Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8da05b38
Unverified
Commit
8da05b38
authored
Mar 05, 2023
by
zjing14
Committed by
GitHub
Mar 05, 2023
Browse files
Merge branch 'develop' into lwpck-586
parents
9a4fd1bc
e6cda9f8
Changes
151
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
4596 additions
and
409 deletions
+4596
-409
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
...le/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
+2
-3
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
+1
-0
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
...s_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
+408
-0
include/ck/ck.hpp
include/ck/ck.hpp
+2
-6
include/ck/host_utility/kernel_launch.hpp
include/ck/host_utility/kernel_launch.hpp
+5
-4
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
...n/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
+4
-4
include/ck/tensor_operation/gpu/device/device_normalization.hpp
...e/ck/tensor_operation/gpu/device/device_normalization.hpp
+7
-7
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
...l/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
+991
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
...device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
+179
-101
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
...evice/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
...gpu/device/impl/device_elementwise_normalization_impl.hpp
+5
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
...ce/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
+14
-2
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
.../gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
+618
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
.../ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
+51
-86
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp
...impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp
+1216
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
...impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
+850
-0
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
...r_operation/gpu/device/impl/device_normalization_impl.hpp
+39
-113
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+65
-26
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
...k/tensor_operation/gpu/element/element_wise_operation.hpp
+59
-39
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
...or_operation/gpu/element/unary_element_wise_operation.hpp
+75
-18
No files found.
example/46_gemm_add_multiply/run_gemm_add_multiply_example.inc
View file @
8da05b38
...
...
@@ -53,7 +53,6 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
DeviceMem
d1_device_buf
(
sizeof
(
D1DataType
)
*
d1_m_n
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
e_device_buf
(
sizeof
(
EDataType
)
*
e_m_n_device_result
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_k_n
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_m_n
.
mData
.
data
());
...
...
@@ -84,8 +83,8 @@ bool run_gemm_add_multiply(const ProblemSize& problem_size, const ExecutionConfi
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
std
::
cout
<<
"wrong! this device_op instance does not support this problem"
<<
std
::
endl
;
return
true
;
std
::
cout
<<
"wrong! this device_op instance does not support this problem"
<<
std
::
endl
;
return
true
;
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
...
...
example/47_gemm_bias_softmax_gemm_permute/CMakeLists.txt
0 → 100644
View file @
8da05b38
add_example_executable
(
example_gemm_bias_softmax_gemm_permute gemm_bias_softmax_gemm_permute.cpp
)
example/47_gemm_bias_softmax_gemm_permute/gemm_bias_softmax_gemm_permute.cpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <vector>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batched_gemm.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_softmax.hpp"
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
C0DEElementOp
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
using
Acc0ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
B1ElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKOPadding
;
constexpr
static
auto
MaskingSpec
=
ck
::
tensor_operation
::
device
::
MaskingSpecialization
::
MaskDisabled
;
static
constexpr
auto
TensorSpecA
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB0
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecB1
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
static
constexpr
auto
TensorSpecC
=
ck
::
tensor_operation
::
device
::
TensorSpecialization
::
Default
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
ADataType
=
F16
;
using
B0DataType
=
F16
;
using
B1DataType
=
F16
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
CDataType
=
F16
;
using
D0DataType
=
F16
;
using
Acc0BiasDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
Acc1BiasDataType
=
ck
::
Tuple
<>
;
static
constexpr
ck
::
index_t
NumDimG
=
2
;
static
constexpr
ck
::
index_t
NumDimM
=
1
;
static
constexpr
ck
::
index_t
NumDimN
=
1
;
static
constexpr
ck
::
index_t
NumDimK
=
1
;
static
constexpr
ck
::
index_t
NumDimO
=
1
;
using
DeviceOpInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
NumDimO
,
ADataType
,
B0DataType
,
B1DataType
,
CDataType
,
Acc0BiasDataType
,
Acc1BiasDataType
,
AccDataType
,
CShuffleDataType
,
AElementOp
,
B0ElementOp
,
C0DEElementOp
,
B1ElementOp
,
CElementOp
,
GemmSpec
,
TensorSpecA
,
TensorSpecB0
,
TensorSpecB1
,
TensorSpecC
,
1
,
256
,
128
,
// MPerBlock
128
,
// NPerBlock
32
,
// KPerBlock
64
,
// Gemm1NPerBlock
32
,
// Gemm1KPerBlock
8
,
// AK1
8
,
// BK1
2
,
// B1K1
32
,
// MPerXDL
32
,
// NPerXDL
1
,
// MXdlPerWave
4
,
// NXdlPerWave
2
,
// Gemm1NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
4
,
64
,
1
>
,
// BBlockTransfer
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
true
,
S
<
16
,
16
,
1
>
,
// B1BlockTransfer
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
false
,
1
,
// CShuffleMXdlPerWavePerShuffle
2
,
// CShuffleNXdlPerWavePerShuffle
S
<
1
,
32
,
1
,
8
>
,
// CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
8
,
// CShuffleBlockTransferScalarPerVector_NPerBlock
MaskingSpec
>
;
// MaskingSpecialization
// Ref Gemm0: fp16 in, fp32 out
using
ReferenceGemm0Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B0DataType
,
AccDataType
,
AccDataType
,
AElementOp
,
B0ElementOp
,
Acc0ElementOp
>
;
// Ref Softmax: fp32 in, fp16 out
using
ReferenceSoftmaxInstance
=
ck
::
tensor_operation
::
host
::
ReferenceSoftmax
<
AccDataType
,
ADataType
,
AccDataType
>
;
// Ref Gemm1: fp16 in, fp16 out
using
ReferenceGemm1Instance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
B1DataType
,
CDataType
,
AccDataType
,
AElementOp
,
B1ElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
G0
=
3
;
int
G1
=
2
;
int
M
=
1024
;
int
N
=
1024
;
int
K
=
64
;
int
O
=
64
;
float
alpha
=
1
;
if
(
argc
==
1
)
{
// use default case
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
time_kernel
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
O
=
std
::
stoi
(
argv
[
7
]);
G0
=
std
::
stoi
(
argv
[
8
]);
G1
=
std
::
stoi
(
argv
[
9
]);
alpha
=
std
::
stof
(
argv
[
10
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=no, 1=yes)
\n
"
);
printf
(
"arg4 to 11: M, N, K, O, G0, G1
\n
"
);
printf
(
"arg10: scale (alpha)
\n
"
);
exit
(
0
);
}
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_lengths
{
G0
,
G1
,
M
,
K
};
std
::
vector
<
ck
::
index_t
>
a_gs_ms_ks_strides
{
M
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// A layout [G0, M, G1, K]
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_lengths
{
G0
,
G1
,
N
,
K
};
std
::
vector
<
ck
::
index_t
>
b0_gs_ns_ks_strides
{
N
*
G1
*
K
,
K
,
G1
*
K
,
1
};
// B0 layout [G0, N, G1, K]
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_lengths
{
G0
,
G1
,
O
,
N
};
std
::
vector
<
ck
::
index_t
>
b1_gs_os_ns_strides
{
N
*
G1
*
O
,
O
,
1
,
G1
*
O
};
// B1 layout [G0, N, G1, O]
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_lengths
{
G0
,
G1
,
M
,
O
};
std
::
vector
<
ck
::
index_t
>
c_gs_ms_os_strides
{
M
*
G1
*
O
,
O
,
G1
*
O
,
1
};
// C layout [G0, M, G1, O]
// D layout [G0, M, G1, N]
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_lengths
{
G0
,
G1
,
M
,
N
};
std
::
vector
<
ck
::
index_t
>
d0_gs_ms_ns_strides
{
M
*
G1
*
N
,
N
,
G1
*
N
,
1
};
Tensor
<
ADataType
>
a_gs_ms_ks
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
Tensor
<
B0DataType
>
b0_gs_ns_ks
(
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
);
Tensor
<
B1DataType
>
b1_gs_os_ns
(
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
);
Tensor
<
D0DataType
>
d0_gs_ms_ns
(
d0_gs_ms_ns_lengths
,
d0_gs_ms_ns_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_host_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
Tensor
<
CDataType
>
c_gs_ms_os_device_result
(
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
);
std
::
cout
<<
"a_gs_ms_ks: "
<<
a_gs_ms_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b0_gs_ns_ks: "
<<
b0_gs_ns_ks
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b1_gs_os_ns: "
<<
b1_gs_os_ns
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_gs_ms_os: "
<<
c_gs_ms_os_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
2
,
2
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
B1DataType
>
{
-
2
,
2
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
2
,
2
});
break
;
case
2
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
0.0
,
1.0
});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_3
<
B1DataType
>
{
-
0.5
,
0.5
});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_2
<
D0DataType
>
{
-
1
,
1
});
break
;
case
3
:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
2
,
2
});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
break
;
default:
a_gs_ms_ks
.
GenerateTensorValue
(
GeneratorTensor_Sequential
<
2
>
{});
b0_gs_ns_ks
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B0DataType
>
{});
b1_gs_os_ns
.
GenerateTensorValue
(
GeneratorTensor_Diagonal
<
B1DataType
>
{});
d0_gs_ms_ns
.
GenerateTensorValue
(
GeneratorTensor_1
<
D0DataType
>
{
1
});
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
G0
*
G1
*
M
*
K
);
DeviceMem
b0_device_buf
(
sizeof
(
B0DataType
)
*
G0
*
G1
*
N
*
K
);
DeviceMem
d0_device_buf
(
sizeof
(
D0DataType
)
*
G0
*
G1
*
M
*
N
);
DeviceMem
b1_device_buf
(
sizeof
(
B1DataType
)
*
G0
*
G1
*
O
*
N
);
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
G0
*
G1
*
M
*
O
);
a_device_buf
.
ToDevice
(
a_gs_ms_ks
.
mData
.
data
());
b0_device_buf
.
ToDevice
(
b0_gs_ns_ks
.
mData
.
data
());
b1_device_buf
.
ToDevice
(
b1_gs_os_ns
.
mData
.
data
());
d0_device_buf
.
ToDevice
(
d0_gs_ms_ns
.
mData
.
data
());
auto
device_op
=
DeviceOpInstance
{};
auto
invoker
=
device_op
.
MakeInvoker
();
auto
a_element_op
=
AElementOp
{};
auto
b0_element_op
=
B0ElementOp
{};
auto
c0de_element_op
=
C0DEElementOp
{
alpha
};
auto
acc0_element_op
=
Acc0ElementOp
{};
auto
b1_element_op
=
B1ElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
argument
=
device_op
.
MakeArgument
(
static_cast
<
const
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B0DataType
*>
(
b0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
const
B1DataType
*>
(
b1_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
std
::
array
<
void
*
,
1
>
{
d0_device_buf
.
GetDeviceBuffer
()},
// p_acc0_biases
{},
// p_acc1_biases
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
,
b0_gs_ns_ks_lengths
,
b0_gs_ns_ks_strides
,
b1_gs_os_ns_lengths
,
b1_gs_os_ns_strides
,
c_gs_ms_os_lengths
,
c_gs_ms_os_strides
,
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_lengths
},
// acc0_biases_gs_ms_ns_lengths
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
1
>
{
d0_gs_ms_ns_strides
},
// acc0_biases_gs_ms_ns_strides
{},
// acc1_biases_gs_ms_os_lengths
{},
// acc1_biases_gs_ms_os_strides
a_element_op
,
b0_element_op
,
c0de_element_op
,
b1_element_op
,
c_element_op
);
if
(
!
device_op
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! this device_op instance does not support this problem"
);
}
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
ck
::
index_t
BatchCount
=
G0
*
G1
;
std
::
size_t
flop
=
(
size_t
(
M
)
*
N
*
K
*
2
+
size_t
(
M
)
*
N
*
O
*
2
)
*
BatchCount
;
std
::
size_t
num_btype
=
(
sizeof
(
ADataType
)
*
M
*
K
+
sizeof
(
B0DataType
)
*
K
*
N
+
sizeof
(
B1DataType
)
*
N
*
O
+
sizeof
(
CDataType
)
*
M
*
O
+
sizeof
(
D0DataType
)
*
M
*
N
)
*
BatchCount
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_gs_ms_os_device_result
.
mData
.
data
());
Tensor
<
ADataType
>
a_g_m_k
({
BatchCount
,
M
,
K
});
Tensor
<
B0DataType
>
b0_g_k_n
({
BatchCount
,
K
,
N
});
Tensor
<
B1DataType
>
b1_g_n_o
({
BatchCount
,
N
,
O
});
Tensor
<
AccDataType
>
acc0_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after gemm0
Tensor
<
ADataType
>
a1_g_m_n
({
BatchCount
,
M
,
N
});
// scratch object after softmax
Tensor
<
CDataType
>
c_g_m_o_host_result
({
BatchCount
,
M
,
O
});
// scratch object after gemm1
Tensor
<
D0DataType
>
d0_g_m_n
({
BatchCount
,
M
,
N
});
// permute
a_gs_ms_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
a_g_m_k
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
b0_gs_ns_ks
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b0_g_k_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
b1_gs_os_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
b1_g_n_o
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
3
],
idx
[
2
])
=
self
(
idx
);
});
d0_gs_ms_ns
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
d0_g_m_n
(
idx
[
0
]
*
G1
+
idx
[
1
],
idx
[
2
],
idx
[
3
])
=
self
(
idx
);
});
// gemm 0
auto
ref_gemm0
=
ReferenceGemm0Instance
{};
auto
ref_gemm0_invoker
=
ref_gemm0
.
MakeInvoker
();
auto
ref_gemm0_argument
=
ref_gemm0
.
MakeArgument
(
a_g_m_k
,
b0_g_k_n
,
acc0_g_m_n
,
a_element_op
,
b0_element_op
,
acc0_element_op
);
ref_gemm0_invoker
.
Run
(
ref_gemm0_argument
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
c0de_element_op
(
acc0_g_m_n
(
idx
),
acc0_g_m_n
(
idx
),
d0_g_m_n
(
idx
));
});
// masking
const
auto
mask
=
DeviceOpInstance
::
C0MatrixMask
(
N
);
acc0_g_m_n
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
if
(
mask
.
IsMaskedElement
(
idx
[
1
],
idx
[
2
]))
self
(
idx
)
=
-
ck
::
NumericLimits
<
float
>::
Infinity
();
});
// softmax
auto
ref_softmax
=
ReferenceSoftmaxInstance
{};
auto
ref_softmax_invoker
=
ref_softmax
.
MakeInvoker
();
auto
ref_softmax_argument
=
ref_softmax
.
MakeArgument
(
acc0_g_m_n
,
a1_g_m_n
,
1
,
0
,
{
2
});
ref_softmax_invoker
.
Run
(
ref_softmax_argument
);
// gemm1
auto
ref_gemm1
=
ReferenceGemm1Instance
{};
auto
ref_gemm1_invoker
=
ref_gemm1
.
MakeInvoker
();
auto
ref_gemm1_argument
=
ref_gemm1
.
MakeArgument
(
a1_g_m_n
,
b1_g_n_o
,
c_g_m_o_host_result
,
PassThrough
{},
b1_element_op
,
c_element_op
);
ref_gemm1_invoker
.
Run
(
ref_gemm1_argument
);
// permute
c_gs_ms_os_host_result
.
ForEach
([
&
](
auto
&
self
,
auto
idx
)
{
const
size_t
&
g0
=
idx
[
0
];
const
size_t
&
g1
=
idx
[
1
];
const
size_t
g
=
g0
*
G1
+
g1
;
self
(
idx
)
=
c_g_m_o_host_result
(
g
,
idx
[
2
],
idx
[
3
]);
});
// default absolute error and relative error is 0.001
double
rtol
=
1e-3
;
double
atol
=
1e-3
;
return
ck
::
utils
::
check_err
(
c_gs_ms_os_device_result
.
mData
,
c_gs_ms_os_host_result
.
mData
,
"Error: Incorrect results!"
,
rtol
,
atol
)
?
0
:
1
;
}
return
0
;
}
include/ck/ck.hpp
View file @
8da05b38
...
...
@@ -168,12 +168,8 @@
// tuning parameter
#define CK_WORKAROUND_SWDEV_325164 0
// workaround: a BF16 attention kernel for gfx908 is likely affected by a compiler issue
#ifdef __gfx908__
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 1
#else // __gfx90a__, ...
#define CK_WORKAROUND_SWDEV_XXXXXX_BF16_ATTEN_FWD_GFX908_ISSUE 0
#endif // __gfx908__
// workaround: compiler not emiting reciprocal instruction frm __frcp_rn()
#define CK_WORKAROUND_SWDEV_383542 1
// flag to enable (1) or disable (0) the debugging output in some kernels
#define DEBUG_LOG 0
...
...
include/ck/host_utility/kernel_launch.hpp
View file @
8da05b38
...
...
@@ -20,6 +20,7 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
#if CK_TIME_KERNEL
if
(
stream_config
.
time_kernel_
)
{
#if DEBUG_LOG
printf
(
"%s: grid_dim {%d, %d, %d}, block_dim {%d, %d, %d}
\n
"
,
__func__
,
grid_dim
.
x
,
...
...
@@ -29,15 +30,15 @@ float launch_and_time_kernel(const StreamConfig& stream_config,
block_dim
.
y
,
block_dim
.
z
);
const
int
nrepeat
=
10
;
printf
(
"Warm up 1 time
\n
"
);
#endif
// warm up
kernel
<<<
grid_dim
,
block_dim
,
lds_byte
,
stream_config
.
stream_id_
>>>
(
args
...);
const
int
nrepeat
=
10
;
#if DEBUG_LOG
printf
(
"Start running %d times...
\n
"
,
nrepeat
);
#endif
hipEvent_t
start
,
stop
;
hip_check_error
(
hipEventCreate
(
&
start
));
...
...
include/ck/tensor_operation/gpu/device/device_batched_gemm_softmax_gemm_permute.hpp
View file @
8da05b38
...
...
@@ -26,9 +26,9 @@ template <index_t NumDimG,
typename
Acc1BiasDataType
,
typename
AElementwiseOperation
,
typename
B0ElementwiseOperation
,
typename
Acc0
ElementwiseOperation
,
typename
C0DE
ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C
1DE
ElementwiseOperation
,
MaskingSpecialization
MaskingSpec
>
struct
DeviceBatchedGemmSoftmaxGemmPermute
:
public
BaseOperator
{
...
...
@@ -58,9 +58,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute : public BaseOperator
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
B0ElementwiseOperation
b0_element_op
,
Acc0
ElementwiseOperation
ac
c0_element_op
,
C0DE
ElementwiseOperation
c0
de
_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
C
1DE
ElementwiseOperation
c
1de
_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
...
...
include/ck/tensor_operation/gpu/device/device_normalization.hpp
View file @
8da05b38
...
...
@@ -14,9 +14,9 @@ namespace device {
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
Acc
DataType
,
typename
Compute
DataType
,
typename
YDataType
,
typename
Acc
ElementwiseOperation
,
typename
Y
ElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceNormalization
:
public
BaseOperator
...
...
@@ -35,7 +35,7 @@ struct DeviceNormalization : public BaseOperator
void
*
p_y
,
void
*
p_savedMean
,
void
*
p_savedInvVar
,
Acc
ElementwiseOperation
acc
_elementwise_op
)
=
0
;
Y
ElementwiseOperation
y
_elementwise_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
...
...
@@ -43,17 +43,17 @@ struct DeviceNormalization : public BaseOperator
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
Acc
DataType
,
typename
Compute
DataType
,
typename
YDataType
,
typename
Acc
ElementwiseOperation
,
typename
Y
ElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
>
using
DeviceNormalizationPtr
=
std
::
unique_ptr
<
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
Acc
ElementwiseOperation
,
Y
ElementwiseOperation
,
Rank
,
NumReduceDim
>>
;
...
...
include/ck/tensor_operation/gpu/device/impl/device_batched_contraction_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_batched_contraction_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/tensor_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// Tensor Contraction:
// input : A
// input : B
// input : D0, D1, ...
// output : E
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
// Assume:
// A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
// B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
// D[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2, ...]
// NOTE: TensorSpecialization::Packed specialized tensor is "packed" in a sense that each inner
// dimension in a dimension group (eg [G0, G1] in Gs, [M0, M1, M2] in Ms, etc.) are contiguous and
// ordered. Not in a sense that the tensor [G0, G1, ..., M0, M1, ..., N0, N1...] can be permuted
// while still being a contiguous, unpadded tensor. In other words, it merely degenerates into
// TensorSpecialization::Default with NumDimG/M/N/K = 1
//
// Detail- Packed tensor satisfies
// stride_0 = 1
// stride_i = stride_{i - 1} * extent_{i - 1}
// So tensor
// [G0, G1, G2, M, N]
// transposed into tensor
// [G0, G2, G1, M, N]
// with strides
// [G2 * G1 * M * N, G1 * M * N, M * N, N, 1]
// is again a packed tensor. MakeGridDescriptor() currently just merges dimensions and ignores some
// strides from input tensor extents so finer dimension information is lost. Merging dimensions is
// essentially a degenerated case of TensorSpecialization::Default with NumDimG/M/N/K = 1.
//
// Might need to expose dimension order to the interface to fully support
// TensorSpecialization::Packed in a traditional sense of "packed" tensor
template
<
index_t
NumDimG
,
index_t
NumDimM
,
index_t
NumDimN
,
index_t
NumDimK
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
TensorSpecialization
DESpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceBatchedContractionMultipleD_Wmma_CShuffle
:
public
DeviceBatchedContractionMultipleD
<
NumDimG
,
NumDimM
,
NumDimN
,
NumDimK
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceBatchedContractionMultipleD_Wmma_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
K0PerBlock
*
K1
};
// Assume: A[G0, G1, ..., M0, M1, M2, ..., K0, K1, K2, ...]
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides_vec
)
{
assert
(
a_gs_ms_ks_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimK
&&
a_gs_ms_ks_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
a_ms_ks_lengths
=
to_tuple
(
a_gs_ms_ks_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimK
>
{});
const
auto
a_ms_ks_strides
=
to_tuple
(
a_gs_ms_ks_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimK
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimK
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
a_ms_ks_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
a_ms_ks_lengths
,
kDimIds
);
if
constexpr
(
ASpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
a_grid_desc_mraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
a_ms_ks_strides
[
Number
<
NumDimM
-
1
>
{}],
a_ms_ks_strides
[
Number
<
NumDimM
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
else
{
// naive tensor A[M0, M1, M2, ..., K0, K1, K2...]
const
auto
a_grid_desc_ms_ks
=
make_naive_tensor_descriptor
(
a_ms_ks_lengths
,
a_ms_ks_strides
);
// transformed tensor A[MRaw = M0 * M1 * M2 * ... , KRaw = K0 * K1 * K2 * ...]
const
auto
a_grid_desc_mraw_kraw
=
transform_tensor_descriptor
(
a_grid_desc_ms_ks
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
mDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
}
// Assume: B[G0, G1, ..., N0, N1, N2, ..., K0, K1, K2, ...]
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths_vec
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides_vec
)
{
assert
(
b_gs_ns_ks_lengths_vec
.
size
()
==
NumDimG
+
NumDimN
+
NumDimK
&&
b_gs_ns_ks_strides_vec
.
size
()
==
NumDimG
+
NumDimN
+
NumDimK
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
b_ns_ks_lengths
=
to_tuple
(
b_gs_ns_ks_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimN
+
NumDimK
>
{});
const
auto
b_ns_ks_strides
=
to_tuple
(
b_gs_ns_ks_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimN
+
NumDimK
>
{});
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimN
,
1
>::
type
{};
// dimension Ids for K0, K1, ...
constexpr
auto
kDimIds
=
typename
arithmetic_sequence_gen
<
NumDimN
,
NumDimN
+
NumDimK
,
1
>::
type
{};
// lengths for K0, K1, ...
const
auto
kLengths
=
get_container_subset
(
b_ns_ks_lengths
,
kDimIds
);
// lengths for N0, N1, ...
const
auto
nLengths
=
get_container_subset
(
b_ns_ks_lengths
,
nDimIds
);
if
constexpr
(
BSpec
==
TensorSpecialization
::
Packed
)
{
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
K
=
container_reduce
(
kLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
b_grid_desc_nraw_kraw
=
make_naive_tensor_descriptor
(
make_tuple
(
N
,
K
),
make_tuple
(
b_ns_ks_strides
[
Number
<
NumDimN
-
1
>
{}],
b_ns_ks_strides
[
Number
<
NumDimN
+
NumDimK
-
1
>
{}]));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
else
{
// naive tensor B[N0, N1, N2, ..., K0, K1, K2, ...]
const
auto
b_grid_desc_ns_ks
=
make_naive_tensor_descriptor
(
b_ns_ks_lengths
,
b_ns_ks_strides
);
// transformed tensor B[NRaw = N0 * N1 * N2 * ..., KRaw = K0 * K1 * K2 * ...]
const
auto
b_grid_desc_nraw_kraw
=
transform_tensor_descriptor
(
b_grid_desc_ns_ks
,
make_tuple
(
make_merge_transform
(
nLengths
),
make_merge_transform
(
kLengths
)),
make_tuple
(
nDimIds
,
kDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides_vec
)
{
assert
(
e_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
e_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
e_ms_ns_lengths
=
to_tuple
(
e_gs_ms_ns_lengths_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
e_ms_ns_strides
=
to_tuple
(
e_gs_ms_ns_strides_vec
,
Number
<
NumDimG
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimM
,
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
e_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
e_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
DESpec
==
TensorSpecialization
::
Packed
)
{
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
e_grid_desc_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
e_ms_ns_strides
[
Number
<
NumDimM
-
1
>
{}],
e_ms_ns_strides
[
Number
<
NumDimM
+
NumDimN
-
1
>
{}]));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
else
{
// naive tensor E[M0, M1, M2, ..., N0, N1, N2...]
const
auto
e_grid_desc_ms_ns
=
make_naive_tensor_descriptor
(
e_ms_ns_lengths
,
e_ms_ns_strides
);
// transformed tensor E[MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 * N2 * ...]
const
auto
e_grid_desc_mraw_nraw
=
transform_tensor_descriptor
(
e_grid_desc_ms_ns
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
}
// assume E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
static
auto
MakeEGridDescriptor_G_M_N
(
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths_vec
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides_vec
)
{
assert
(
e_gs_ms_ns_lengths_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
&&
e_gs_ms_ns_strides_vec
.
size
()
==
NumDimG
+
NumDimM
+
NumDimN
);
const
auto
to_tuple
=
[
&
](
auto
&
vec
,
auto
start
,
auto
end
)
{
return
generate_tuple
([
&
](
auto
i
)
{
return
vec
[
start
+
i
];
},
Number
<
end
-
start
>
{});
};
const
auto
e_gs_ms_ns_lengths
=
to_tuple
(
e_gs_ms_ns_lengths_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
const
auto
e_gs_ms_ns_strides
=
to_tuple
(
e_gs_ms_ns_strides_vec
,
Number
<
0
>
{},
Number
<
NumDimG
+
NumDimM
+
NumDimN
>
{});
// dimension Ids for G0, G1, ...
constexpr
auto
gDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDimG
,
1
>::
type
{};
// dimension Ids for M0, M1, ...
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
,
NumDimG
+
NumDimM
,
1
>::
type
{};
// dimension Ids for N0, N1, ...
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDimG
+
NumDimM
,
NumDimG
+
NumDimM
+
NumDimN
,
1
>::
type
{};
// lengths for G0, G1, ...
const
auto
gLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
gDimIds
);
// lengths for M0, M1, ...
const
auto
mLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
mDimIds
);
// lengths for K0, K1, ...
const
auto
nLengths
=
get_container_subset
(
e_gs_ms_ns_lengths
,
nDimIds
);
if
constexpr
(
DESpec
==
TensorSpecialization
::
Packed
)
{
auto
G
=
container_reduce
(
gLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
M
=
container_reduce
(
mLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
auto
N
=
container_reduce
(
nLengths
,
math
::
multiplies
{},
Number
<
1
>
{});
const
auto
e_grid_desc_g_mraw_nraw
=
make_naive_tensor_descriptor
(
make_tuple
(
G
,
M
,
N
),
make_tuple
(
e_gs_ms_ns_strides
[
Number
<
NumDimG
-
1
>
{}],
e_gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
-
1
>
{}],
e_gs_ms_ns_strides
[
Number
<
NumDimG
+
NumDimM
+
NumDimN
-
1
>
{}]));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return
e_grid_desc_g_mraw_nraw
;
}
else
{
// naive tensor E[G0, G1, ..., M0, M1, M2, ..., N0, N1, N2...]
const
auto
e_grid_desc_gs_ms_ns
=
make_naive_tensor_descriptor
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
// transformed tensor E[G = G0 * G1 * ..., MRaw = M0 * M1 * M2 * ... , NRaw = N0 * N1 *
// N2 * ...]
const
auto
e_grid_desc_g_mraw_nraw
=
transform_tensor_descriptor
(
e_grid_desc_gs_ms_ns
,
make_tuple
(
make_merge_transform
(
gLengths
),
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
gDimIds
,
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
// return matrix_padder.PadCDescriptor_M_N(e_grid_desc_g_mraw_nraw);
return
e_grid_desc_g_mraw_nraw
;
}
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths_vec
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides_vec
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
DeviceOp
::
MakeEGridDescriptor_M_N
(
ds_gs_ms_ns_lengths_vec
[
i
],
ds_gs_ms_ns_strides_vec
[
i
]);
},
Number
<
NumDTensor
>
{});
}
static
auto
MakeDsGridDescriptor_G_M_N
(
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths_vec
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides_vec
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
DeviceOp
::
MakeEGridDescriptor_G_M_N
(
ds_gs_ms_ns_lengths_vec
[
i
],
ds_gs_ms_ns_strides_vec
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// Gridwise descriptor, mapping to whole given provblem.
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
({},
{}));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
({},
{}));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
({},
{}));
using
DsGridDesc_G_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_G_M_N
({},
{}))
>
;
using
EGridDesc_G_M_N
=
decltype
(
MakeEGridDescriptor_G_M_N
({},
{}));
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
(
index_t
batch_stride_A
,
index_t
batch_stride_B
,
DsGridDesc_G_M_N
ds_grid_desc_g_m_n
,
EGridDesc_G_M_N
e_grid_desc_g_m_n
)
:
batch_stride_A_
(
batch_stride_A
),
batch_stride_B_
(
batch_stride_B
),
ds_grid_desc_g_m_n_
(
ds_grid_desc_g_m_n
),
e_grid_desc_g_m_n_
(
e_grid_desc_g_m_n
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
static_cast
<
long_index_t
>
(
g_idx
)
*
batch_stride_A_
;
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
static_cast
<
long_index_t
>
(
g_idx
)
*
batch_stride_B_
;
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
std
::
array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
ds_offset
[
i
]
=
static_cast
<
long_index_t
>
(
g_idx
)
*
ds_grid_desc_g_m_n_
[
i
].
CalculateOffset
(
make_multi_index
(
1
,
0
,
0
));
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
static_cast
<
long_index_t
>
(
g_idx
)
*
e_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
1
,
0
,
0
));
}
private:
index_t
batch_stride_A_
;
index_t
batch_stride_B_
;
DsGridDesc_G_M_N
ds_grid_desc_g_m_n_
;
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
};
// A desc for source in blockwise copy
template
<
typename
AGridDesc_M_K
>
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_K0_M_K1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
K1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// B desc for source in blockwise copy
template
<
typename
BGridDesc_N_K
>
__host__
__device__
static
constexpr
auto
MakeBGridDescriptor_K0_N_K1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
using
AGridDesc_K0_M_K1
=
decltype
(
DeviceOp
::
MakeAGridDescriptor_K0_M_K1
(
AGridDesc_M_K
{}));
using
BGridDesc_K0_N_K1
=
decltype
(
DeviceOp
::
MakeBGridDescriptor_K0_N_K1
(
BGridDesc_N_K
{}));
// GridwiseOp
using
GridwiseOp
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
<
// DataType Family
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
// InMemory Data Descriptor
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
// ElementwiseOp Family
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
// Tiling Family
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
// ThreadCluster Family
BlockSize
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{},
b_grid_desc_n_k_
{},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{},
ds_grid_desc_g_m_n_
{
DeviceOp
::
MakeDsGridDescriptor_G_M_N
(
ds_gs_ms_ns_lengths
,
ds_gs_ms_ns_strides
)},
e_grid_desc_g_m_n_
{
DeviceOp
::
MakeEGridDescriptor_G_M_N
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
)},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
ds_grid_desc_mblock_mperblock_nblock_nperblock
{},
e_grid_desc_mblock_mperblock_nblock_nperblock
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_mz_stride_
{},
a_kz_stride_
{},
b_nz_stride_
{},
b_kz_stride_
{},
ds_nz_stride_
{},
e_nz_stride_
{},
a_batch_stride_
{
a_gs_ms_ks_strides
[
NumDimG
-
1
]},
b_batch_stride_
{
b_gs_ns_ks_strides
[
NumDimG
-
1
]},
compute_ptr_offset_of_batch_
{
a_batch_stride_
,
b_batch_stride_
,
ds_grid_desc_g_m_n_
,
e_grid_desc_g_m_n_
}
{
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
});
a_grid_desc_m_k_
=
DeviceOp
::
MakeAGridDescriptor_M_K
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
);
b_grid_desc_n_k_
=
DeviceOp
::
MakeBGridDescriptor_N_K
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
);
ds_grid_desc_m_n_
=
DeviceOp
::
MakeDsGridDescriptor_M_N
(
ds_gs_ms_ns_lengths
,
ds_gs_ms_ns_strides
);
e_grid_desc_m_n_
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_gs_ms_ns_lengths
,
e_gs_ms_ns_strides
);
a_grid_desc_k0_m_k1_
=
DeviceOp
::
MakeAGridDescriptor_K0_M_K1
(
a_grid_desc_m_k_
);
b_grid_desc_k0_n_k1_
=
DeviceOp
::
MakeBGridDescriptor_K0_N_K1
(
b_grid_desc_n_k_
);
block_2_ctile_map_
=
GridwiseOp
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
,
M01
,
N01
);
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
// for sanity check of vector memory access
a_mz_stride_
=
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
-
1
];
a_kz_stride_
=
a_gs_ms_ks_strides
[
NumDimG
+
NumDimM
+
NumDimK
-
1
];
b_nz_stride_
=
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
-
1
];
b_kz_stride_
=
b_gs_ns_ks_strides
[
NumDimG
+
NumDimN
+
NumDimK
-
1
];
for
(
index_t
i
=
0
;
i
<
NumDTensor
;
++
i
)
{
ds_nz_stride_
[
i
]
=
ds_gs_ms_ns_strides
[
i
][
NumDimG
+
NumDimM
+
NumDimN
-
1
];
}
e_nz_stride_
=
e_gs_ms_ns_strides
[
NumDimG
+
NumDimM
+
NumDimN
-
1
];
}
// Pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseOp
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// Tensor Descriptors
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
DsGridDesc_G_M_N
ds_grid_desc_g_m_n_
;
EGridDesc_G_M_N
e_grid_desc_g_m_n_
;
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
;
// Block to Tile mapping
typename
GridwiseOp
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
// Idle
index_t
M01_
;
index_t
N01_
;
// ElementwiseOp
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// Strides for the last M/N/K dimensions of A/B/Ds/E
// for sanity check of vector load/store
index_t
a_mz_stride_
;
index_t
a_kz_stride_
;
index_t
b_nz_stride_
;
index_t
b_kz_stride_
;
std
::
array
<
index_t
,
NumDTensor
>
ds_nz_stride_
;
index_t
e_mz_stride_
;
index_t
e_nz_stride_
;
index_t
a_batch_stride_
;
index_t
b_batch_stride_
;
// Batch Offset
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
index_t
G
=
arg
.
e_grid_desc_g_m_n_
.
GetLength
(
I0
);
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
G
;
const
auto
K
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_contraction_multiple_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
DeviceOp
::
AGridDesc_K0_M_K1
,
DeviceOp
::
BGridDesc_K0_N_K1
,
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
ComputePtrOffsetOfStridedBatch
,
typename
GridwiseOp
::
DefaultBlock2CTileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
G
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
compute_ptr_offset_of_batch_
,
arg
.
block_2_ctile_map_
);
};
if
(
GridwiseOp
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
if
(
!
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
return
false
;
}
// check vector access
static_assert
((
ABlockTransferSrcVectorDim
==
1
||
ABlockTransferSrcVectorDim
==
2
)
&&
(
BBlockTransferSrcVectorDim
==
1
||
BBlockTransferSrcVectorDim
==
2
),
"wrong!"
);
// vector memory access of A: could be on M or AK1 dimension
if
constexpr
(
ABlockTransferSrcVectorDim
==
1
)
{
if
(
!
(
arg
.
a_mz_stride_
==
1
&&
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I1
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
a_kz_stride_
==
1
&&
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
)
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of B: could be on N or BK1 dimension
if
constexpr
(
BBlockTransferSrcVectorDim
==
1
)
{
if
(
!
(
arg
.
b_nz_stride_
==
1
&&
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I1
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
if
(
!
(
arg
.
b_kz_stride_
==
1
&&
arg
.
b_grid_desc_k0_n_k1_
.
GetLength
(
I2
)
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
// vector memory access of Ds: always on NPerBlock dimension
bool
valid_d_access
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
if
(
!
(
arg
.
ds_nz_stride_
[
i
]
==
1
&&
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
[
i
].
GetLength
(
I3
)
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid_d_access
=
false
;
}
});
if
(
valid_d_access
==
false
)
{
return
false
;
}
// vector memory access of E: always on NPerBlock dimension
if
(
!
((
arg
.
e_nz_stride_
==
1
&&
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
.
GetLength
(
I3
)
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
)
||
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
1
))
{
return
false
;
}
return
true
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_gs_ms_ks_lengths
,
b_gs_ns_ks_lengths
,
ds_gs_ms_ns_lengths
,
e_gs_ms_ns_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_strides
,
ds_gs_ms_ns_strides
,
e_gs_ms_ns_strides
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_strides
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
index_t
>
,
NumDTensor
>&
ds_gs_ms_ns_strides
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_lengths
,
const
std
::
vector
<
index_t
>&
e_gs_ms_ns_strides
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_gs_ms_ks_lengths
,
b_gs_ns_ks_lengths
,
ds_gs_ms_ns_lengths
,
e_gs_ms_ns_lengths
,
a_gs_ms_ks_strides
,
b_gs_ns_ks_strides
,
ds_gs_ms_ns_strides
,
e_gs_ms_ns_strides
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceBatchedContractionMultipleD_Wmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerWMMA
<<
", "
<<
NPerWMMA
<<
", "
<<
MRepeat
<<
", "
<<
NRepeat
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_softmax_gemm_permute_xdl_cshuffle.hpp
View file @
8da05b38
...
...
@@ -13,7 +13,7 @@
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_batched_gemm_
multiple_d_
softmax_gemm_xdl_cshuffle_v1.hpp"
#include "ck/tensor_operation/operator_transform/transform_contraction_to_gemm.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
@@ -25,15 +25,17 @@ namespace device {
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
D0sPointer
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
Acc
ElementwiseOperation
,
typename
C0DE
ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C
1DE
ElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
B1GridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
typename
Block2CTileMap
,
typename
ComputeBasePtrOfStridedBatch
,
typename
C0MatrixMask
,
...
...
@@ -47,16 +49,19 @@ __global__ void
const
FloatAB
*
__restrict__
p_b_grid
,
const
FloatAB
*
__restrict__
p_b1_grid
,
FloatC
*
__restrict__
p_c_grid
,
D0sPointer
p_d0s_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
Acc
ElementwiseOperation
acc
_element_op
,
const
C0DE
ElementwiseOperation
c0de
_element_op
,
const
B1ElementwiseOperation
b1_element_op
,
const
CElementwiseOperation
c_element_op
,
const
C
1DE
ElementwiseOperation
c
1de
_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
const
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
const
Block2CTileMap
block_2_ctile_map
,
const
index_t
batch_count
,
const
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch
,
...
...
@@ -77,20 +82,28 @@ __global__ void
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetCBasePtr
(
g_idx
)));
static_for
<
0
,
p_d0s_grid
.
Size
(),
1
>
{}([
&
](
auto
In
)
{
const
long_index_t
d0_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch
.
GetD0BasePtr
(
g_idx
,
In
)));
p_d0s_grid
(
In
)
=
p_d0s_grid
(
In
)
+
d0_batch_offset
;
});
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_b1_grid
+
b1_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_d0s_grid
,
p_shared
,
a_element_op
,
b_element_op
,
acc
_element_op
,
c0de
_element_op
,
b1_element_op
,
c_element_op
,
c
1de
_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
b1_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
c1_grid_desc_mblock_mperblock_nblock_nperblock
,
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
,
block_2_ctile_map
,
c0_matrix_mask
);
#else
...
...
@@ -98,15 +111,17 @@ __global__ void
ignore
=
p_b_grid
;
ignore
=
p_b1_grid
;
ignore
=
p_c_grid
;
ignore
=
p_d0s_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
acc
_element_op
;
ignore
=
c0de
_element_op
;
ignore
=
b1_element_op
;
ignore
=
c_element_op
;
ignore
=
c
1de
_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
b1_grid_desc_bk0_n_bk1
;
ignore
=
c_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
c1_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5
;
ignore
=
block_2_ctile_map
;
ignore
=
batch_count
;
ignore
=
compute_base_ptr_of_batch
;
...
...
@@ -126,15 +141,15 @@ template <index_t NumDimG,
typename
BDataType
,
typename
B1DataType
,
typename
CDataType
,
typename
Acc0Bia
sDataType
,
typename
Acc1Bia
sDataType
,
typename
D0
sDataType
,
typename
D1
sDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
Acc
ElementwiseOperation
,
typename
C0DE
ElementwiseOperation
,
typename
B1ElementwiseOperation
,
typename
CElementwiseOperation
,
typename
C
1DE
ElementwiseOperation
,
GemmSpecialization
GemmSpec
,
TensorSpecialization
ASpec
,
TensorSpecialization
BSpec
,
...
...
@@ -192,23 +207,23 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
BDataType
,
B1DataType
,
CDataType
,
Acc0Bia
sDataType
,
Acc1Bia
sDataType
,
D0
sDataType
,
D1
sDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
Acc
ElementwiseOperation
,
C0DE
ElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
C
1DE
ElementwiseOperation
,
MaskingSpec
>
{
static_assert
(
NumDimG
>
0
&&
NumDimM
>
0
&&
NumDimN
>
0
&&
NumDimK
>
0
&&
NumDimO
>
0
,
"Number of dimension must be greater than 0"
);
static
constexpr
index_t
Num
Acc0Bias
=
Acc0Bia
sDataType
::
Size
();
static
constexpr
index_t
Num
Acc1Bias
=
Acc1Bia
sDataType
::
Size
();
static
constexpr
index_t
Num
D0Tensor
=
D0
sDataType
::
Size
();
static
constexpr
index_t
Num
D1Tensor
=
D1
sDataType
::
Size
();
// TODO ANT: implement bias combination
static_assert
(
Num
Acc0Bias
==
0
&&
NumAcc0Bias
==
0
,
"Bias addition is unimplemented"
);
static_assert
(
Num
D1Tensor
==
0
,
"
Gemm1
Bias addition is unimplemented"
);
#if 0
// TODO ANT: use alias
...
...
@@ -261,14 +276,40 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
Number
<
B1K1
>
{});
}
static
auto
MakeD0sGridDescriptor_M_N
(
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumD0Tensor
>&
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumD0Tensor
>&
acc0_biases_gs_ms_ns_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
Transform
::
MakeCGridDescriptor_M_N
(
acc0_biases_gs_ms_ns_lengths
[
i
],
acc0_biases_gs_ms_ns_strides
[
i
]);
},
Number
<
NumD0Tensor
>
{});
}
static
auto
MakeD0sGridDescriptor_G_M_N
(
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumD0Tensor
>&
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
NumD0Tensor
>&
acc0_biases_gs_ms_ns_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
return
Transform
::
MakeCGridDescriptor_G_M_N
(
acc0_biases_gs_ms_ns_lengths
[
i
],
acc0_biases_gs_ms_ns_strides
[
i
]);
},
Number
<
NumD0Tensor
>
{});
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
({},
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
({},
{}));
using
B1GridDesc_BK0_N_BK1
=
decltype
(
MakeB1GridDescriptor_BK0_N_BK1
({},
{}));
using
CGridDesc_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
C
1
GridDesc_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_M_N
({},
{}));
using
AGridDesc_G_M_K
=
decltype
(
Transform
::
MakeAGridDescriptor_G_M_K
({},
{}));
using
BGridDesc_G_N_K
=
decltype
(
Transform
::
MakeB0GridDescriptor_G_N_K
({},
{}));
using
B1GridDesc_G_N_K
=
decltype
(
Transform
::
MakeB1GridDescriptor_G_N_K
({},
{}));
using
CGridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
C1GridDesc_G_M_N
=
decltype
(
Transform
::
MakeCGridDescriptor_G_M_N
({},
{}));
using
D0sGridDesc_M_N
=
decltype
(
MakeD0sGridDescriptor_M_N
({},
{}));
using
D0sGridDesc_G_M_N
=
decltype
(
MakeD0sGridDescriptor_G_M_N
({},
{}));
constexpr
static
auto
make_MaskOutPredicate
()
{
...
...
@@ -288,11 +329,13 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
ComputeBasePtrOfStridedBatch
(
const
AGridDesc_G_M_K
&
a_grid_desc_g_m_k
,
const
BGridDesc_G_N_K
&
b_grid_desc_g_n_k
,
const
B1GridDesc_G_N_K
&
b1_grid_desc_g_n_k
,
const
CGridDesc_G_M_N
&
c_grid_desc_g_m_n
)
const
C1GridDesc_G_M_N
&
c1_grid_desc_g_m_n
,
const
D0sGridDesc_G_M_N
&
d0s_grid_desc_g_m_n
)
:
a_grid_desc_g_m_k_
(
a_grid_desc_g_m_k
),
b_grid_desc_g_n_k_
(
b_grid_desc_g_n_k
),
b1_grid_desc_g_n_k_
(
b1_grid_desc_g_n_k
),
c_grid_desc_g_m_n_
(
c_grid_desc_g_m_n
)
c1_grid_desc_g_m_n_
(
c1_grid_desc_g_m_n
),
d0s_grid_desc_g_m_n_
(
d0s_grid_desc_g_m_n
)
{
}
...
...
@@ -313,32 +356,42 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
c_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
return
c1_grid_desc_g_m_n_
.
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
template
<
index_t
I
>
__host__
__device__
constexpr
long_index_t
GetD0BasePtr
(
index_t
g_idx
,
Number
<
I
>
d0_idx
)
const
{
return
d0s_grid_desc_g_m_n_
[
d0_idx
].
CalculateOffset
(
make_multi_index
(
g_idx
,
0
,
0
));
}
private:
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
C1GridDesc_G_M_N
c1_grid_desc_g_m_n_
;
D0sGridDesc_G_M_N
d0s_grid_desc_g_m_n_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseBatchedGemmSoftmaxGemm_Xdl_CShuffle
<
using
GridwiseGemm
=
GridwiseBatchedGemm
MultipleD
SoftmaxGemm_Xdl_CShuffle
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
D0sDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
Acc
ElementwiseOperation
,
C0DE
ElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
C
1DE
ElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
B1GridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
C1GridDesc_M_N
,
D0sGridDesc_M_N
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
...
...
@@ -395,8 +448,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
BDataType
*
p_b_grid
,
const
B1DataType
*
p_b1_grid
,
CDataType
*
p_c_grid
,
const
std
::
array
<
void
*
,
Num
Acc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
Acc1Bias
>
p_acc1_biases
,
const
std
::
array
<
void
*
,
Num
D0Tensor
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
D1Tensor
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
...
...
@@ -405,44 +458,48 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>&
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>&
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>&
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>&
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
Acc
ElementwiseOperation
acc
_element_op
,
C0DE
ElementwiseOperation
c0de
_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
C
1DE
ElementwiseOperation
c
1de
_element_op
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_b1_grid_
{
p_b1_grid
},
p_c_grid_
{
p_c_grid
},
p_d0s_grid_
{},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
b1_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeB1GridDescriptor_BK0_N_BK1
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
c_grid_desc_m_n_
{
Transform
::
MakeCGridDescriptor_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
c
1
_grid_desc_m_n_
{
Transform
::
MakeCGridDescriptor_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
a_grid_desc_g_m_k_
{
Transform
::
MakeAGridDescriptor_G_M_K
(
a_gs_ms_ks_lengths
,
a_gs_ms_ks_strides
)},
b_grid_desc_g_n_k_
{
Transform
::
MakeB0GridDescriptor_G_N_K
(
b_gs_ns_ks_lengths
,
b_gs_ns_ks_strides
)},
b1_grid_desc_g_n_k_
{
Transform
::
MakeB1GridDescriptor_G_N_K
(
b1_gs_gemm1ns_gemm1ks_lengths
,
b1_gs_gemm1ns_gemm1ks_strides
)},
c_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
)},
c1_grid_desc_g_m_n_
{
Transform
::
MakeCGridDescriptor_G_M_N
(
c_gs_ms_gemm1ns_lengths
,
c_gs_ms_gemm1ns_strides
)},
d0s_grid_desc_g_m_n_
{
DeviceOp
::
MakeD0sGridDescriptor_G_M_N
(
acc0_biases_gs_ms_ns_lengths
,
acc0_biases_gs_ms_ns_strides
)},
c1_grid_desc_mblock_mperblock_nblock_nperblock_
{},
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
{},
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c1_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
acc
_element_op_
{
acc
_element_op
},
c0de
_element_op_
{
c0de
_element_op
},
b1_element_op_
{
b1_element_op
},
c_element_op_
{
c_element_op
},
c
1de
_element_op_
{
c
1de
_element_op
},
c0_matrix_mask_
{
b_grid_desc_g_n_k_
.
GetLength
(
I1
)},
raw_lengths_mz_nz_kz_gemm1nz_
{
a_gs_ms_ks_lengths
[
NumDimG
+
NumDimM
-
1
],
b_gs_ns_ks_lengths
[
NumDimG
+
NumDimN
-
1
],
...
...
@@ -456,27 +513,39 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
b1_gs_gemm1ns_gemm1ks_strides
[
NumDimG
+
NumDimO
+
NumDimN
-
1
]},
c_mz_gemm1nz_strides_
{
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
-
1
],
c_gs_ms_gemm1ns_strides
[
NumDimG
+
NumDimM
+
NumDimO
-
1
]},
batch_count_
{
c_grid_desc_g_m_n_
.
GetLength
(
I0
)},
compute_base_ptr_of_batch_
{
a_grid_desc_g_m_k_
,
b_grid_desc_g_n_k_
,
b1_grid_desc_g_n_k_
,
c_grid_desc_g_m_n_
}
batch_count_
{
c1_grid_desc_g_m_n_
.
GetLength
(
I0
)},
compute_base_ptr_of_batch_
{
a_grid_desc_g_m_k_
,
b_grid_desc_g_n_k_
,
b1_grid_desc_g_n_k_
,
c1_grid_desc_g_m_n_
,
d0s_grid_desc_g_m_n_
}
{
// TODO ANT: implement bias addition
ignore
=
p_acc0_biases
;
ignore
=
p_acc1_biases
;
ignore
=
acc0_biases_gs_ms_ns_lengths
;
ignore
=
acc0_biases_gs_ms_ns_strides
;
ignore
=
acc1_biases_gs_ms_gemm1ns_lengths
;
ignore
=
acc1_biases_gs_ms_gemm1ns_strides
;
static_for
<
0
,
NumD0Tensor
,
1
>
{}([
&
](
auto
i
)
{
using
D0DataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
D0sDataType
>>
;
// D0 pointer
p_d0s_grid_
(
i
)
=
static_cast
<
const
D0DataType
*>
(
p_acc0_biases
[
i
]);
});
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
b1_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
,
c
1
_grid_desc_m_n_
,
block_2_ctile_map_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
c1_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeC1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c1_grid_desc_m_n_
);
D0sGridDesc_M_N
d0s_grid_desc_m_n
{
DeviceOp
::
MakeD0sGridDescriptor_M_N
(
acc0_biases_gs_ms_ns_lengths
,
acc0_biases_gs_ms_ns_strides
)};
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
=
GridwiseGemm
::
MakeD0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
(
d0s_grid_desc_m_n
);
}
}
...
...
@@ -491,9 +560,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
std
::
cout
<<
"b1_grid_desc_g_n_k_: "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I0
)
<<
", "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I1
)
<<
", "
<<
b1_grid_desc_g_n_k_
.
GetLength
(
I2
)
<<
'\n'
;
std
::
cout
<<
"c_grid_desc_g_m_n_: "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I0
)
<<
", "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I1
)
<<
", "
<<
c_grid_desc_g_m_n_
.
GetLength
(
I2
)
<<
'\n'
;
std
::
cout
<<
"c
1
_grid_desc_g_m_n_: "
<<
c
1
_grid_desc_g_m_n_
.
GetLength
(
I0
)
<<
", "
<<
c
1
_grid_desc_g_m_n_
.
GetLength
(
I1
)
<<
", "
<<
c
1
_grid_desc_g_m_n_
.
GetLength
(
I2
)
<<
'\n'
;
}
// pointers
...
...
@@ -501,18 +570,23 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
BDataType
*
p_b_grid_
;
const
B1DataType
*
p_b1_grid_
;
CDataType
*
p_c_grid_
;
typename
GridwiseGemm
::
D0sGridPointer
p_d0s_grid_
;
// tensor descriptor
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
B1GridDesc_BK0_N_BK1
b1_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
C
1
GridDesc_M_N
c
1
_grid_desc_m_n_
;
AGridDesc_G_M_K
a_grid_desc_g_m_k_
;
BGridDesc_G_N_K
b_grid_desc_g_n_k_
;
B1GridDesc_G_N_K
b1_grid_desc_g_n_k_
;
CGridDesc_G_M_N
c_grid_desc_g_m_n_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
C1GridDesc_G_M_N
c1_grid_desc_g_m_n_
;
D0sGridDesc_G_M_N
d0s_grid_desc_g_m_n_
;
typename
GridwiseGemm
::
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
;
// block-to-c-tile map
typename
GridwiseGemm
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
...
...
@@ -520,9 +594,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
Acc
ElementwiseOperation
acc
_element_op_
;
C0DE
ElementwiseOperation
c0de
_element_op_
;
B1ElementwiseOperation
b1_element_op_
;
CElementwiseOperation
c_element_op_
;
C
1DE
ElementwiseOperation
c
1de
_element_op_
;
// check C0 masking and padding
C0MatrixMask
c0_matrix_mask_
;
...
...
@@ -551,7 +625,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
)
*
arg
.
batch_count_
;
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c
1
_grid_desc_m_n_
)
*
arg
.
batch_count_
;
// Gemm0_K
const
auto
K
=
...
...
@@ -564,15 +638,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
typename
GridwiseGemm
::
D0sGridPointer
,
AElementwiseOperation
,
BElementwiseOperation
,
Acc
ElementwiseOperation
,
C0DE
ElementwiseOperation
,
B1ElementwiseOperation
,
CElementwiseOperation
,
C
1DE
ElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
DeviceOp
::
B1GridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
,
typename
GridwiseGemm
::
DefaultBlock2CTileMap
,
ComputeBasePtrOfStridedBatch
,
C0MatrixMask
,
...
...
@@ -587,15 +663,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
arg
.
p_b_grid_
,
arg
.
p_b1_grid_
,
arg
.
p_c_grid_
,
arg
.
p_d0s_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
acc
_element_op_
,
arg
.
c0de
_element_op_
,
arg
.
b1_element_op_
,
arg
.
c_element_op_
,
arg
.
c
1de
_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
c1_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_
,
arg
.
block_2_ctile_map_
,
arg
.
batch_count_
,
arg
.
compute_base_ptr_of_batch_
,
...
...
@@ -644,9 +722,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
// TODO ANT: Check if tensor specialization & strides mismatch
// Check if C permute dimension matches GEMM + GEMM shape
const
index_t
c_g
=
arg
.
c_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
);
const
index_t
c_g
=
arg
.
c
1
_grid_desc_g_m_n_
.
GetLength
(
I0
);
// unpadded
const
index_t
c_m
=
arg
.
c
1
_grid_desc_m_n_
.
GetLength
(
I0
);
const
index_t
c_gemm1n
=
arg
.
c
1
_grid_desc_m_n_
.
GetLength
(
I1
);
const
index_t
a_m
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I1
);
const
index_t
b1_gemm1n
=
arg
.
b1_grid_desc_bk0_n_bk1_
.
GetLength
(
I1
);
...
...
@@ -696,7 +774,7 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
b1_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
arg
.
c
1
_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
...
...
@@ -711,8 +789,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
BDataType
*
p_b
,
const
B1DataType
*
p_b1
,
CDataType
*
p_c
,
const
std
::
array
<
void
*
,
Num
Acc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
Acc1Bias
>
p_acc1_biases
,
const
std
::
array
<
void
*
,
Num
D0Tensor
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
D1Tensor
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
...
...
@@ -721,17 +799,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
Acc
ElementwiseOperation
acc
_element_op
,
C0DE
ElementwiseOperation
c0de
_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
C
1DE
ElementwiseOperation
c
1de
_element_op
)
{
return
Argument
{
p_a
,
p_b
,
...
...
@@ -753,9 +831,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
a_element_op
,
b_element_op
,
acc
_element_op
,
c0de
_element_op
,
b1_element_op
,
c_element_op
};
c
1de
_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
@@ -767,8 +845,8 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
void
*
p_b
,
const
void
*
p_b1
,
void
*
p_c
,
const
std
::
array
<
void
*
,
Num
Acc0Bias
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
Acc1Bias
>
p_acc1_biases
,
const
std
::
array
<
void
*
,
Num
D0Tensor
>
p_acc0_biases
,
const
std
::
array
<
void
*
,
Num
D1Tensor
>
p_acc1_biases
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_lengths
,
const
std
::
vector
<
index_t
>&
a_gs_ms_ks_strides
,
const
std
::
vector
<
index_t
>&
b_gs_ns_ks_lengths
,
...
...
@@ -777,17 +855,17 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
const
std
::
vector
<
index_t
>&
b1_gs_gemm1ns_gemm1ks_strides
,
// b1_gs_os_ns_strides
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_lengths
,
// c_gs_ms_os_lengths
const
std
::
vector
<
index_t
>&
c_gs_ms_gemm1ns_strides
,
// c_gs_ms_os_strides
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc0Bias
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>
acc0_biases_gs_ms_ns_lengths
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D0Tensor
>
acc0_biases_gs_ms_ns_strides
,
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>
acc1_biases_gs_ms_gemm1ns_lengths
,
// acc1_biases_gs_ms_os_lengths
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
Acc1Bias
>
const
std
::
array
<
std
::
vector
<
ck
::
index_t
>
,
Num
D1Tensor
>
acc1_biases_gs_ms_gemm1ns_strides
,
// acc1_biases_gs_ms_os_strides
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
Acc
ElementwiseOperation
acc
_element_op
,
C0DE
ElementwiseOperation
c0de
_element_op
,
B1ElementwiseOperation
b1_element_op
,
CElementwiseOperation
c_element_op
)
override
C
1DE
ElementwiseOperation
c
1de
_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
...
...
@@ -809,9 +887,9 @@ struct DeviceBatchedGemmSoftmaxGemmPermute_Xdl_CShuffle
acc1_biases_gs_ms_gemm1ns_strides
,
a_element_op
,
b_element_op
,
acc
_element_op
,
c0de
_element_op
,
b1_element_op
,
c_element_op
);
c
1de
_element_op
);
}
// polymorphic
...
...
include/ck/tensor_operation/gpu/device/impl/device_contraction_multiple_d_xdl_cshuffle.hpp
View file @
8da05b38
...
...
@@ -586,6 +586,11 @@ struct DeviceContractionMultipleD_Xdl_CShuffle
return
false
;
}
if
(
ck
::
get_device_name
()
!=
"gfx90a"
&&
std
::
is_same
<
ADataType
,
double
>::
value
)
{
return
false
;
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_elementwise_normalization_impl.hpp
View file @
8da05b38
...
...
@@ -533,6 +533,11 @@ struct DeviceElementwiseNormalizationImpl
return
(
false
);
}
if
(
p_arg_
->
x_lds_size_
>=
65536
)
{
return
(
false
);
}
return
true
;
};
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_layernorm_xdl_cshuffle.hpp
View file @
8da05b38
...
...
@@ -669,6 +669,9 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemmWelford has invalid setting"
);
}
if
(
arg
.
p_workspace_e_grid_
==
nullptr
||
arg
.
p_workspace_mean_
==
nullptr
||
arg
.
p_workspace_var_
==
nullptr
||
arg
.
p_workspace_count_
==
nullptr
)
throw
std
::
runtime_error
(
"wrong! WorkSpace pointer has not been set"
);
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
gemm_e_grid_desc_m_n_
);
...
...
@@ -939,7 +942,11 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
}
}
return
true
;
return
GridwiseGemmWelford
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
gemm_e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
// polymorphic
...
...
@@ -1055,7 +1062,12 @@ struct DeviceGemmMultipleDLayernorm_Xdl_CShuffle
<<
GemmKPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
getGemmSpecializationString
(
GemmSpec
)
<<
", "
<<
PostShuffleThreadClusterSize_M_N
::
At
(
I0
)
<<
", "
<<
PostShuffleThreadClusterSize_M_N
::
At
(
I1
)
<<
", "
<<
LayernormThreadClusterSize_M_N
::
At
(
I0
)
<<
", "
<<
LayernormThreadClusterSize_M_N
::
At
(
I1
)
<<
", "
<<
LayernormThreadSliceSize_M
<<
">"
<<
" LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_K0_M_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_K1
,
bool
ABlockLdsAddExtraM
,
typename
BBlockTransferThreadClusterLengths_K0_N_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_K1
,
bool
BBlockLdsAddExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
ck
::
index_t
NumPrefetch
=
1
,
ck
::
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGemmMultipleD_Wmma_CShuffle
:
public
DeviceGemmMultipleD
<
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemmMultipleD_Wmma_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
K0PerBlock
*
K1
};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
}();
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
ELayout_
>
static
auto
MakeEGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideE
)
{
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ELayout_
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideE
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ELayout_
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideE
));
}
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NumDTensor
>&
Ms
,
const
std
::
array
<
index_t
,
NumDTensor
>&
Ns
,
const
std
::
array
<
index_t
,
NumDTensor
>&
DsStride
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
Ms
[
i
],
Ns
[
i
],
DsStride
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// Gridwise descriptor, mapping to whole given provblem.
using
AGridDesc_K0_M_K1
=
decltype
(
MakeAGridDescriptor_K0_M_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{},
{}))
>
;
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
(
1
,
1
,
1
));
// GridwiseOp
using
GridwiseOp
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
<
// DataType Family
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
// InMemory Data Descriptor
AGridDesc_K0_M_K1
,
BGridDesc_K0_N_K1
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
// ElementwiseOp Family
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
// Tiling Family
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
// ThreadCluster Family
BlockSize
,
ABlockTransferThreadClusterLengths_K0_M_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_K1
,
false
,
// AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM
,
BBlockTransferThreadClusterLengths_K0_N_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_K1
,
false
,
// BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
NumPrefetch
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
,
void
*
p_e_grid
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
index_t
M01
,
index_t
N01
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_k0_m_k1_
{},
b_grid_desc_k0_n_k1_
{},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{},
ds_grid_desc_mblock_mperblock_nblock_nperblock
{},
e_grid_desc_mblock_mperblock_nblock_nperblock
{},
block_2_ctile_map_
{},
M01_
{
M01
},
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
a_grid_desc_k0_m_k1_
=
DeviceOp
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceOp
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds_grid
[
i
]);
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
M
,
N
,
StrideDs
[
i
]);
});
e_grid_desc_m_n_
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
M
,
N
,
StrideE
);
block_2_ctile_map_
=
GridwiseOp
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
,
M01
,
N01
);
if
(
GridwiseOp
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_ctile_map_
))
{
ds_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
e_grid_desc_mblock_mperblock_nblock_nperblock
=
GridwiseOp
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
}
}
// Pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseOp
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// Tensor Descriptors
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1_
;
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
;
// Block to Tile mapping
typename
GridwiseOp
::
DefaultBlock2CTileMap
block_2_ctile_map_
;
// Idle
index_t
M01_
;
index_t
N01_
;
// ElementwiseOp
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c_grid_desc_m_n_.GetLength(I1) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I2) << "}" << std::endl;
}
#endif
if
(
!
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm_k0mk1_k0nk1_m0nm1_wmma_v1r1 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_k0_m_k1_
.
GetLength
(
I2
);
float
ave_time
=
0
;
if
(
GridwiseOp
::
CalculateHasMainKBlockLoop
(
K
))
{
const
auto
kernel
=
kernel_gemm_mupltipe_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
remove_reference_t
<
typename
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
remove_reference_t
<
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
true
>
;
// Last Option is W/O
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_gemm_mupltipe_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
remove_reference_t
<
typename
DeviceOp
::
AGridDesc_K0_M_K1
>
,
remove_reference_t
<
typename
DeviceOp
::
BGridDesc_K0_N_K1
>
,
remove_reference_t
<
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
remove_reference_t
<
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
>
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
false
>
;
ave_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
block_2_ctile_map_
);
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
return
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_ctile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds
,
void
*
p_e
,
index_t
M
,
index_t
N
,
index_t
K
,
index_t
StrideA
,
index_t
StrideB
,
std
::
array
<
ck
::
index_t
,
NumDTensor
>
StrideDs
,
index_t
StrideE
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideDs
,
StrideE
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
std
::
map
<
LoopScheduler
,
std
::
string
>
LoopSchedToString
{
{
LoopScheduler
::
Default
,
"Default"
},
{
LoopScheduler
::
Interwave
,
"Interwave"
}};
std
::
map
<
PipelineVersion
,
std
::
string
>
PipelineVersionToString
{{
PipelineVersion
::
v1
,
"v1"
},
{
PipelineVersion
::
v2
,
"v2"
}};
// clang-format off
str
<<
"DeviceGemmMultipleD_Wmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
K1
<<
", "
<<
MPerWMMA
<<
", "
<<
NPerWMMA
<<
", "
<<
MRepeat
<<
", "
<<
NRepeat
<<
">"
<<
" NumPrefetch: "
<<
NumPrefetch
<<
", "
<<
"LoopScheduler: "
<<
LoopSchedToString
[
LoopSched
]
<<
", "
<<
"PipelineVersion: "
<<
PipelineVersionToString
[
PipelineVer
];
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_wmma.hpp
View file @
8da05b38
...
...
@@ -12,6 +12,7 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_wmma.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
...
...
@@ -78,119 +79,83 @@ struct DeviceGemmWmma_CShuffle : public DeviceGemm<ALayout,
// K1 = Max Vector Access Pixels
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
M
,
index_t
K
,
index_t
StrideA
)
{
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
K0PerBlock
*
K1
};
const
auto
a_grid_desc_m_k
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>::
value
)
static
auto
MakeAGridDescriptor_K0_M_K1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
StrideA
,
I1
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
#ifdef ENABLE_COLMAJOR
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>::
value
)
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
K
),
make_tuple
(
I1
,
StrideA
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
#endif
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
M
,
PadM
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
K
,
index_t
N
,
index_t
StrideB
)
{
const
auto
a_grid_desc_m_k
=
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
const
auto
b_grid_desc_k_n
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeBGridDescriptor_K0_N_K1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
StrideB
,
I1
));
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
B
Layout
>
::
value
)
else
if
constexpr
(
is_same
_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
A
Layout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
K
,
N
),
make_tuple
(
I1
,
StrideB
));
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
const
auto
b_grid_desc_n_k
=
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
assert
(
K
%
K1
==
0
);
const
index_t
K0
=
K
/
K1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1Number
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
,
index_t
N
,
index_t
StrideC
)
static
auto
MakeCGridDescriptor_M_N
(
index_t
M
Raw
,
index_t
N
Raw
,
index_t
StrideC
)
{
const
auto
c_grid_desc_m
_n
=
[
&
]()
{
const
auto
c_grid_desc_m
raw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
StrideC
,
I1
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
M
,
N
),
make_tuple
(
I1
,
StrideC
));
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideC
));
}
}();
if
constexpr
(
GemmSpec
==
GemmSpecialization
::
MNPadding
)
{
const
auto
PadM
=
(
MPerBlock
-
M
%
MPerBlock
)
%
MPerBlock
;
const
auto
PadN
=
(
NPerBlock
-
N
%
NPerBlock
)
%
NPerBlock
;
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_right_pad_transform
(
M
,
PadM
),
make_right_pad_transform
(
N
,
PadN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
return
transform_tensor_descriptor
(
c_grid_desc_m_n
,
make_tuple
(
make_pass_through_transform
(
M
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
return
matrix_padder
.
PadCDescriptor_M_N
(
c_grid_desc_mraw_nraw
);
}
// Gridwise descriptor, mapping to whole given provblem.
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_bwd_weight_gnwc_gkxc_gnwk_dl.hpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
struct
ComputePtrOffsetOfStridedBatch
{
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
long_index_t
GetCPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideC_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
index_t
BatchStrideC_
;
};
}
// namespace
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
AGridDesc_B_K0_M0_M1_K1
,
typename
BGridDesc_B_K0_N0_N1_K1
,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
Block2CTileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_dlops_bwd_weight
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
index_t
batch_count
,
const
AGridDesc_B_K0_M0_M1_K1
a_grid_desc_kbatch_k0_m0_m1_k1
,
const
BGridDesc_B_K0_N0_N1_K1
b_grid_desc_kbatch_k0_n0_n1_k1
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
c_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetCPtrOffset
(
g_idx
)));
__shared__
FloatAB
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
FloatAB
)];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
,
HasDoubleTailKBlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_shared
,
a_grid_desc_kbatch_k0_m0_m1_k1
,
b_grid_desc_kbatch_k0_n0_n1_k1
,
c_grid_desc_m0_m10_m11_n0_n10_n11
,
block_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
}
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
AccDataType
,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ConvolutionBackwardWeightSpecialization
ConvBackwardWeightSpecialization
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
index_t
M1PerThread
,
index_t
N1PerThread
,
index_t
KPerThread
,
typename
M1N1ThreadClusterM1Xs
,
typename
M1N1ThreadClusterN1Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
:
public
DeviceGroupedConvBwdWeight
<
NDimSpatial
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWC
,
ck
::
tensor_layout
::
convolution
::
GNHWC
,
ck
::
tensor_layout
::
convolution
::
GNDHWC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GKXC
,
ck
::
tensor_layout
::
convolution
::
GKYXC
,
ck
::
tensor_layout
::
convolution
::
GKZYXC
>>
,
ck
::
tuple_element_t
<
NDimSpatial
-
1
,
ck
::
Tuple
<
ck
::
tensor_layout
::
convolution
::
GNWK
,
ck
::
tensor_layout
::
convolution
::
GNHWK
,
ck
::
tensor_layout
::
convolution
::
GNDHWK
>>
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementwiseOperation
,
WeiElementwiseOperation
,
OutElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl
;
using
ADataType
=
OutDataType
;
using
BDataType
=
InDataType
;
using
CDataType
=
WeiDataType
;
using
AElementwiseOperation
=
OutElementwiseOperation
;
using
BElementwiseOperation
=
InElementwiseOperation
;
using
CElementwiseOperation
=
WeiElementwiseOperation
;
// TODO make A/B datatype different
using
ABDataType
=
InDataType
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
I4
=
Number
<
4
>
{};
static
constexpr
auto
I5
=
Number
<
5
>
{};
static
constexpr
auto
K1Number
=
Number
<
K1
>
{};
static
constexpr
auto
GemmK1Number
=
K1Number
;
// Bytes per 32 lds bank: 32 * 4 bytes
static
constexpr
auto
BankLength
=
128
;
static
constexpr
auto
ElePerBank
=
BankLength
/
sizeof
(
ADataType
);
// M1 & M0
static
constexpr
auto
ABlockLdsM1PerBlock
=
ElePerBank
/
K1
;
static
constexpr
auto
ABlockLdsM0PerBlock
=
MPerBlock
/
ABlockLdsM1PerBlock
;
static
constexpr
auto
ABlockLdsM1Padding
=
4
;
// N1 & N0
static
constexpr
auto
BBlockLdsN1PerBlock
=
ElePerBank
/
K1
;
static
constexpr
auto
BBlockLdsN0PerBlock
=
NPerBlock
/
BBlockLdsN1PerBlock
;
static
constexpr
auto
BBlockLdsN1Padding
=
4
;
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Wi
=
input_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
0
];
const
index_t
GemmKTotal
=
N
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wi
,
C
));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weights tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
else
{
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Wo
,
K
));
const
auto
in_n_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Wi
,
C
));
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
const
auto
in_n_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// function end
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Hi
=
input_spatial_lengths
[
0
];
const
index_t
Wi
=
input_spatial_lengths
[
1
];
const
index_t
Ho
=
output_spatial_lengths
[
0
];
const
index_t
Wo
=
output_spatial_lengths
[
1
];
const
index_t
Y
=
filter_spatial_lengths
[
0
];
const
index_t
X
=
filter_spatial_lengths
[
1
];
const
index_t
InLeftPadH
=
input_left_pads
[
0
];
const
index_t
InLeftPadW
=
input_left_pads
[
1
];
const
index_t
InRightPadH
=
input_right_pads
[
0
];
const
index_t
InRightPadW
=
input_right_pads
[
1
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
1
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
1
];
const
index_t
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
X
*
Y
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Hi
*
Wi
,
C
));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
else
{
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
in_n_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Hi
,
Wi
,
C
));
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// function end
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
(
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
ck
::
index_t
batch_k
)
{
using
namespace
ck
;
const
index_t
Di
=
input_spatial_lengths
[
0
];
const
index_t
Hi
=
input_spatial_lengths
[
1
];
const
index_t
Wi
=
input_spatial_lengths
[
2
];
const
index_t
Do
=
output_spatial_lengths
[
0
];
const
index_t
Ho
=
output_spatial_lengths
[
1
];
const
index_t
Wo
=
output_spatial_lengths
[
2
];
const
index_t
Z
=
filter_spatial_lengths
[
0
];
const
index_t
Y
=
filter_spatial_lengths
[
1
];
const
index_t
X
=
filter_spatial_lengths
[
2
];
const
index_t
InLeftPadD
=
input_left_pads
[
0
];
const
index_t
InLeftPadH
=
input_left_pads
[
1
];
const
index_t
InLeftPadW
=
input_left_pads
[
2
];
const
index_t
InRightPadD
=
input_right_pads
[
0
];
const
index_t
InRightPadH
=
input_right_pads
[
1
];
const
index_t
InRightPadW
=
input_right_pads
[
2
];
const
index_t
ConvStrideD
=
conv_filter_strides
[
0
];
const
index_t
ConvStrideH
=
conv_filter_strides
[
1
];
const
index_t
ConvStrideW
=
conv_filter_strides
[
2
];
const
index_t
ConvDilationD
=
conv_filter_dilations
[
0
];
const
index_t
ConvDilationH
=
conv_filter_dilations
[
1
];
const
index_t
ConvDilationW
=
conv_filter_dilations
[
2
];
const
index_t
GemmKTotal
=
N
*
Do
*
Ho
*
Wo
;
const
index_t
GemmM
=
K
;
const
index_t
GemmN
=
C
*
Z
*
X
*
Y
;
const
index_t
GemmKBatch
=
batch_k
;
const
index_t
GemmK0
=
math
::
integer_divide_ceil
(
GemmKTotal
,
GemmK1Number
*
K0PerBlock
*
GemmKBatch
)
*
K0PerBlock
;
const
index_t
GemmKPad
=
GemmKBatch
*
GemmK0
*
GemmK1Number
;
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Di
*
Hi
*
Wi
,
C
));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Z
*
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
else
{
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Do
*
Ho
*
Wo
,
K
));
const
auto
in_n_di_hi_wi_c_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
Di
,
Hi
,
Wi
,
C
));
// A: output tensor
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_dip_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_di_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Di
,
InLeftPadD
,
InRightPadD
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}));
const
auto
in_n_z_do_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_dip_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Z
,
Do
),
make_tuple
(
ConvDilationD
,
ConvStrideD
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
,
6
>
{},
Sequence
<
7
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_z_do_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Z
,
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Do
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
,
7
>
{},
Sequence
<
0
,
2
,
4
,
6
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1Number
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Z
*
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// function end
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
1
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
1
>
(
1
,
1
,
1
,
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
{
1
},
1
);
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
2
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
2
>
(
1
,
1
,
1
,
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
{
1
,
1
},
1
);
}
template
<
ck
::
index_t
NDim
,
typename
ck
::
enable_if
<
NDim
==
3
,
bool
>
::
type
=
false
>
static
auto
GetABCGridDesc
()
{
return
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
3
>
(
1
,
1
,
1
,
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
{
1
,
1
,
1
},
1
);
}
using
ABCGridDescs
=
decltype
(
GetABCGridDesc
<
NDimSpatial
>
());
using
AGridDesc_B_K0_M_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I0
])
>
;
using
BGridDesc_B_K0_N_K1
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I1
])
>
;
using
CGridDesc_M_N
=
remove_cvref_t
<
decltype
(
ABCGridDescs
{}[
I2
])
>
;
using
GridwiseGemm
=
GridwiseGemmDl_bkm_bkn_mn_v1r3
<
BlockSize
,
ADataType
,
AccDataType
,
CDataType
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_B_K0_M_K1
,
BGridDesc_B_K0_N_K1
,
CGridDesc_M_N
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
K1
,
M1PerThread
,
N1PerThread
,
KPerThread
,
M1N1ThreadClusterM1Xs
,
M1N1ThreadClusterN1Xs
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
ABlockTransferSrcVectorTensorContiguousDimOrder
,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferSrcVectorTensorContiguousDimOrder
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
// Argument
using
AGridDesc_B_K0_M0_M1_K1
=
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_B_K0_M0_M1_K1
(
AGridDesc_B_K0_M_K1
{}));
using
BGridDesc_B_K0_N0_N1_K1
=
decltype
(
GridwiseGemm
::
MakeBGridDescriptor_B_K0_N0_N1_K1
(
BGridDesc_B_K0_N_K1
{}));
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
decltype
(
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
CGridDesc_M_N
{},
1
,
1
,
1
));
struct
Argument
:
public
BaseArgument
{
Argument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
ck
::
index_t
split_k
)
:
p_a_grid_
{
p_out_grid
},
p_b_grid_
{
p_in_grid
},
p_c_grid_
{
p_wei_grid
},
a_grid_desc_kbatch_k0_m_k1_
{},
b_grid_desc_kbatch_k0_n_k1_
{},
c_grid_desc_m_n_
{},
block_2_ctile_map_
{},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
out_element_op
},
b_element_op_
{
wei_element_op
},
c_element_op_
{
in_element_op
},
Conv_G_
{
G
},
Conv_N_
{
N
},
Conv_K_
{
K
},
Conv_C_
{
C
},
input_spatial_lengths_
{
input_spatial_lengths
},
filter_spatial_lengths_
{
filter_spatial_lengths
},
output_spatial_lengths_
{
output_spatial_lengths
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
},
k_batch_
{
split_k
}
{
const
auto
descs
=
DeviceOp
::
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N
<
NDimSpatial
>
(
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
k_batch_
);
a_grid_desc_kbatch_k0_m_k1_
=
descs
[
I0
];
b_grid_desc_kbatch_k0_n_k1_
=
descs
[
I1
];
c_grid_desc_m_n_
=
descs
[
I2
];
a_grid_desc_kbatch_k0_m0_m1_k1_
=
GridwiseGemm
::
MakeAGridDescriptor_B_K0_M0_M1_K1
(
a_grid_desc_kbatch_k0_m_k1_
);
b_grid_desc_kbatch_k0_n0_n1_k1_
=
GridwiseGemm
::
MakeBGridDescriptor_B_K0_N0_N1_K1
(
b_grid_desc_kbatch_k0_n_k1_
);
c_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
c_grid_desc_m_n_
);
ck
::
index_t
M01
=
1
;
ck
::
index_t
N01
=
1
;
block_2_ctile_map_
=
GridwiseGemm
::
MakeCBlockClusterAdaptor
(
c_grid_desc_m_n_
,
M01
,
N01
,
k_batch_
);
// A/B/C Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
N
*
K
*
std
::
accumulate
(
begin
(
output_spatial_lengths
),
end
(
output_spatial_lengths
),
index_t
{
1
},
std
::
multiplies
<>
{});
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
N
*
C
*
std
::
accumulate
(
begin
(
input_spatial_lengths
),
end
(
input_spatial_lengths
),
index_t
{
1
},
std
::
multiplies
<>
{});
compute_ptr_offset_of_batch_
.
BatchStrideC_
=
K
*
C
*
std
::
accumulate
(
begin
(
filter_spatial_lengths
),
end
(
filter_spatial_lengths
),
index_t
{
1
},
std
::
multiplies
<>
{});
}
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
AGridDesc_B_K0_M_K1
a_grid_desc_kbatch_k0_m_k1_
;
BGridDesc_B_K0_N_K1
b_grid_desc_kbatch_k0_n_k1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
AGridDesc_B_K0_M0_M1_K1
a_grid_desc_kbatch_k0_m0_m1_k1_
;
BGridDesc_B_K0_N0_N1_K1
b_grid_desc_kbatch_k0_n0_n1_k1_
;
CGridDesc_M0_M10_M11_N0_N10_N11
c_grid_desc_m0_m10_m11_n0_n10_n11_
;
// DefaultBlock2CTileMap block_2_ctile_map_;
Block2CTileMap
block_2_ctile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
compute_ptr_offset_of_batch_
;
// element-wise op
OutElementwiseOperation
a_element_op_
;
WeiElementwiseOperation
b_element_op_
;
InElementwiseOperation
c_element_op_
;
// for checking IsSupportedArgument()
index_t
Conv_G_
;
index_t
Conv_N_
;
index_t
Conv_K_
;
index_t
Conv_C_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads_
;
index_t
k_batch_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
void
ShowInfo
(
const
Argument
&
arg
)
{
std
::
cout
<<
"arg.a_grid_desc_kbatch_k0_m_k1_{"
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
a_grid_desc_kbatch_k0_m_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.b_grid_desc_kbatch_k0_n_k1_{"
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I1
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I2
)
<<
", "
<<
arg
.
b_grid_desc_kbatch_k0_n_k1_
.
GetLength
(
I3
)
<<
"}"
<<
std
::
endl
;
std
::
cout
<<
"arg.c_grid_desc_m_n_{ "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I0
)
<<
", "
<<
arg
.
c_grid_desc_m_n_
.
GetLength
(
I1
)
<<
"}"
<<
std
::
endl
;
}
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
ShowInfo
(
arg
);
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm GridwiseGemmDl_bkm_bkn_mn_v1r3 has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_ctile_map_
.
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
)
*
arg
.
Conv_G_
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
,
auto
has_double_tail_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
constexpr
bool
has_double_loop
=
has_double_tail_k_block_loop
.
value
;
const
auto
kernel
=
kernel_batched_gemm_dlops_bwd_weight
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
remove_reference_t
<
DeviceOp
::
AGridDesc_B_K0_M0_M1_K1
>
,
remove_reference_t
<
DeviceOp
::
BGridDesc_B_K0_N0_N1_K1
>
,
remove_reference_t
<
DeviceOp
::
CGridDesc_M0_M10_M11_N0_N10_N11
>
,
remove_reference_t
<
DeviceOp
::
Block2CTileMap
>
,
ComputePtrOffsetOfStridedBatch
,
has_main_loop
,
has_double_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
Conv_G_
,
arg
.
a_grid_desc_kbatch_k0_m0_m1_k1_
,
arg
.
b_grid_desc_kbatch_k0_n0_n1_k1_
,
arg
.
c_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
block_2_ctile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
const
auto
K0
=
arg
.
a_grid_desc_kbatch_k0_m0_m1_k1_
.
GetLength
(
I1
);
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K0
);
const
bool
has_double_tail_k_block_loop
=
GridwiseGemm
::
CalculateHasDoubleTailKBlockLoop
(
K0
);
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
{
return
false
;
}
if
constexpr
(
ConvBackwardWeightSpecialization
==
ConvolutionBackwardWeightSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 pad = 0 conv
for
(
int
i
=
0
;
i
<
NDimSpatial
;
i
++
)
{
if
(
!
(
arg
.
filter_spatial_lengths_
[
i
]
==
1
&&
arg
.
conv_filter_strides_
[
i
]
==
1
&&
arg
.
input_left_pads_
[
i
]
==
0
&&
arg
.
input_right_pads_
[
i
]
==
0
))
{
return
false
;
}
}
}
// matrix A
{
auto
srcVectorLengths
=
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
{};
if
(
srcVectorLengths
[
I2
]
!=
1
||
srcVectorLengths
[
I3
]
!=
1
)
{
return
false
;
}
if
(
K1
%
srcVectorLengths
[
I4
]
!=
0
||
K0PerBlock
%
srcVectorLengths
[
I1
]
!=
0
)
{
return
false
;
}
const
index_t
K
=
arg
.
Conv_K_
;
if
(
K
%
(
srcVectorLengths
[
I1
]
*
srcVectorLengths
[
I4
])
!=
0
)
{
return
false
;
}
}
// matrix B
{
auto
srcLoadLenghts
=
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
{};
auto
srcVectorLengths
=
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
{};
if
(
srcVectorLengths
[
I1
]
!=
1
||
srcVectorLengths
[
I4
]
!=
1
)
{
return
false
;
}
if
(
srcLoadLenghts
[
I2
]
%
srcVectorLengths
[
I2
]
!=
0
||
srcLoadLenghts
[
I3
]
%
srcVectorLengths
[
I3
]
!=
0
)
{
return
false
;
}
const
index_t
C
=
arg
.
Conv_K_
;
if
(
C
%
(
srcVectorLengths
[
I2
]
*
srcVectorLengths
[
I3
])
!=
0
)
{
return
false
;
}
}
// vector store C matrix into global memory
if
(
!
(
arg
.
Conv_C_
%
CThreadTransferDstScalarPerVector
==
0
))
{
std
::
cout
<<
"Not surpport,because: arg.Conv_C_ % CThreadTransferDstScalarPerVector = "
<<
arg
.
Conv_C_
%
CThreadTransferDstScalarPerVector
<<
std
::
endl
;
return
false
;
}
// Gridwise GEMM size
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_kbatch_k0_m_k1_
,
arg
.
b_grid_desc_kbatch_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
InDataType
*
p_in_grid
,
WeiDataType
*
p_wei_grid
,
const
OutDataType
*
p_out_grid
,
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
ck
::
index_t
split_k
)
{
return
Argument
{
p_in_grid
,
p_wei_grid
,
p_out_grid
,
G
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_in_grid
,
void
*
p_wei_grid
,
const
void
*
p_out_grid
,
ck
::
index_t
G
,
ck
::
index_t
N
,
ck
::
index_t
K
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
filter_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
ck
::
index_t
split_k
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
InDataType
*>
(
p_in_grid
),
static_cast
<
WeiDataType
*>
(
p_wei_grid
),
static_cast
<
const
OutDataType
*>
(
p_out_grid
),
G
,
N
,
K
,
C
,
input_spatial_lengths
,
filter_spatial_lengths
,
output_spatial_lengths
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
,
split_k
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvBwdWeightGnwcGkxcGnwk_Dl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
getConvBackwardWeightSpecializationString
(
ConvBackwardWeightSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_wmma_cshuffle.hpp
0 → 100644
View file @
8da05b38
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_wmma_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
// Assume:
// AK1 == BK1
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
K0PerBlock
,
ck
::
index_t
K1
,
ck
::
index_t
MPerWMMA
,
ck
::
index_t
NPerWMMA
,
ck
::
index_t
MRepeat
,
ck
::
index_t
NRepeat
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMRepeatPerShuffle
,
index_t
CShuffleNRepeatPerShuffle
,
typename
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
index_t
NumGemmKPrefetchStage
=
1
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
(),
ck
::
PipelineVersion
PipelineVer
=
ck
::
PipelineVersion
::
v1
>
struct
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD_Wmma_CShuffle
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
index_t
KPerBlock
=
K0PerBlock
*
K1
;
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_M_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
return
in_gemmm_gemmk_desc
;
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
return
wei_gemmn_gemmk_desc
;
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_M_K
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_N_K
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_N_K
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// A desc for source in blockwise copy
template
<
typename
AGridDesc_M_K
>
__host__
__device__
static
constexpr
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
AGridDesc_M_K
&
a_grid_desc_m_k
)
{
const
auto
M
=
a_grid_desc_m_k
.
GetLength
(
I0
);
const
auto
K
=
a_grid_desc_m_k
.
GetLength
(
I1
);
const
auto
AK1
=
K1
;
const
auto
AK0
=
K
/
AK1
;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
// B desc for source in blockwise copy
template
<
typename
BGridDesc_N_K
>
__host__
__device__
static
constexpr
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
BGridDesc_N_K
&
b_grid_desc_n_k
)
{
const
auto
N
=
b_grid_desc_n_k
.
GetLength
(
I0
);
const
auto
K
=
b_grid_desc_n_k
.
GetLength
(
I1
);
const
auto
BK1
=
K1
;
const
auto
BK0
=
K
/
BK1
;
return
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}));
using
BGridDesc_BK0_N_BK1
=
decltype
(
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}));
// GridwiseOp
using
GridwiseOp
=
GridwiseGemmMultipleD_k0mk1_k0nk1_mn_wmma_cshuffle
<
// DataType Family
ADataType
,
BDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
// InMemory Data Descriptor
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
DsGridDesc_M_N
,
EGridDesc_M_N
,
// ElementwiseOp Family
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
// Tiling Family
MPerBlock
,
NPerBlock
,
K0PerBlock
,
MPerWMMA
,
NPerWMMA
,
K1
,
MRepeat
,
NRepeat
,
// ThreadCluster Family
BlockSize
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMRepeatPerShuffle
,
CShuffleNRepeatPerShuffle
,
CDEShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEShuffleBlockTransferScalarPerVector_NPerBlock
,
NumGemmKPrefetchStage
,
LoopSched
,
PipelineVer
>
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
index_t
M01
,
index_t
N01
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseOp
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
,
M01
,
N01
)},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
ds_g_n_k_wos_lengths_
{
ds_g_n_k_wos_lengths
},
ds_g_n_k_wos_strides_
{
ds_g_n_k_wos_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
// using DLayout = remove_cvref_t<tuple_element_t<i.value, DsLayout>>;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
});
// D desc
ds_grid_desc_m_n_
=
DeviceOp
::
MakeDsGridDescriptor_M_N
(
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
);
// populate desc for Ds/E
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseOp
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseOp
::
MakeDsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
);
}
void
Print
()
const
{
std
::
cout
<<
"A[M, K]: "
<<
a_grid_desc_m_k_
<<
std
::
endl
;
std
::
cout
<<
"B[N, K]: "
<<
b_grid_desc_n_k_
<<
std
::
endl
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
std
::
cout
<<
"Ds[M, N]: "
<<
ds_grid_desc_m_n_
[
i
]
<<
std
::
endl
;
});
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseOp
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
typename
GridwiseOp
::
DefaultBlock2CTileMap
block_2_etile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
)
*
arg
.
num_group_
;
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_grouped_conv_fwd_multiple_d_wmma_cshuffle
<
GridwiseOp
,
ADataType
,
BDataType
,
typename
GridwiseOp
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseOp
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseOp
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
remove_reference_t
<
typename
GridwiseOp
::
DefaultBlock2CTileMap
>
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
if
(
GridwiseOp
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
get_device_name
()
==
"gfx1100"
)
{
if
constexpr
(
!
(
is_same_v
<
AccDataType
,
float
>
||
is_same_v
<
AccDataType
,
int32_t
>
))
{
return
false
;
}
}
else
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
2
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
!
(
ABlockTransferSrcVectorDim
==
2
&&
C
%
ABlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
!
(
BBlockTransferSrcVectorDim
==
2
&&
C
%
BBlockTransferSrcScalarPerVector
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of Ds
bool
valid
=
true
;
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
// FIXME: layout
if
constexpr
(
is_same_v
<
DLayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
DLayout
,
ctc
::
GNWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNHWK
>
||
is_same_v
<
DLayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
DLayout
,
ctc
::
NWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
NDHWGK
>
||
is_same_v
<
DLayout
,
ctc
::
GK
>
||
is_same_v
<
DLayout
,
ctc
::
G_K
>
)
{
const
index_t
K
=
arg
.
ds_g_n_k_wos_lengths_
[
i
][
2
];
if
(
!
(
K
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
valid
=
false
;
}
}
else
{
valid
=
false
;
}
});
if
(
!
valid
)
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CDEShuffleBlockTransferScalarPerVector_NPerBlock
==
0
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseOp
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
1
,
1
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdMultipleD_Wmma_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_normalization_impl.hpp
View file @
8da05b38
...
...
@@ -10,46 +10,11 @@
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_reduce.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_reduce_common.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_
w
el
ford_variance
.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_normalization_
s
el
ector
.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_set_buffer_value.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseReduction
,
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
YDataType
,
typename
AccDataType
,
typename
AccElementwiseOperation
,
typename
GridDesc_M_K
>
__global__
void
kernel_normalization
(
const
GridDesc_M_K
x_grid_desc_m_k
,
const
GridDesc_M_K
gamma_grid_desc_m_k
,
const
GridDesc_M_K
beta_grid_desc_m_k
,
const
GridDesc_M_K
y_grid_desc_m_k
,
index_t
num_k_block_tile_iteration
,
AccDataType
epsilon
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
GammaDataType
*
const
__restrict__
p_gamma_global
,
const
BetaDataType
*
const
__restrict__
p_beta_global
,
YDataType
*
const
__restrict__
p_y_global
,
const
AccElementwiseOperation
acc_elementwise_op
)
{
GridwiseReduction
::
Run
(
x_grid_desc_m_k
,
gamma_grid_desc_m_k
,
beta_grid_desc_m_k
,
y_grid_desc_m_k
,
num_k_block_tile_iteration
,
epsilon
,
p_x_global
,
p_gamma_global
,
p_beta_global
,
p_y_global
,
acc_elementwise_op
);
};
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
...
...
@@ -58,9 +23,9 @@ namespace device {
template
<
typename
XDataType
,
typename
GammaDataType
,
typename
BetaDataType
,
typename
Acc
DataType
,
typename
Compute
DataType
,
typename
YDataType
,
typename
Acc
ElementwiseOperation
,
typename
Y
ElementwiseOperation
,
index_t
Rank
,
index_t
NumReduceDim
,
index_t
BlockSize
,
...
...
@@ -74,16 +39,18 @@ template <typename XDataType,
index_t
GammaSrcVectorSize
,
index_t
BetaSrcVectorDim
,
index_t
BetaSrcVectorSize
,
index_t
YDstVectorSize
>
index_t
YDstVectorSize
,
bool
UseWelford
=
true
>
struct
DeviceNormalizationImpl
:
public
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
Acc
DataType
,
Compute
DataType
,
YDataType
,
Acc
ElementwiseOperation
,
Y
ElementwiseOperation
,
Rank
,
NumReduceDim
>
{
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
);
static_assert
(
((
GammaSrcVectorDim
==
0
&&
MThreadSliceSize
%
GammaSrcVectorSize
==
0
)
||
(
GammaSrcVectorDim
==
1
&&
KThreadSliceSize
%
GammaSrcVectorSize
==
0
)),
...
...
@@ -167,51 +134,6 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
using
GridDesc_M_K
=
decltype
(
MakeSrc2dDescriptor
({
1
},
{
1
},
1
,
1
));
using
GridwiseReduceLayernormGeneric
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
false
>
;
using
GridwiseNormalizationSweepOnce
=
GridwiseNormalizationWelfordVariance_mk_to_mk
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
true
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
vector
<
index_t
>
lengths
,
...
...
@@ -220,7 +142,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
const
std
::
vector
<
index_t
>
betaStrides
,
const
std
::
vector
<
index_t
>
yStrides
,
const
std
::
vector
<
index_t
>
reduceDims
,
Acc
ElementwiseOperation
acc
_elementwise_op
,
Y
ElementwiseOperation
y
_elementwise_op
,
double
epsilon
,
const
XDataType
*
p_x
,
const
GammaDataType
*
p_gamma
,
...
...
@@ -230,9 +152,9 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
p_gamma_
(
p_gamma
),
p_beta_
(
p_beta
),
p_y_
(
p_y
),
acc
_elementwise_op_
(
acc
_elementwise_op
)
y
_elementwise_op_
(
y
_elementwise_op
)
{
epsilon_
=
static_cast
<
Acc
DataType
>
(
epsilon
);
epsilon_
=
static_cast
<
Compute
DataType
>
(
epsilon
);
Lengths_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
lengths
,
reduceDims
);
xStrides_
=
shuffle_tensor_dimensions
<
Rank
,
NumReduceDim
>
(
xStrides
,
reduceDims
);
...
...
@@ -265,7 +187,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
x_grid_desc_m_k_
.
GetLength
(
Number
<
1
>
{})
<=
KThreadClusterSize
*
KThreadSliceSize
;
}
Acc
DataType
epsilon_
;
Compute
DataType
epsilon_
;
const
XDataType
*
p_x_
;
const
GammaDataType
*
p_gamma_
;
...
...
@@ -278,7 +200,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
std
::
vector
<
index_t
>
betaStrides_
;
std
::
vector
<
index_t
>
yStrides_
;
Acc
ElementwiseOperation
acc
_elementwise_op_
;
Y
ElementwiseOperation
y
_elementwise_op_
;
int
blkGroupSize_
;
int
numBlockTileIteration_
;
...
...
@@ -295,23 +217,27 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel_main
=
arg
.
isSweeponce_
?
kernel_normalization
<
GridwiseNormalizationSweepOnce
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
:
kernel_normalization
<
GridwiseReduceLayernormGeneric
,
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
AccDataType
,
AccElementwiseOperation
,
GridDesc_M_K
>
;
auto
kernel_main
=
NormalizationKernelSelector
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
ComputeDataType
,
YElementwiseOperation
,
GridDesc_M_K
,
BlockSize
,
MThreadClusterSize
,
KThreadClusterSize
,
MThreadSliceSize
,
KThreadSliceSize
,
XYSrcVectorDim
,
XSrcVectorSize
,
GammaSrcVectorDim
,
GammaSrcVectorSize
,
BetaSrcVectorDim
,
BetaSrcVectorSize
,
XYSrcVectorDim
,
YDstVectorSize
,
UseWelford
>
(
arg
.
isSweeponce_
);
float
avg_time
=
0
;
avg_time
+=
launch_and_time_kernel
(
stream_config
,
...
...
@@ -329,7 +255,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
arg
.
p_gamma_
,
arg
.
p_beta_
,
arg
.
p_y_
,
arg
.
acc
_elementwise_op_
);
arg
.
y
_elementwise_op_
);
return
(
avg_time
);
};
...
...
@@ -429,7 +355,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
void
*
p_y
,
void
*
p_saveMean
,
void
*
p_saveInvVar
,
Acc
ElementwiseOperation
acc
_elementwise_op
)
override
Y
ElementwiseOperation
y
_elementwise_op
)
override
{
// TODO
// Optional cache of the intermediate results (mean and InvVariance) during the
...
...
@@ -443,7 +369,7 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
betaStrides
,
yStrides
,
reduceDims
,
acc
_elementwise_op
,
y
_elementwise_op
,
epsilon
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
GammaDataType
*>
(
p_gamma
),
...
...
@@ -462,8 +388,8 @@ struct DeviceNormalizationImpl : public DeviceNormalization<XDataType,
// clang-format off
str
<<
"DeviceNormalizationImpl<"
<<
BlockSize
<<
","
;
str
<<
"
M_C
"
<<
MThreadClusterSize
<<
"_
S
"
<<
M
Thread
Slice
Size
<<
","
;
str
<<
"K_
C
"
<<
K
Thread
Cluster
Size
<<
"_
S
"
<<
KThreadSliceSize
<<
","
;
str
<<
"
Cluster_MK_
"
<<
MThreadClusterSize
<<
"_"
<<
K
Thread
Cluster
Size
<<
","
;
str
<<
"
Slice_M
K_"
<<
M
Thread
Slice
Size
<<
"_"
<<
KThreadSliceSize
<<
","
;
str
<<
"XYSrcVectorDim_"
<<
XYSrcVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_Gamma"
<<
GammaSrcVectorSize
<<
"_Beta"
<<
BetaSrcVectorSize
<<
"_Y"
<<
YDstVectorSize
<<
">"
;
// clang-format on
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
8da05b38
...
...
@@ -4,6 +4,7 @@
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -49,6 +50,14 @@ struct Add
y
=
x0
+
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
>
(
float
&
y
,
const
float
&
x0
,
const
bhalf_t
&
x1
)
const
{
const
float
x1_tmp
=
ck
::
type_convert
<
float
>
(
x1
);
y
=
x0
+
x1_tmp
;
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
>
(
bhalf_t
&
y
,
const
bhalf_t
&
x0
,
const
bhalf_t
&
x1
)
const
...
...
@@ -67,6 +76,30 @@ struct Add
};
};
struct
ScaleAdd
{
__host__
__device__
ScaleAdd
(
float
scale
)
:
scale_
(
scale
)
{}
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
y
,
const
X0
&
x0
,
const
X1
&
x1
)
const
;
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
,
half_t
>
(
float
&
y
,
const
float
&
x0
,
const
half_t
&
x1
)
const
{
y
=
scale_
*
x0
+
ck
::
type_convert
<
float
>
(
x1
);
};
template
<
>
__host__
__device__
void
operator
()
<
float
,
float
,
bhalf_t
>
(
float
&
y
,
const
float
&
x0
,
const
bhalf_t
&
x1
)
const
{
y
=
scale_
*
x0
+
ck
::
type_convert
<
float
>
(
x1
);
};
float
scale_
;
};
struct
Subtract
{
template
<
typename
T
>
...
...
@@ -118,6 +151,13 @@ struct Bilinear
template
<
typename
Y
,
typename
X0
,
typename
X1
>
__host__
__device__
constexpr
void
operator
()(
Y
&
,
const
X0
&
,
const
X1
&
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
double
,
double
,
double
>
(
double
&
y
,
const
double
&
x0
,
const
double
&
x1
)
const
{
y
=
alpha_
*
x0
+
beta_
*
x1
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
>
(
float
&
y
,
const
float
&
x0
,
const
float
&
x1
)
const
...
...
@@ -241,43 +281,42 @@ struct AddHardswish
};
};
// C = A * B
// E = FastGelu(C + D)
struct
AddFastGelu
{
// Fast GeLU
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
__host__
__device__
static
constexpr
float
GetFastGeLU
(
float
x
)
{
const
float
u
=
2.
f
*
x
*
(
0.035677
f
*
x
*
x
+
0.797885
f
);
const
float
emu
=
exp
(
-
u
);
const
float
cdf
=
0.5
f
+
0.5
f
*
(
2.
f
/
(
1.
f
+
emu
)
-
1.
f
);
return
x
*
cdf
;
}
template
<
typename
T
>
static
inline
constexpr
bool
is_valid_param_type_v
=
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
half_t
>
||
std
::
is_same_v
<
T
,
bhalf_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
;
template
<
typename
E
,
typename
C
,
typename
D
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D
&
d
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
>
(
float
&
e
,
const
float
&
c
,
const
float
&
d
)
const
{
static_assert
(
is_valid_param_type_v
<
E
>
&&
is_valid_param_type_v
<
C
>
&&
is_valid_param_type_v
<
D
>
);
const
float
x
=
c
+
d
;
const
float
y
=
GetFastGeLU
(
type_convert
<
float
>
(
c
)
+
type_convert
<
float
>
(
d
));
FastGelu
{}.
template
operator
()
<
float
,
float
>(
e
,
x
);
}
e
=
type_convert
<
E
>
(
y
);
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
>
(
half_t
&
e
,
const
half_t
&
c
,
const
half_t
&
d
)
const
{
const
half_t
x
=
c
+
d
;
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
half_t
,
half_t
>(
e
,
x
);
}
template
<
typename
D
>
__host__
__device__
constexpr
void
operator
()(
float
&
e
,
const
float
&
c
,
const
D
&
d
)
const
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
>
(
half_t
&
e
,
const
float
&
c
,
const
half_t
&
d
)
const
{
static_assert
(
is_valid_param_type_v
<
D
>
);
const
float
x0_f
=
c
+
d
;
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
float
,
float
>(
x1_f
,
x0_f
);
e
=
GetFastGeLU
(
c
+
type_convert
<
float
>
(
d
)
);
e
=
type_convert
<
half_t
>
(
x1_f
);
}
};
...
...
include/ck/tensor_operation/gpu/element/element_wise_operation.hpp
View file @
8da05b38
...
...
@@ -16,7 +16,7 @@ namespace element_wise {
// Need to ensure compiler will fail if there is no matching candidate, instead of compiler
// siliently do implicit type conversion
//
//
Method 1
:
//
Example
:
//
// struct ExampleElementwiseOp
// {
...
...
@@ -30,19 +30,6 @@ namespace element_wise {
// {
// }
// };
//
// Method 2:
//
// template <typename Y, typename X>
// struct ExampleElementwiseOp;
//
// template <>
// struct ExampleElementwiseOp<float, ck::bhalf_t>
// {
// __host__ __device__ void operator()(float& y, ck::bhalf_t& x) const
// {
// }
// };
struct
AddReluAdd
{
...
...
@@ -208,41 +195,74 @@ struct AddMultiply
}
};
// C = A * B
// E = FastGelu(C + D0 + D1)
struct
AddAddFastGelu
{
// Fast GeLU
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
__host__
__device__
static
constexpr
float
GetFastGeLU
(
float
x
)
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
float
,
float
,
float
,
float
>
(
float
&
e
,
const
float
&
c
,
const
float
&
d0
,
const
float
&
d1
)
const
{
const
float
u
=
2.
f
*
x
*
(
0.035677
f
*
x
*
x
+
0.797885
f
);
const
float
emu
=
exp
(
-
u
);
const
float
cdf
=
0.5
f
+
0.5
f
*
(
2.
f
/
(
1.
f
+
emu
)
-
1.
f
);
return
x
*
cdf
;
const
float
x
=
c
+
d0
+
d1
;
FastGelu
{}.
template
operator
()
<
float
,
float
>(
e
,
x
);
}
template
<
typename
T
>
static
inline
constexpr
bool
is_valid_param_type_v
=
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
half_t
>
||
std
::
is_same_v
<
T
,
bhalf_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
||
std
::
is_same_v
<
T
,
ck
::
int4_t
>
#endif
;
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
half_t
,
half_t
,
half_t
>
(
half_t
&
e
,
const
half_t
&
c
,
const
half_t
&
d0
,
const
half_t
&
d1
)
const
{
const
half_t
x
=
c
+
d0
+
d1
;
template
<
typename
E
,
typename
C
,
typename
D0
,
typename
D1
>
__host__
__device__
constexpr
void
operator
()(
E
&
e
,
const
C
&
c
,
const
D0
&
d0
,
const
D1
&
d1
)
const
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
half_t
,
half_t
>(
e
,
x
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
half_t
,
float
,
half_t
,
half_t
>
(
half_t
&
e
,
const
float
&
c
,
const
half_t
&
d0
,
const
half_t
&
d1
)
const
{
static_assert
(
is_valid_param_type_v
<
E
>
&&
is_valid_param_type_v
<
C
>
&&
is_valid_param_type_v
<
D0
>
&&
is_valid_param_type_v
<
D1
>
);
const
float
x0_f
=
c
+
d0
+
d1
;
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
float
,
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
half_t
>
(
x1_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
bhalf_t
,
float
,
bhalf_t
,
bhalf_t
>
(
bhalf_t
&
e
,
const
float
&
c
,
const
bhalf_t
&
d0
,
const
bhalf_t
&
d1
)
const
{
const
float
x0_f
=
c
+
type_convert
<
float
>
(
d0
)
+
type_convert
<
float
>
(
d1
);
float
x1_f
=
0
;
ck
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
float
,
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
bhalf_t
>
(
x1_f
);
}
template
<
>
__host__
__device__
constexpr
void
operator
()
<
int8_t
,
int32_t
,
int8_t
,
int8_t
>
(
int8_t
&
e
,
const
int32_t
&
c
,
const
int8_t
&
d0
,
const
int8_t
&
d1
)
const
{
const
float
x0_f
=
type_convert
<
float
>
(
c
)
+
type_convert
<
float
>
(
d0
)
+
type_convert
<
float
>
(
d1
);
float
x1_f
=
0
;
c
onst
float
y
=
GetFastGeLU
(
type_convert
<
float
>
(
c
)
+
type_convert
<
float
>
(
d0
)
+
type_convert
<
float
>
(
d1
)
);
c
k
::
tensor_operation
::
element_wise
::
FastGelu
{}.
template
operator
()
<
float
,
float
>(
x1_f
,
x0_f
);
e
=
type_convert
<
E
>
(
y
);
e
=
type_convert
<
int8_t
>
(
x1_f
);
}
};
...
...
include/ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp
View file @
8da05b38
...
...
@@ -11,6 +11,10 @@ namespace ck {
namespace
tensor_operation
{
namespace
element_wise
{
#if CK_WORKAROUND_SWDEV_383542
extern
"C"
__device__
float
__ocml_native_recip_f32
(
float
);
#endif
struct
PassThrough
{
template
<
typename
Y
,
typename
X
>
...
...
@@ -95,6 +99,12 @@ struct Scale
y
=
scale_
*
x
;
};
template
<
>
__host__
__device__
void
operator
()
<
double
,
double
>
(
double
&
y
,
const
double
&
x
)
const
{
y
=
scale_
*
x
;
};
float
scale_
;
};
...
...
@@ -194,36 +204,83 @@ struct Relu
}
};
// Y = FastGelu(X)
// Fast GeLU
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
// host code use higher accuracy "exp" and "div"
// gpu code use lower accuracy "__expf" and "rcp" function
struct
FastGelu
{
// Fast GeLU
// https://paperswithcode.com/method/gelu
// y = 0.5*x*(1+tanh(sqrt(2/pi)*(x+0.044715*x^3)))
__host__
__device__
static
constexpr
float
GetFastGeLU
(
float
x
)
template
<
typename
Y
,
typename
X
>
__host__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
typename
Y
,
typename
X
>
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
;
template
<
>
__host__
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
const
float
u
=
2.
f
*
x
*
(
0.035677
f
*
x
*
x
+
0.797885
f
);
const
float
emu
=
exp
(
-
u
);
const
float
cdf
=
0.5
f
+
0.5
f
*
(
2.
f
/
(
1.
f
+
emu
)
-
1.
f
);
return
x
*
cdf
;
y
=
x
*
cdf
;
}
template
<
typename
T
>
static
inline
constexpr
bool
is_valid_param_type_v
=
std
::
is_same_v
<
T
,
float
>
||
std
::
is_same_v
<
T
,
half_t
>
||
std
::
is_same_v
<
T
,
bhalf_t
>
||
std
::
is_same_v
<
T
,
int32_t
>
||
std
::
is_same_v
<
T
,
int8_t
>
#ifdef CK_EXPERIMENTAL_BIT_INT_EXTENSION_INT4
||
std
::
is_same_v
<
T
,
ck
::
int4_t
>
// device code, use lower precision "__expf" and "rcp"
template
<
>
__device__
void
operator
()
<
float
,
float
>
(
float
&
y
,
const
float
&
x
)
const
{
const
float
u
=
2.
f
*
x
*
(
0.035677
f
*
x
*
x
+
0.797885
f
);
const
float
emu
=
__expf
(
-
u
);
#if !CK_WORKAROUND_SWDEV_383542
const
float
cdf
=
0.5
f
+
0.5
f
*
(
2.
f
*
__frcp_rn
(
1.
f
+
emu
)
-
1.
f
);
#else
const
float
cdf
=
0.5
f
+
0.5
f
*
(
2.
f
*
__ocml_native_recip_f32
(
1.
f
+
emu
)
-
1.
f
);
#endif
;
template
<
typename
Y
,
typename
X
>
__host__
__device__
void
operator
()(
Y
&
y
,
const
X
&
x
)
const
y
=
x
*
cdf
;
}
template
<
>
__host__
void
operator
()
<
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
half_t
>
(
y_f
);
}
template
<
>
__device__
void
operator
()
<
half_t
,
half_t
>
(
half_t
&
y
,
const
half_t
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
type_convert
<
float
>
(
x
));
y
=
type_convert
<
half_t
>
(
y_f
);
}
template
<
>
__host__
void
operator
()
<
half_t
,
float
>
(
half_t
&
y
,
const
float
&
x
)
const
{
static_assert
(
is_valid_param_type_v
<
Y
>
&&
is_valid_param_type_v
<
X
>
);
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
y
=
type_convert
<
half_t
>
(
y_f
);
}
template
<
>
__device__
void
operator
()
<
half_t
,
float
>
(
half_t
&
y
,
const
float
&
x
)
const
{
float
y_f
;
this
->
operator
()
<
float
,
float
>
(
y_f
,
x
);
const
float
tmp_y
=
GetFastGeLU
(
type_convert
<
float
>
(
x
));
y
=
type_convert
<
Y
>
(
tmp_y
);
y
=
type_convert
<
half_t
>
(
y_f
);
}
};
...
...
Prev
1
2
3
4
5
6
7
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment