Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8da05b38
Unverified
Commit
8da05b38
authored
Mar 05, 2023
by
zjing14
Committed by
GitHub
Mar 05, 2023
Browse files
Merge branch 'develop' into lwpck-586
parents
9a4fd1bc
e6cda9f8
Changes
151
Show whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
950 additions
and
68 deletions
+950
-68
.gitignore
.gitignore
+4
-0
CHANGELOG.md
CHANGELOG.md
+24
-0
Dockerfile
Dockerfile
+3
-0
Jenkinsfile
Jenkinsfile
+57
-16
client_example/01_gemm/gemm.cpp
client_example/01_gemm/gemm.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
...xample/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
...nt_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
+1
-1
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
+1
-1
client_example/03_gemm_layernorm/CMakeLists.txt
client_example/03_gemm_layernorm/CMakeLists.txt
+5
-2
client_example/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp
...xample/03_gemm_layernorm/gemm_add_add_layernorm_naive.cpp
+1
-1
client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
...03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
+244
-0
client_example/05_layernorm/layernorm2d.cpp
client_example/05_layernorm/layernorm2d.cpp
+7
-7
client_example/07_grouped_convnd_fwd/CMakeLists.txt
client_example/07_grouped_convnd_fwd/CMakeLists.txt
+5
-0
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
+229
-0
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
client_example/07_grouped_convnd_fwd/grouped_conv2d_fwd.cpp
+0
-0
client_example/08_fused_attention/CMakeLists.txt
client_example/08_fused_attention/CMakeLists.txt
+3
-0
client_example/08_fused_attention/fused_attention_bias.cpp
client_example/08_fused_attention/fused_attention_bias.cpp
+226
-0
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
+9
-2
client_example/11_grouped_conv_bwd_weight/common.hpp
client_example/11_grouped_conv_bwd_weight/common.hpp
+92
-36
client_example/11_grouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp
...rouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp
+37
-0
No files found.
.gitignore
View file @
8da05b38
...
...
@@ -47,3 +47,7 @@ build*
# GDB temporary files
.gdb_history
install.dir*
# directories containing generated documentation
docs/source/_build/
docs/docBin/
CHANGELOG.md
0 → 100644
View file @
8da05b38
# Change Log for Composable Kernel
Full documentation for Composable Kernel is not yet available.
## CK 0.1.1 for ROCm 5.5.0
### Fixed
-
Fixed a bug in 6-dimensional kernels (#555).
-
Fixed grouped ConvBwdWeight test case failure (#524).
### Optimizations
-
Improve proformance of normalization kernel
### Added
-
Added user tutorial (#563).
-
Added more instances for irregular GEMM sizes (#560).
-
Added inter-wave consumer-producer programming model for GEMM kernels (#310).
-
Added multi-D GEMM client APIs (#534).
-
Added multi-embeddings support (#542).
-
Added Navi3x blockwise GEMM and real GEMM support (#541).
-
Added Navi grouped ConvBwdWeight support (#505).
### Changed
-
Changed ...
Dockerfile
View file @
8da05b38
...
...
@@ -7,6 +7,8 @@ ARG compiler_commit=""
RUN
set
-xe
ARG
DEB_ROCM_REPO=http://repo.radeon.com/rocm/apt/.apt_$ROCMVERSION/
RUN
useradd
-rm
-d
/home/jenkins
-s
/bin/bash
-u
1004 jenkins
RUN
useradd
-rm
-d
/home/manitera
-s
/bin/bash
-u
1002 manitera
# Add rocm repository
RUN
apt-get update
RUN
apt-get
install
-y
wget gnupg
...
...
@@ -37,6 +39,7 @@ RUN apt-get update && DEBIAN_FRONTEND=noninteractive apt-get install -y --allow-
python-dev
\
python3-dev
\
python3-pip
\
sshpass
\
software-properties-common
\
rocm-dev
\
rocm-device-libs
\
...
...
Jenkinsfile
View file @
8da05b38
...
...
@@ -14,12 +14,18 @@ def show_node_info() {
def
runShell
(
String
command
){
def
responseCode
=
sh
returnStatus:
true
,
script:
"${command} > tmp.txt"
def
output
=
readFile
(
file:
"tmp.txt"
)
echo
"tmp.txt contents: $output"
return
(
output
!=
""
)
}
def
getDockerImageName
(){
def
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}"
def
img
if
(
params
.
COMPILER_COMMIT
==
""
){
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}"
}
else
{
def
commit
=
"${params.COMPILER_COMMIT}"
[
0
..
6
]
img
=
"${env.CK_DOCKERHUB}:ck_ub20.04_rocm${params.ROCMVERSION}_${params.COMPILER_VERSION}_${commit}"
}
return
img
}
...
...
@@ -165,7 +171,7 @@ def cmake_build(Map conf=[:]){
if
(
conf
.
get
(
"build_install"
,
""
)
==
"true"
)
{
config_targets
=
'install '
+
config_targets
setup_args
=
' -DBUILD_DEV=O
ff
-DCMAKE_INSTALL_PREFIX=../install'
+
setup_args
setup_args
=
' -DBUILD_DEV=O
n
-DCMAKE_INSTALL_PREFIX=../install'
+
setup_args
}
else
{
setup_args
=
' -DBUILD_DEV=On'
+
setup_args
}
...
...
@@ -420,6 +426,7 @@ def Build_CK(Map conf=[:]){
def
variant
=
env
.
STAGE_NAME
def
retimage
def
navi_node
=
0
gitStatusWrapper
(
credentialsId:
"${status_wrapper_creds}"
,
gitHubContext:
"Jenkins - ${variant}"
,
account:
'ROCmSoftwarePlatform'
,
repo:
'composable_kernel'
)
{
try
{
...
...
@@ -433,6 +440,9 @@ def Build_CK(Map conf=[:]){
else
{
echo
"GPU is OK"
}
if
(
runShell
(
'grep -n "gfx1030" clinfo.log'
)
){
navi_node
=
1
}
}
}
}
...
...
@@ -451,6 +461,9 @@ def Build_CK(Map conf=[:]){
else
{
echo
"GPU is OK"
}
if
(
runShell
(
'grep -n "gfx1030" clinfo.log'
)
){
navi_node
=
1
}
}
}
}
...
...
@@ -459,12 +472,22 @@ def Build_CK(Map conf=[:]){
{
cmake_build
(
conf
)
dir
(
"build"
){
//run tests and examples
if
(
navi_node
==
0
){
//run tests and examples on all nodes except Navi
sh
'make -j check'
//we only need the ckProfiler to run the performance tests, so we pack and stash it
sh
'tar -zcvf ckProfiler.tar.gz bin/ckProfiler'
stash
"ckProfiler.tar.gz"
}
if
(
params
.
RUN_FULL_QA
){
// build deb packages
sh
'make -j package'
archiveArtifacts
artifacts:
'composablekernel-ckprofiler_*.deb'
archiveArtifacts
artifacts:
'composablekernel-tests_*.deb'
sh
'mv composablekernel-ckprofiler_*.deb ckprofiler_0.2.0_amd64.deb'
stash
"ckprofiler_0.2.0_amd64.deb"
}
}
}
}
}
...
...
@@ -530,6 +553,8 @@ def process_results(Map conf=[:]){
unstash
"perf_splitK_gemm.log"
unstash
"perf_onnx_gemm.log"
sh
"./process_qa_data.sh"
unstash
"ckprofiler_0.2.0_amd64.deb"
sh
"sshpass -p ${env.ck_deb_pw} scp -o StrictHostKeyChecking=no ckprofiler_0.2.0_amd64.deb ${env.ck_deb_user}@${env.ck_deb_ip}:/var/www/html/composable_kernel/"
}
else
{
// unstash perf files to master
...
...
@@ -551,8 +576,8 @@ def process_results(Map conf=[:]){
//launch develop branch daily at 23:00 UT in FULL_QA mode and at 19:00 UT with latest staging compiler version
CRON_SETTINGS
=
BRANCH_NAME
==
"develop"
?
'''0 23 * * * % RUN_FULL_QA=true
0 21 * * * %
RUN_FULL_QA=false;
COMPILER_VERSION=release;COMPILER_COMMIT=
""
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT=
""
'''
:
""
0 21 * * * % COMPILER_VERSION=release;COMPILER_COMMIT=
0 19 * * * % BUILD_DOCKER=true;COMPILER_VERSION=amd-stg-open;COMPILER_COMMIT='''
:
""
pipeline
{
agent
none
...
...
@@ -640,12 +665,28 @@ pipeline {
{
parallel
{
stage
(
"Build CK and run Tests"
)
stage
(
"Build CK and run Tests
on MI100/MI200
"
)
{
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)
}
environment
{
setup_args
=
"${params.COMPILER_VERSION == "
ck
-
9110
" ? """
-
DBUILD_DEV
=
Off
-
DCMAKE_INSTALL_PREFIX
=..
/install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 -Xclang -mlink-builtin-bitcode -Xclang /
opt
/rocm/
amdgcn
/bitcode/
oclc_abi_version_400
.
bc
" """
:
""" -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" -DCMAKE_CXX_FLAGS="-O3 " """
}
"
execute_args
=
"${params.COMPILER_VERSION == "
ck
-
9110
" ? """
cd
..
/client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/
install
;
/opt/
rocm
" -DGPU_TARGETS="
gfx908
;
gfx90a
" -DCMAKE_CXX_FLAGS="
-
O3
-
Xclang
-
mlink
-
builtin
-
bitcode
-
Xclang
/opt/
rocm
/amdgcn/
bitcode
/oclc_abi_version_400.bc" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """ : """ cd ../
client_example
&&
rm
-
rf
build
&&
mkdir
build
&&
cd
build
&&
cmake
-
D
CMAKE_PREFIX_PATH
=
"${env.WORKSPACE}/install;/opt/rocm"
-
DGPU_TARGETS
=
"gfx908,gfx90a"
-
DCMAKE_CXX_FLAGS
=
"-O3"
-
D
CMAKE_CXX_COMPILER
=
"${build_compiler()}"
..
&&
make
-
j
""" }"
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx908;gfx90a" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx908,gfx90a" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
}
}
stage
(
"Build CK and run Tests on Navi"
)
{
when
{
beforeAgent
true
expression
{
!
params
.
RUN_FULL_QA
.
toBoolean
()
}
}
agent
{
label
rocmnode
(
"navi21"
)
}
environment
{
setup_args
=
""" -DCMAKE_INSTALL_PREFIX=../install -DGPU_TARGETS="gfx1030" """
execute_args
=
""" cd ../client_example && rm -rf build && mkdir build && cd build && cmake -D CMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" -DGPU_TARGETS="gfx1030" -D CMAKE_CXX_COMPILER="${build_compiler()}" .. && make -j """
}
steps
{
Build_CK_and_Reboot
(
setup_args:
setup_args
,
config_targets:
"install"
,
no_reboot:
true
,
build_type:
'Release'
,
execute_cmd:
execute_args
,
prefixpath:
'/usr/local'
)
...
...
@@ -658,7 +699,7 @@ pipeline {
{
parallel
{
stage("Run ckProfiler: gfx90
8 or gfx90a
")
stage
(
"Run ckProfiler: gfx90
*
"
)
{
when
{
beforeAgent
true
...
...
@@ -667,7 +708,7 @@ pipeline {
options
{
retry
(
2
)
}
agent
{
label
rocmnode
(
"gfx908 || gfx90a"
)}
environment
{
setup_args = "
${params.COMPILER_VERSION == "ck-9110" ? """
-
DGPU_TARGETS
=
"gfx908;gfx90a"
-
DCMAKE_CXX_FLAGS
=
" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
""" : """
-
DGPU_TARGETS
=
"gfx908;gfx90a"
-
DCMAKE_CXX_FLAGS
=
" -O3 "
-
DBUILD_DEV
=
On
"""}
"
setup_args
=
"
"" -DGPU_TARGETS="gfx908;gfx90a" -DBUILD_DEV=On ""
"
}
steps
{
runPerfTest
(
setup_args:
setup_args
,
config_targets:
"ckProfiler"
,
no_reboot:
true
,
build_type:
'Release'
)
...
...
@@ -682,7 +723,7 @@ pipeline {
options
{
retry
(
2
)
}
agent
{
label
rocmnode
(
"gfx90a"
)}
environment
{
setup_args = "
${params.COMPILER_VERSION == "ck-9110" ? """
-
DGPU_TARGETS
=
"gfx90a"
-
DCMAKE_CXX_FLAGS
=
" -O3 -Xclang -mlink-builtin-bitcode -Xclang /opt/rocm/amdgcn/bitcode/oclc_abi_version_400.bc"
-
DBUILD_DEV
=
On
""" : """
-
DGPU_TARGETS
=
"gfx90a"
-
DCMAKE_CXX_FLAGS
=
" -O3 "
-
DBUILD_DEV
=
On
"""}
"
setup_args
=
"
"" -DGPU_TARGETS="gfx90a" -DBUILD_DEV=On ""
"
}
steps
{
runPerfTest
(
setup_args:
setup_args
,
config_targets:
"ckProfiler"
,
no_reboot:
true
,
build_type:
'Release'
)
...
...
client_example/01_gemm/gemm.cpp
View file @
8da05b38
...
...
@@ -83,7 +83,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_add_add_fastgelu.cpp
View file @
8da05b38
...
...
@@ -92,7 +92,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_add_fastgelu.cpp
View file @
8da05b38
...
...
@@ -88,7 +88,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
...
...
client_example/02_gemm_add_add_fastgelu/gemm_fastgelu.cpp
View file @
8da05b38
...
...
@@ -84,7 +84,7 @@ int main(int argc, char* argv[])
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
...
...
client_example/03_gemm_layernorm/CMakeLists.txt
View file @
8da05b38
add_executable
(
client_gemm_add_add_reduce_normalize gemm_add_add_layernorm.cpp
)
target_link_libraries
(
client_gemm_add_add_reduce_normalize PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_add_add_layernorm_naive gemm_add_add_layernorm_naive.cpp
)
target_link_libraries
(
client_gemm_add_add_layernorm_naive PRIVATE composable_kernel::device_operations
)
add_executable
(
client_gemm_add_relu_add_layernorm_welford gemm_add_relu_add_layernorm_welford.cpp
)
target_link_libraries
(
client_gemm_add_relu_add_layernorm_welford PRIVATE composable_kernel::device_operations
)
client_example/03_gemm_layernorm/gemm_add_add_layernorm.cpp
→
client_example/03_gemm_layernorm/gemm_add_add_layernorm
_naive
.cpp
View file @
8da05b38
...
...
@@ -190,7 +190,7 @@ int main()
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
...
...
client_example/03_gemm_layernorm/gemm_add_relu_add_layernorm_welford.cpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iomanip>
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/gemm_add_relu_add_layernorm.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_layernorm.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
F16
=
ck
::
half_t
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AddReluAdd
=
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
;
// DataType
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
D0DataType
=
F16
;
using
D1DataType
=
F16
;
using
GammaDataType
=
F16
;
using
BetaDataType
=
F16
;
using
HDataType
=
F16
;
// Layout
using
ALayout
=
Row
;
using
BLayout
=
Col
;
using
D0Layout
=
Row
;
using
D1Layout
=
Row
;
using
HLayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
AddReluAdd
;
using
HElementOp
=
PassThrough
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{},
mMemSize_
(
mem_size
)
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
void
SetZero
()
const
{
(
void
)
hipMemset
(
p_mem_
,
0
,
mMemSize_
);
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
std
::
size_t
mMemSize_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
// GEMM shape
ck
::
index_t
M
=
1024
;
ck
::
index_t
N
=
1024
;
ck
::
index_t
K
=
1024
;
ck
::
index_t
StrideA
=
K
;
ck
::
index_t
StrideB
=
K
;
ck
::
index_t
StrideD0
=
0
;
ck
::
index_t
StrideD1
=
N
;
ck
::
index_t
StrideH
=
N
;
float
epsilon
=
1e-5
;
auto
f_matrix_space_size
=
[](
std
::
size_t
nRow
,
std
::
size_t
nCol
,
std
::
size_t
stride
,
auto
layout
)
{
using
Layout
=
decltype
(
layout
);
if
constexpr
(
std
::
is_same
<
Layout
,
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
(
nRow
-
1
)
*
stride
+
nCol
;
}
else
{
return
(
nCol
-
1
)
*
stride
+
nRow
;
}
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
f_matrix_space_size
(
M
,
K
,
StrideA
,
ALayout
{}));
SimpleDeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
f_matrix_space_size
(
K
,
N
,
StrideB
,
BLayout
{}));
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD0
,
D0Layout
{}));
SimpleDeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideD1
,
D1Layout
{}));
SimpleDeviceMem
gamma_device_buf
(
sizeof
(
GammaDataType
)
*
N
);
SimpleDeviceMem
beta_device_buf
(
sizeof
(
BetaDataType
)
*
N
);
SimpleDeviceMem
h_device_buf
(
sizeof
(
HDataType
)
*
f_matrix_space_size
(
M
,
N
,
StrideH
,
HLayout
{}));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGemmMultipleDLayernorm
<
ALayout
,
BLayout
,
ck
::
Tuple
<
D0Layout
,
D1Layout
>
,
HLayout
,
ADataType
,
BDataType
,
ck
::
Tuple
<
D0DataType
,
D1DataType
>
,
GammaDataType
,
BetaDataType
,
HDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ck
::
tensor_operation
::
element_wise
::
AddReluAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
const
auto
a_element_op
=
AElementOp
{};
const
auto
b_element_op
=
BElementOp
{};
const
auto
cde_element_op
=
CDEElementOp
{};
const
auto
h_element_op
=
HElementOp
{};
std
::
string
best_op_name
;
bool
found
=
false
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
h_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
h_device_buf
.
SetZero
();
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
num_byte
=
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
BDataType
)
*
K
*
N
+
(
sizeof
(
D0DataType
)
+
sizeof
(
D1DataType
)
+
sizeof
(
HDataType
))
*
M
*
N
+
(
sizeof
(
GammaDataType
)
+
sizeof
(
BetaDataType
))
*
N
;
float
gb_per_sec
=
num_byte
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
ave_time
<<
" ms, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
ave_time
<
best_ave_time
)
{
found
=
true
;
best_op_id
=
i
;
best_op_name
=
op_name
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b_device_buf
.
GetDeviceBuffer
(),
{
d0_device_buf
.
GetDeviceBuffer
(),
d1_device_buf
.
GetDeviceBuffer
()},
gamma_device_buf
.
GetDeviceBuffer
(),
beta_device_buf
.
GetDeviceBuffer
(),
h_device_buf
.
GetDeviceBuffer
(),
M
,
N
,
K
,
StrideA
,
StrideB
,
{
StrideD0
,
StrideD1
},
StrideH
,
epsilon
,
a_element_op
,
b_element_op
,
cde_element_op
,
h_element_op
);
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
size_t
workspace_sz
=
op_ptr
->
GetWorkSpaceSize
(
argument_ptr
.
get
());
SimpleDeviceMem
workspace_dev
(
workspace_sz
);
op_ptr
->
SetWorkSpacePointer
(
argument_ptr
.
get
(),
workspace_dev
.
GetDeviceBuffer
());
h_device_buf
.
SetZero
();
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
\ No newline at end of file
client_example/05_layernorm/layernorm2d.cpp
View file @
8da05b38
...
...
@@ -16,7 +16,7 @@ using XDataType = ck::half_t;
using
GammaDataType
=
ck
::
half_t
;
using
BetaDataType
=
ck
::
half_t
;
using
YDataType
=
ck
::
half_t
;
using
Acc
DataType
=
float
;
using
Compute
DataType
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
int
Rank
=
2
;
...
...
@@ -54,7 +54,7 @@ int main(int argc, char* argv[])
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
PassThrough
,
Rank
,
...
...
client_example/07_grouped_conv
2
d_fwd/CMakeLists.txt
→
client_example/07_grouped_conv
n
d_fwd/CMakeLists.txt
View file @
8da05b38
add_executable
(
client_grouped_conv2d_fwd grouped_conv2d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv2d_fwd PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv1d_fwd grouped_conv1d_fwd.cpp
)
target_link_libraries
(
client_grouped_conv1d_fwd PRIVATE composable_kernel::device_operations
)
client_example/07_grouped_convnd_fwd/grouped_conv1d_fwd.cpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <cstdlib>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <numeric>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
1
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
()
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_lengths
{
G
,
N
,
Wi
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
in_strides
{
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_lengths
{
G
,
K
,
X
,
C
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
wei_strides
{
0
,
0
,
0
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_lengths
{
G
,
N
,
Wo
,
K
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
+
3
>
out_strides
{
0
,
0
,
0
,
1
};
std
::
partial_sum
(
rbegin
(
in_lengths
),
std
::
prev
(
rend
(
in_lengths
)),
std
::
next
(
rbegin
(
in_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
wei_lengths
),
std
::
prev
(
rend
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
multiplies
<>
{});
std
::
partial_sum
(
rbegin
(
out_lengths
),
std
::
prev
(
rend
(
out_lengths
)),
std
::
next
(
rbegin
(
out_strides
)),
std
::
multiplies
<>
{});
// transpose GNWC/GKXC/GNWK to GNCW/GKCX/GNCW
std
::
rotate
(
rbegin
(
in_lengths
),
std
::
next
(
rbegin
(
in_lengths
)),
std
::
next
(
rbegin
(
in_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
in_strides
),
std
::
next
(
rbegin
(
in_strides
)),
std
::
next
(
rbegin
(
in_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_lengths
),
std
::
next
(
rbegin
(
wei_lengths
)),
std
::
next
(
rbegin
(
wei_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
wei_strides
),
std
::
next
(
rbegin
(
wei_strides
)),
std
::
next
(
rbegin
(
wei_strides
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
out_lengths
),
std
::
next
(
rbegin
(
out_lengths
)),
std
::
next
(
rbegin
(
out_lengths
),
NumDimSpatial
+
1
));
std
::
rotate
(
rbegin
(
out_strides
),
std
::
next
(
rbegin
(
out_strides
)),
std
::
next
(
rbegin
(
out_strides
),
NumDimSpatial
+
1
));
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_strides
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_dilations
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
};
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<>
,
OutLayout
,
InDataType
,
WeiDataType
,
ck
::
Tuple
<>
,
OutDataType
,
PassThrough
,
PassThrough
,
PassThrough
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_avg_time
=
std
::
numeric_limits
<
float
>::
max
();
float
best_gb_per_sec
=
0
;
float
best_tflops
=
0
;
// profile device operation instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Wo
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Wo
*
K
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
std
::
setw
(
10
)
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_avg_time
=
avg_time
;
best_gb_per_sec
=
gb_per_sec
;
best_tflops
=
tflops
;
}
}
else
{
std
::
cerr
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best intance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
in
.
GetDeviceBuffer
(),
wei
.
GetDeviceBuffer
(),
{},
out
.
GetDeviceBuffer
(),
in_lengths
,
in_strides
,
wei_lengths
,
wei_strides
,
{},
{},
out_lengths
,
out_strides
,
filter_strides
,
filter_dilations
,
input_left_pads
,
input_right_pads
,
PassThrough
{},
PassThrough
{},
PassThrough
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
}
client_example/07_grouped_conv
2
d_fwd/grouped_conv2d_fwd.cpp
→
client_example/07_grouped_conv
n
d_fwd/grouped_conv2d_fwd.cpp
View file @
8da05b38
File moved
client_example/08_fused_attention/CMakeLists.txt
View file @
8da05b38
add_executable
(
client_fused_attention fused_attention.cpp
)
target_link_libraries
(
client_fused_attention PRIVATE composable_kernel::device_operations
)
add_executable
(
client_fused_attention_bias fused_attention_bias.cpp
)
target_link_libraries
(
client_fused_attention_bias PRIVATE composable_kernel::device_operations
)
client_example/08_fused_attention/fused_attention_bias.cpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/library/tensor_operation_instance/gpu/batched_gemm_bias_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
using
ADataType
=
ck
::
half_t
;
using
B0DataType
=
ck
::
half_t
;
using
B1DataType
=
ck
::
half_t
;
using
CDataType
=
ck
::
half_t
;
using
D0DataType
=
ck
::
half_t
;
using
AccDataType
=
float
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
SimpleDeviceMem
(
std
::
size_t
mem_size
)
:
p_mem_
{}
{
(
void
)
hipMalloc
(
static_cast
<
void
**>
(
&
p_mem_
),
mem_size
);
}
void
*
GetDeviceBuffer
()
{
return
p_mem_
;
}
~
SimpleDeviceMem
()
{
(
void
)
hipFree
(
p_mem_
);
}
void
*
p_mem_
;
};
int
main
(
int
argc
,
char
*
argv
[])
{
int
G0
=
48
;
int
G1
=
16
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// C layout [G0, M, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
SimpleDeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
SimpleDeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
SimpleDeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
SimpleDeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
SimpleDeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute
<
2
,
1
,
1
,
1
,
1
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
ck
::
Tuple
<
D0DataType
>
,
ck
::
Tuple
<>
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
,
B1ElementOp
,
CElementOp
,
MaskingSpec
>
;
// get device op instances
const
auto
op_ptrs
=
ck
::
tensor_operation
::
device
::
instance
::
DeviceOperationInstanceFactory
<
DeviceOp
>::
GetInstances
();
std
::
cout
<<
"found "
<<
op_ptrs
.
size
()
<<
" instances"
<<
std
::
endl
;
std
::
string
best_op_name
;
int
best_op_id
=
-
1
;
float
best_ave_time
=
0
;
float
best_tflops
=
0
;
float
best_gb_per_sec
=
0
;
// profile device op instances
std
::
cout
<<
"Run all instances and do timing"
<<
std
::
endl
;
for
(
int
i
=
0
;
i
<
op_ptrs
.
size
();
++
i
)
{
auto
&
op_ptr
=
op_ptrs
[
i
];
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
std
::
string
op_name
=
op_ptr
->
GetTypeString
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
G0
*
G1
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
G0
*
G1
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
op_name
<<
std
::
endl
;
if
(
tflops
>
best_tflops
)
{
best_op_id
=
i
;
best_op_name
=
op_name
;
best_tflops
=
tflops
;
best_ave_time
=
ave_time
;
best_gb_per_sec
=
gb_per_sec
;
}
}
else
{
std
::
cout
<<
op_name
<<
" does not support this problem"
<<
std
::
endl
;
}
}
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_tflops
<<
" TFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_op_name
<<
std
::
endl
;
// run the best instance
{
auto
&
op_ptr
=
op_ptrs
[
best_op_id
];
std
::
cout
<<
"Run the best instance without timing: "
<<
op_ptr
->
GetTypeString
()
<<
std
::
endl
;
auto
argument_ptr
=
op_ptr
->
MakeArgumentPointer
(
a_device_buf
.
GetDeviceBuffer
(),
b0_device_buf
.
GetDeviceBuffer
(),
b1_device_buf
.
GetDeviceBuffer
(),
c_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
AElementOp
{},
B0ElementOp
{},
Acc0ElementOp
{
1
/
sqrtf
(
K
)},
B1ElementOp
{},
CElementOp
{});
auto
invoker_ptr
=
op_ptr
->
MakeInvokerPointer
();
if
(
op_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
false
});
}
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
0
;
}
client_example/11_grouped_conv_bwd_weight/CMakeLists.txt
View file @
8da05b38
add_executable
(
client_grouped_conv2d_bwd_weight grouped_conv2d_bwd_weight.cpp
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight PRIVATE composable_kernel::device_operations
)
add_executable
(
client_grouped_conv1d_bwd_weight_fp16 grouped_conv1d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv2d_bwd_weight_fp16 grouped_conv2d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp16 grouped_conv3d_bwd_weight_fp16.cpp
)
add_executable
(
client_grouped_conv3d_bwd_weight_fp32 grouped_conv3d_bwd_weight_fp32.cpp
)
target_link_libraries
(
client_grouped_conv1d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv2d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp16 PRIVATE composable_kernel::device_operations
)
target_link_libraries
(
client_grouped_conv3d_bwd_weight_fp32 PRIVATE composable_kernel::device_operations
)
client_example/11_grouped_conv_bwd_weight/
grouped_conv2d_bwd_weight.c
pp
→
client_example/11_grouped_conv_bwd_weight/
common.h
pp
View file @
8da05b38
...
...
@@ -13,27 +13,8 @@
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
2
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
Y
=
3
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Hi
=
28
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Ho
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
struct
SimpleDeviceMem
{
SimpleDeviceMem
()
=
delete
;
...
...
@@ -50,22 +31,93 @@ struct SimpleDeviceMem
void
*
p_mem_
;
};
int
main
()
template
<
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetFlops
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_spatial_lengths
{
Hi
,
Wi
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
filter_spatial_lengths
{
Y
,
X
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
output_spatial_lengths
{
Ho
,
Wo
};
// 2 * G * N * K * C * <output spatial lengths product> * <filter spatial lengths product>
return
static_cast
<
std
::
size_t
>
(
2
)
*
G
*
N
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
())
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
());
}
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_strides
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
conv_filter_dilations
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_left_pads
{
1
,
1
};
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>
input_right_pads
{
1
,
1
};
template
<
typename
InDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetInputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
)
{
// sizeof(InDataType) * (G * N * C * <input spatial lengths product>) +
return
sizeof
(
InDataType
)
*
(
G
*
N
*
C
*
std
::
accumulate
(
std
::
begin
(
input_spatial_lengths
),
std
::
end
(
input_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
ck
::
index_t
split_k
=
2
;
template
<
typename
WeiDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetWeightByte
(
ck
::
index_t
G
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
)
{
// sizeof(WeiDataType) * (G * K * C * <filter spatial lengths product>) +
return
sizeof
(
WeiDataType
)
*
(
G
*
K
*
C
*
std
::
accumulate
(
std
::
begin
(
filter_spatial_lengths
),
std
::
end
(
filter_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<>
()));
}
SimpleDeviceMem
in
(
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
);
SimpleDeviceMem
wei
(
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
);
SimpleDeviceMem
out
(
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
);
template
<
typename
OutDataType
,
ck
::
index_t
NumDimSpatial
>
std
::
size_t
GetOutputByte
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
)
{
// sizeof(OutDataType) * (G * N * K * <output spatial lengths product>);
return
sizeof
(
OutDataType
)
*
(
G
*
N
*
K
*
std
::
accumulate
(
std
::
begin
(
output_spatial_lengths
),
std
::
end
(
output_spatial_lengths
),
static_cast
<
std
::
size_t
>
(
1
),
std
::
multiplies
<
std
::
size_t
>
()));
}
template
<
ck
::
index_t
NumDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InLayout
,
typename
WeiLayout
,
typename
OutLayout
>
bool
run_grouped_conv_bwd_weight
(
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
filter_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
output_spatial_lengths
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_left_pads
,
const
std
::
array
<
ck
::
index_t
,
NumDimSpatial
>&
input_right_pads
)
{
ck
::
index_t
split_k
=
2
;
SimpleDeviceMem
in
(
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
));
SimpleDeviceMem
wei
(
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
));
SimpleDeviceMem
out
(
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
));
using
DeviceOp
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvBwdWeight
<
NumDimSpatial
,
InLayout
,
...
...
@@ -120,10 +172,12 @@ int main()
{
float
avg_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
StreamConfig
{
nullptr
,
true
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
G
*
N
*
K
*
C
*
Ho
*
Wo
*
Y
*
X
;
std
::
size_t
num_bytes
=
sizeof
(
InDataType
)
*
G
*
N
*
Hi
*
Wi
*
C
+
sizeof
(
WeiDataType
)
*
G
*
K
*
Y
*
X
*
C
+
sizeof
(
OutDataType
)
*
G
*
N
*
Ho
*
Wo
*
K
;
std
::
size_t
flop
=
GetFlops
<
NumDimSpatial
>
(
G
,
N
,
K
,
C
,
output_spatial_lengths
,
filter_spatial_lengths
);
std
::
size_t
num_bytes
=
GetInputByte
<
InDataType
,
NumDimSpatial
>
(
G
,
N
,
C
,
input_spatial_lengths
)
+
GetWeightByte
<
WeiDataType
,
NumDimSpatial
>
(
G
,
K
,
C
,
filter_spatial_lengths
)
+
GetOutputByte
<
OutDataType
,
NumDimSpatial
>
(
G
,
N
,
K
,
output_spatial_lengths
);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_bytes
/
1.E6
/
avg_time
;
...
...
@@ -149,7 +203,7 @@ int main()
if
(
best_op_id
<
0
)
{
std
::
cerr
<<
"no suitable instance"
<<
std
::
endl
;
return
EXIT_FAILURE
;
return
false
;
}
std
::
cout
<<
"Best Perf: "
<<
std
::
setw
(
10
)
<<
best_avg_time
<<
" ms, "
<<
best_tflops
...
...
@@ -187,4 +241,6 @@ int main()
std
::
cout
<<
"Done"
<<
std
::
endl
;
}
return
true
;
}
client_example/11_grouped_conv_bwd_weight/grouped_conv1d_bwd_weight_fp16.cpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "common.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
using
InDataType
=
ck
::
half_t
;
using
WeiDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKXC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNWK
;
static
constexpr
ck
::
index_t
NumDimSpatial
=
1
;
static
constexpr
ck
::
index_t
G
=
32
;
static
constexpr
ck
::
index_t
N
=
256
;
static
constexpr
ck
::
index_t
K
=
192
;
static
constexpr
ck
::
index_t
C
=
192
;
static
constexpr
ck
::
index_t
X
=
3
;
static
constexpr
ck
::
index_t
Wi
=
28
;
static
constexpr
ck
::
index_t
Wo
=
28
;
int
main
()
{
return
run_grouped_conv_bwd_weight
<
NumDimSpatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InLayout
,
WeiLayout
,
OutLayout
>
(
G
,
N
,
K
,
C
,
{
Wi
},
{
X
},
{
Wo
},
{
1
},
{
1
},
{
1
},
{
1
})
?
EXIT_SUCCESS
:
EXIT_FAILURE
;
}
Prev
1
2
3
4
5
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment