
std
::
size_t
>
({
batch_
stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
col
*
stride
,
1
,
stride
}));
std
::
vector
<
std
::
size_t
>
({
batch_
stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
BatchStrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BatchStrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
BatchStrideC
,
CLayout
{}));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
...
...
@@ -150,6 +156,9 @@ bool profile_batched_gemm_impl(int do_verification,
StrideA
,
StrideB
,
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
ck
::
tensor_operation
::
element_wise
::
PassThrough
{},
...
...
profiler/src/profile_batched_gemm.cpp
View file @
8ec065fd
...
...
@@ -86,6 +86,14 @@ int profile_batched_gemm(int argc, char* argv[])
const
int
DefaultStrideB
=
ck
::
is_same_v
<
BLayout
,
Row
>
?
N
:
K
;
const
int
DefaultStrideC
=
ck
::
is_same_v
<
CLayout
,
Row
>
?
N
:
M
;
const
int
StrideA_
=
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
;
const
int
StrideB_
=
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
;
const
int
StrideC_
=
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
;
const
int
BatchStrideA
=
(
ck
::
is_same_v
<
ALayout
,
Row
>
?
M
:
K
)
*
StrideA_
;
const
int
BatchStrideB
=
(
ck
::
is_same_v
<
BLayout
,
Row
>
?
K
:
N
)
*
StrideB_
;
const
int
BatchStrideC
=
(
ck
::
is_same_v
<
CLayout
,
Row
>
?
M
:
N
)
*
StrideC_
;
bool
pass
=
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
ALayout
,
BLayout
,
CLayout
>
(
do_verification
,
...
...
@@ -95,9 +103,12 @@ int profile_batched_gemm(int argc, char* argv[])
M
,
N
,
K
,
(
StrideA
<
0
)
?
DefaultStrideA
:
StrideA
,
(
StrideB
<
0
)
?
DefaultStrideB
:
StrideB
,
(
StrideC
<
0
)
?
DefaultStrideC
:
StrideC
,
BatchStrideA
,
BatchStrideB
,
BatchStrideC
,
StrideA_
,
StrideB_
,
StrideC_
,
BatchCount
);
return
pass
?
0
:
1
;
...
...
test/batched_gemm/batched_gemm_fp16.cpp
View file @
8ec065fd
...
...
@@ -25,19 +25,19 @@ int main()
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Row
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
K
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Row
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
N
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
pass
=
pass
&&
ck
::
profiler
::
profile_batched_gemm_impl
<
ADataType
,
BDataType
,
CDataType
,
Col
,
Col
,
Row
>
(
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
BatchCount
);
true
,
1
,
false
,
1
,
M
,
N
,
K
,
M
,
K
,
N
,
M
*
K
,
K
*
N
,
M
*
N
,
BatchCount
);
std
::
cout
<<
"test BatchedGEMM fp16: "
<<
(
pass
?
"Pass"
:
"Fail"
)
<<
std
::
endl
;
return
pass
?
0
:
1
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment