Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8ce9fe57
Commit
8ce9fe57
authored
May 01, 2022
by
carlushuang
Browse files
remove useless comment, add several new config for multi thread
parent
b8ba0239
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
383 additions
and
354 deletions
+383
-354
include/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
...ude/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
+0
-8
include/ck/tensor_operation/cpu/grid/gridwise_gemm_avx2.hpp
include/ck/tensor_operation/cpu/grid/gridwise_gemm_avx2.hpp
+24
-36
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
.../threadwise_tensor_slice_transfer_avx2_specialization.hpp
+4
-43
library/src/host_tensor/device.cpp
library/src/host_tensor/device.cpp
+21
-10
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
...2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
+54
-3
profiler/include/profile_conv_fwd_cpu_impl.hpp
profiler/include/profile_conv_fwd_cpu_impl.hpp
+258
-252
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
+22
-2
No files found.
include/ck/tensor_operation/cpu/block/blockwise_gemm_avx2.hpp
View file @
8ce9fe57
...
@@ -213,9 +213,6 @@ struct BlockwiseGemmAvx2_MxN
...
@@ -213,9 +213,6 @@ struct BlockwiseGemmAvx2_MxN
auto
current_mr
=
ck
::
math
::
min
(
m_per_block
-
i_m
,
m_per_thread
);
auto
current_mr
=
ck
::
math
::
min
(
m_per_block
-
i_m
,
m_per_thread
);
param
.
p_a
=
&
a_block_buf
.
p_data_
[
GetABlockStartOffset
(
a_block_desc
,
i_m
,
0
)];
param
.
p_a
=
&
a_block_buf
.
p_data_
[
GetABlockStartOffset
(
a_block_desc
,
i_m
,
0
)];
// printf("YYYY: %d, i_m:%d, current_mr:%d, %d, %p\n",__LINE__, i_m, current_mr,
// GetABlockStartOffset(a_block_desc, i_m, 0), param.p_a);fflush(stdout);
for
(
ck
::
index_t
i_n
=
0
;
i_n
<
n_per_block
;
i_n
+=
n_per_thread
)
for
(
ck
::
index_t
i_n
=
0
;
i_n
<
n_per_block
;
i_n
+=
n_per_thread
)
{
{
auto
current_nr
=
ck
::
math
::
min
(
n_per_block
-
i_n
,
n_per_thread
);
auto
current_nr
=
ck
::
math
::
min
(
n_per_block
-
i_n
,
n_per_thread
);
...
@@ -223,11 +220,6 @@ struct BlockwiseGemmAvx2_MxN
...
@@ -223,11 +220,6 @@ struct BlockwiseGemmAvx2_MxN
param
.
p_b
=
&
b_block_buf
.
p_data_
[
GetBBlockStartOffset
(
b_block_desc
,
0
,
i_n
)];
param
.
p_b
=
&
b_block_buf
.
p_data_
[
GetBBlockStartOffset
(
b_block_desc
,
0
,
i_n
)];
param
.
p_c
=
&
c_buf
.
p_data_
[
GetCBlockStartOffset
(
c_desc
,
i_m
,
i_n
)];
param
.
p_c
=
&
c_buf
.
p_data_
[
GetCBlockStartOffset
(
c_desc
,
i_m
,
i_n
)];
// printf("YYYY: %d, i_n:%d, current_nr:%d, %d, %p, C:%d, %p\n",__LINE__, i_n,
// current_nr, GetBBlockStartOffset(b_block_desc, 0, i_n), param.p_b,
// GetCBlockStartOffset(c_desc, i_m, i_n),
// param.p_c);fflush(stdout);
ThreadwiseGemm_Dispatch
::
Run
(
&
param
,
current_mr
,
current_nr
);
ThreadwiseGemm_Dispatch
::
Run
(
&
param
,
current_mr
,
current_nr
);
}
}
}
}
...
...
include/ck/tensor_operation/cpu/grid/gridwise_gemm_avx2.hpp
View file @
8ce9fe57
...
@@ -12,6 +12,7 @@
...
@@ -12,6 +12,7 @@
#include <utility>
#include <utility>
#include <unistd.h>
#include <unistd.h>
#include <omp.h>
#include <omp.h>
#include <pthread.h>
namespace
ck
{
namespace
ck
{
namespace
cpu
{
namespace
cpu
{
...
@@ -193,6 +194,23 @@ struct GridwiseGemmAvx2_MxN
...
@@ -193,6 +194,23 @@ struct GridwiseGemmAvx2_MxN
int
total_threads
=
omp_get_max_threads
();
int
total_threads
=
omp_get_max_threads
();
#if 0
if(total_threads > 1){
#pragma omp parallel
{
int tid = omp_get_thread_num();
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(tid, &set);
if (sched_setaffinity(0, sizeof(set), &set) == -1) {
throw std::runtime_error("wrong! fail to set thread affinity");
}
}
}
#endif
// TODO: openmp aware ordering
// TODO: openmp aware ordering
//
//
if
constexpr
(
std
::
is_same
<
BlockMNKAccessOrder
,
ck
::
Sequence
<
0
,
1
,
2
>>::
value
)
if
constexpr
(
std
::
is_same
<
BlockMNKAccessOrder
,
ck
::
Sequence
<
0
,
1
,
2
>>::
value
)
...
@@ -234,8 +252,9 @@ struct GridwiseGemmAvx2_MxN
...
@@ -234,8 +252,9 @@ struct GridwiseGemmAvx2_MxN
MemAlignmentByte
);
MemAlignmentByte
);
DeviceAlignedMemCPU
b_block_mem
(
k_per_block
*
n_per_block
*
sizeof
(
FloatB
),
DeviceAlignedMemCPU
b_block_mem
(
k_per_block
*
n_per_block
*
sizeof
(
FloatB
),
MemAlignmentByte
);
MemAlignmentByte
);
DeviceAlignedMemCPU
c_block_mem
(
m_per_block
*
n_per_block
*
sizeof
(
FloatC
),
DeviceAlignedMemCPU
c_block_mem
(
MemAlignmentByte
);
UseCLocalBuffer
?
(
m_per_block
*
n_per_block
*
sizeof
(
FloatC
))
:
0
,
MemAlignmentByte
);
auto
a_block_buf
=
ck
::
cpu
::
make_dynamic_buffer
<
ck
::
AddressSpaceEnum
::
Global
>
(
auto
a_block_buf
=
ck
::
cpu
::
make_dynamic_buffer
<
ck
::
AddressSpaceEnum
::
Global
>
(
reinterpret_cast
<
FloatA
*>
(
a_block_mem
.
mpDeviceBuf
),
reinterpret_cast
<
FloatA
*>
(
a_block_mem
.
mpDeviceBuf
),
...
@@ -298,26 +317,9 @@ struct GridwiseGemmAvx2_MxN
...
@@ -298,26 +317,9 @@ struct GridwiseGemmAvx2_MxN
auto
a_block_desc
=
GetABlockDescriptor
(
mc_size
,
kc_size
);
auto
a_block_desc
=
GetABlockDescriptor
(
mc_size
,
kc_size
);
auto
b_block_desc
=
GetBBlockDescriptor
(
kc_size
,
nc_size
);
auto
b_block_desc
=
GetBBlockDescriptor
(
kc_size
,
nc_size
);
// printf("[tid:%d]==> i_m:%d, i_n:%d, i_k:%d, mc:%d, nc:%d, kc:%d(%d,
// %d)\n", tid, i_mc,
// i_nc, i_kc, mc_size, nc_size, kc_size, KPerBlock, GemmK); fflush(stdout);
a_threadwise_copy
.
Run
(
a_grid_desc
,
a_grid_buf
,
a_block_desc
,
a_block_buf
);
a_threadwise_copy
.
Run
(
a_grid_desc
,
a_grid_buf
,
a_block_desc
,
a_block_buf
);
b_threadwise_copy
.
Run
(
b_grid_desc
,
b_grid_buf
,
b_block_desc
,
b_block_buf
);
b_threadwise_copy
.
Run
(
b_grid_desc
,
b_grid_buf
,
b_block_desc
,
b_block_buf
);
// for(auto i_elem = 0; i_elem < (mc_size * kc_size) ; i_elem++){
// printf("A ==> %3d : %f(0x%08x)\n", i_elem,
// (reinterpret_cast<float*>(a_block_buf.p_data_))[i_elem],
// (reinterpret_cast<uint32_t*>(a_block_buf.p_data_))[i_elem]);
//}
// for(auto i_elem = 0; i_elem < (kc_size * nc_size) ; i_elem++){
// printf("B ==> %3d : %f(0x%08x)\n", i_elem,
// (reinterpret_cast<float*>(b_block_buf.p_data_))[i_elem],
// (reinterpret_cast<uint32_t*>(b_block_buf.p_data_))[i_elem]);
// }
// printf("[%d] 2222 \n",__LINE__);
blockwise_gemm
.
Run
(
a_block_desc
,
blockwise_gemm
.
Run
(
a_block_desc
,
a_block_buf
,
a_block_buf
,
make_zero_multi_index
<
a_block_copy_dim
>
(),
make_zero_multi_index
<
a_block_copy_dim
>
(),
...
@@ -329,28 +331,13 @@ struct GridwiseGemmAvx2_MxN
...
@@ -329,28 +331,13 @@ struct GridwiseGemmAvx2_MxN
make_zero_multi_index
<
2
>
(),
make_zero_multi_index
<
2
>
(),
i_kc
!=
0
);
i_kc
!=
0
);
// printf("[%d] 2222 \n",__LINE__);
if
((
i_kc
+
k_per_block
)
<
GemmK
)
if
((
i_kc
+
k_per_block
)
<
GemmK
)
{
{
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_move_k_step
);
a_threadwise_copy
.
MoveSrcSliceWindow
(
a_grid_desc
,
a_move_k_step
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_move_k_step
);
b_threadwise_copy
.
MoveSrcSliceWindow
(
b_grid_desc
,
b_move_k_step
);
}
}
// printf("[%d] 2222 \n",__LINE__);
// for(auto i_elem = 0; i_elem < (10) ; i_elem++){
// printf("C ==> %3d : %f(0x%08x)\n", i_elem,
// (reinterpret_cast<float*>(c_block_buf.p_data_))[i_elem],
// (reinterpret_cast<uint32_t*>(c_block_buf.p_data_))[i_elem]);
// }
}
}
// for(auto i_elem = 0; i_elem < (c_block_mem.mMemSize / sizeof(FloatC)) ;
// i_elem++){
// printf("C ==> %3d : %f(0x%08x)\n", i_elem,
// (reinterpret_cast<float*>(c_block_buf.p_data_))[i_elem],
// (reinterpret_cast<uint32_t*>(c_block_buf.p_data_))[i_elem]);
// }
if
constexpr
(
UseCLocalBuffer
)
if
constexpr
(
UseCLocalBuffer
)
c_threadwise_copy
.
Run
(
c_block_desc
,
c_block_buf
,
c_grid_desc
,
c_grid_buf
);
c_threadwise_copy
.
Run
(
c_block_desc
,
c_block_buf
,
c_grid_desc
,
c_grid_buf
);
}
}
...
@@ -396,8 +383,9 @@ struct GridwiseGemmAvx2_MxN
...
@@ -396,8 +383,9 @@ struct GridwiseGemmAvx2_MxN
MemAlignmentByte
);
MemAlignmentByte
);
DeviceAlignedMemCPU
b_block_mem
(
k_per_block
*
n_per_block
*
sizeof
(
FloatB
),
DeviceAlignedMemCPU
b_block_mem
(
k_per_block
*
n_per_block
*
sizeof
(
FloatB
),
MemAlignmentByte
);
MemAlignmentByte
);
DeviceAlignedMemCPU
c_block_mem
(
m_per_block
*
n_per_block
*
sizeof
(
FloatC
),
DeviceAlignedMemCPU
c_block_mem
(
MemAlignmentByte
);
UseCLocalBuffer
?
(
m_per_block
*
n_per_block
*
sizeof
(
FloatC
))
:
0
,
MemAlignmentByte
);
auto
a_block_buf
=
ck
::
cpu
::
make_dynamic_buffer
<
ck
::
AddressSpaceEnum
::
Global
>
(
auto
a_block_buf
=
ck
::
cpu
::
make_dynamic_buffer
<
ck
::
AddressSpaceEnum
::
Global
>
(
reinterpret_cast
<
FloatA
*>
(
a_block_mem
.
mpDeviceBuf
),
reinterpret_cast
<
FloatA
*>
(
a_block_mem
.
mpDeviceBuf
),
...
...
include/ck/tensor_operation/cpu/thread/threadwise_tensor_slice_transfer_avx2_specialization.hpp
View file @
8ce9fe57
...
@@ -349,9 +349,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -349,9 +349,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
src_offset
=
i_n
*
Hi
*
Wi
*
C
+
i_hi
*
Wi
*
C
+
i_wi
*
C
+
i_c
;
src_offset
=
i_n
*
Hi
*
Wi
*
C
+
i_hi
*
Wi
*
C
+
i_wi
*
C
+
i_c
;
i_gemm_k
=
idx_k
;
i_gemm_k
=
idx_k
;
// printf("[%d] i_wo:%d, i_ho:%d, i_wi:%d, i_hi:%d, src_offset:%d\n",
// __LINE__, i_wo, i_ho, i_wi, i_hi, src_offset);
}
}
}
}
...
@@ -447,7 +444,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -447,7 +444,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
if
(
i_ho_itr
>=
Ho
)
if
(
i_ho_itr
>=
Ho
)
{
{
i_ho_itr
=
0
;
i_ho_itr
=
0
;
// i_n++;
p_src
+=
input_offset_ovf_hi_acc_n
;
p_src
+=
input_offset_ovf_hi_acc_n
;
}
}
...
@@ -468,26 +464,8 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -468,26 +464,8 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
ck
::
index_t
i_wi_itr
=
i_wi
;
ck
::
index_t
i_wi_itr
=
i_wi
;
ck
::
index_t
i_hi_itr
=
i_hi
;
ck
::
index_t
i_hi_itr
=
i_hi
;
// printf("[%d] i_m_itr:%d, i_wo_itr:%d, i_ho_itr:%d, i_wi_itr:%d, i_hi_itr:%d,
// src_offset:%d, input_offset_acc_wi:%d,
// input_offset_ovf_wi_acc_hi:%d,input_offset_ovf_hi_acc_n:%d, %p(%p)\n",
// __LINE__, i_m_itr, i_wo_itr, i_ho_itr, i_wi_itr, i_hi_itr,
// src_offset, input_offset_acc_wi, input_offset_ovf_wi_acc_hi,
// input_offset_ovf_hi_acc_n, src_buf.p_data_, p_src);
// printf("%p %p %p, %d, %x, %p\n",src_buf.p_data_, reinterpret_cast<const
// float*>(src_buf.p_data_) + 1, reinterpret_cast<const float*>(src_buf.p_data_)
// + ck::index_t(-1),
// sizeof(src_offset), *reinterpret_cast<uint32_t*>(&src_offset),
// reinterpret_cast<const float*>(src_buf.p_data_) + (-1088));
while
(
i_m_itr
>
0
)
while
(
i_m_itr
>
0
)
{
{
// printf("[%d] i_m_itr:%d, i_wo_itr:%d, i_ho_itr:%d, i_wi_itr:%d,
// i_hi_itr:%d, src_offset:%d -> %p\n",
// __LINE__, i_m_itr, i_wo_itr, i_ho_itr, i_wi_itr, i_hi_itr, src_offset,
// p_src);
if
((
*
reinterpret_cast
<
uint32_t
*>
(
&
i_hi_itr
)
<
Hi
)
&&
if
((
*
reinterpret_cast
<
uint32_t
*>
(
&
i_hi_itr
)
<
Hi
)
&&
(
*
reinterpret_cast
<
uint32_t
*>
(
&
i_wi_itr
)
<
Wi
))
(
*
reinterpret_cast
<
uint32_t
*>
(
&
i_wi_itr
)
<
Wi
))
avx2_util
::
memcpy32_avx2
(
p_dst
,
p_src
,
k_per_block
);
avx2_util
::
memcpy32_avx2
(
p_dst
,
p_src
,
k_per_block
);
...
@@ -512,14 +490,11 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -512,14 +490,11 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
{
{
i_ho_itr
=
0
;
i_ho_itr
=
0
;
i_hi_itr
-=
Ho
*
Sy
;
i_hi_itr
-=
Ho
*
Sy
;
// i_n++;
p_src
+=
input_offset_ovf_hi_acc_n
;
p_src
+=
input_offset_ovf_hi_acc_n
;
}
}
i_m_itr
--
;
i_m_itr
--
;
}
}
// printf("[%d] \n", __LINE__);
}
}
else
else
{
{
...
@@ -538,8 +513,8 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -538,8 +513,8 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
ck
::
index_t
i_wi_itr_k
=
i_wi_itr
;
ck
::
index_t
i_wi_itr_k
=
i_wi_itr
;
ck
::
index_t
i_hi_itr_k
=
i_hi_itr
;
ck
::
index_t
i_hi_itr_k
=
i_hi_itr
;
ck
::
index_t
i_c_itr_k
=
i_c
;
ck
::
index_t
i_c_itr_k
=
i_c
;
ck
::
index_t
i_y_itr_k
=
i_y
;
//
ck::index_t i_y_itr_k = i_y;
ck
::
index_t
i_x_itr_k
=
i_x
;
ck
::
index_t
i_x_itr_k
=
i_x
;
ck
::
index_t
i_k_itr
=
k_per_block
;
ck
::
index_t
i_k_itr
=
k_per_block
;
while
(
i_k_itr
>
0
)
while
(
i_k_itr
>
0
)
...
@@ -566,7 +541,7 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -566,7 +541,7 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
if
(
i_x_itr_k
>=
Fx
)
if
(
i_x_itr_k
>=
Fx
)
{
{
i_x_itr_k
=
0
;
i_x_itr_k
=
0
;
i_y_itr_k
++
;
//
i_y_itr_k++;
i_wi_itr_k
-=
Dx
*
Fx
;
i_wi_itr_k
-=
Dx
*
Fx
;
i_hi_itr_k
+=
Dy
;
i_hi_itr_k
+=
Dy
;
p_src_k
+=
input_offset_ovf_x_acc_y
;
p_src_k
+=
input_offset_ovf_x_acc_y
;
...
@@ -594,7 +569,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -594,7 +569,6 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
{
{
i_ho_itr
=
0
;
i_ho_itr
=
0
;
i_hi_itr
-=
Ho
*
Sy
;
i_hi_itr
-=
Ho
*
Sy
;
// i_n++;
p_src
+=
input_offset_ovf_hi_acc_n
;
p_src
+=
input_offset_ovf_hi_acc_n
;
}
}
...
@@ -626,40 +600,27 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
...
@@ -626,40 +600,27 @@ struct ThreadwiseTensorSliceTransferAvx2Specialization_ConvFwd_In_NHWC
if
constexpr
(
GemmKSpecialization
==
if
constexpr
(
GemmKSpecialization
==
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
)
ConvolutionForwardGemmKSpecialization_t
::
NHWC_GemmKLoopOverC
)
{
{
// c % k_per_block == 0, so every time k_per_block here is the same
// ihi = iho * s_stride_h + iy * s_dilation_h - s_pad_h
// iwi = iwo * s_stride_w + ix * s_dilation_w - s_pad_w
// printf("222222 C:%d, src_offset:%d, i_c:%d, i_x:%d\n", C, src_offset, i_c, i_x);
// fflush(stdout);
// TODO: branch seems weird
// TODO: branch seems weird
i_c
+=
move_k
;
i_c
+=
move_k
;
src_offset
+=
move_k
;
src_offset
+=
move_k
;
// printf("3333[%d] src_offset:%d\n", __LINE__, src_offset);
if
(
i_c
>=
C
)
if
(
i_c
>=
C
)
{
{
i_c
=
0
;
i_c
=
0
;
i_x
++
;
i_x
++
;
i_wi
+=
Dx
;
i_wi
+=
Dx
;
src_offset
+=
Dx
*
C
-
C
;
src_offset
+=
Dx
*
C
-
C
;
// printf("3333[%d] src_offset:%d\n", __LINE__, src_offset);
}
}
if
(
i_x
>=
Fx
)
if
(
i_x
>=
Fx
)
{
{
i_x
=
0
;
i_x
=
0
;
i_y
++
;
//
i_y++;
i_wi
=
i_wi
-
Fx
*
Dx
;
i_wi
=
i_wi
-
Fx
*
Dx
;
i_hi
+=
Dy
;
i_hi
+=
Dy
;
src_offset
+=
Dy
*
Wi
*
C
-
Fx
*
Dx
*
C
;
src_offset
+=
Dy
*
Wi
*
C
-
Fx
*
Dx
*
C
;
// printf("3333[%d] src_offset:%d\n", __LINE__, src_offset);
}
}
// printf("inp move:%d, i_c:%d, i_hi:%d, i_wi:%d src_offset:%d\n", move_k, i_c,
// i_hi, i_wi, src_offset); fflush(stdout);
}
}
else
else
{
{
...
...
library/src/host_tensor/device.cpp
View file @
8ce9fe57
...
@@ -28,17 +28,24 @@ DeviceMem::~DeviceMem() { hipGetErrorString(hipFree(mpDeviceBuf)); }
...
@@ -28,17 +28,24 @@ DeviceMem::~DeviceMem() { hipGetErrorString(hipFree(mpDeviceBuf)); }
DeviceAlignedMemCPU
::
DeviceAlignedMemCPU
(
std
::
size_t
mem_size
,
std
::
size_t
alignment
)
DeviceAlignedMemCPU
::
DeviceAlignedMemCPU
(
std
::
size_t
mem_size
,
std
::
size_t
alignment
)
:
mMemSize
(
mem_size
),
mAlignment
(
alignment
)
:
mMemSize
(
mem_size
),
mAlignment
(
alignment
)
{
{
assert
(
!
(
alignment
==
0
||
(
alignment
&
(
alignment
-
1
))));
// check pow of 2
if
(
mem_size
==
0
)
{
mpDeviceBuf
=
nullptr
;
}
else
{
assert
(
!
(
alignment
==
0
||
(
alignment
&
(
alignment
-
1
))));
// check pow of 2
void
*
p1
;
void
*
p1
;
void
**
p2
;
void
**
p2
;
int
offset
=
alignment
-
1
+
sizeof
(
void
*
);
int
offset
=
alignment
-
1
+
sizeof
(
void
*
);
p1
=
malloc
(
mem_size
+
offset
);
p1
=
malloc
(
mem_size
+
offset
);
assert
(
p1
!=
nullptr
);
assert
(
p1
!=
nullptr
);
p2
=
reinterpret_cast
<
void
**>
((
reinterpret_cast
<
size_t
>
(
p1
)
+
offset
)
&
~
(
alignment
-
1
));
p2
=
reinterpret_cast
<
void
**>
((
reinterpret_cast
<
size_t
>
(
p1
)
+
offset
)
&
~
(
alignment
-
1
));
p2
[
-
1
]
=
p1
;
p2
[
-
1
]
=
p1
;
mpDeviceBuf
=
reinterpret_cast
<
void
*>
(
p2
);
mpDeviceBuf
=
reinterpret_cast
<
void
*>
(
p2
);
}
}
}
void
*
DeviceAlignedMemCPU
::
GetDeviceBuffer
()
{
return
mpDeviceBuf
;
}
void
*
DeviceAlignedMemCPU
::
GetDeviceBuffer
()
{
return
mpDeviceBuf
;
}
...
@@ -51,7 +58,11 @@ void DeviceAlignedMemCPU::FromDevice(void* p) { memcpy(p, mpDeviceBuf, mMemSize)
...
@@ -51,7 +58,11 @@ void DeviceAlignedMemCPU::FromDevice(void* p) { memcpy(p, mpDeviceBuf, mMemSize)
void
DeviceAlignedMemCPU
::
SetZero
()
{
memset
(
mpDeviceBuf
,
0
,
mMemSize
);
}
void
DeviceAlignedMemCPU
::
SetZero
()
{
memset
(
mpDeviceBuf
,
0
,
mMemSize
);
}
DeviceAlignedMemCPU
::~
DeviceAlignedMemCPU
()
{
free
((
reinterpret_cast
<
void
**>
(
mpDeviceBuf
))[
-
1
]);
}
DeviceAlignedMemCPU
::~
DeviceAlignedMemCPU
()
{
if
(
mpDeviceBuf
!=
nullptr
)
free
((
reinterpret_cast
<
void
**>
(
mpDeviceBuf
))[
-
1
]);
}
struct
KernelTimerImpl
struct
KernelTimerImpl
{
{
...
...
library/src/tensor_operation_instance/cpu/conv2d_fwd/device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_instance.cpp
View file @
8ce9fe57
...
@@ -55,30 +55,81 @@ static constexpr auto LoopOver_MKN = ck::tensor_operation::cpu::device::LoopOver
...
@@ -55,30 +55,81 @@ static constexpr auto LoopOver_MKN = ck::tensor_operation::cpu::device::LoopOver
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1S1P0, GemmKLoopOverC , LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1S1P0, GemmKLoopOverC , LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwdDefault, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>, \
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1S1P0, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>
DeviceConvNDFwdAvx2_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K<float , float , float, a_elem_op, b_elem_op, c_elem_op, ConvFwd1x1S1P0, DefaultGemmKLoop, LoopOver_MKN, 2, m_per_block, n_per_block, k_per_block, m_per_thread, n_per_thread, a_local_buf, b_local_buf, c_local_buf>
// clang-format on
// clang-format on
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
=
std
::
tuple
<
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
=
std
::
tuple
<
// clang-format off
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
64
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
64
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
,
true
,
false
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(PT, PT, PT, 512, 144, 128, 4, 24, true, true, false),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
,
true
,
false
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(PT, PT, PT, 768, 288, 128, 4, 24, true, true, false),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
,
true
,
false
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
,
true
,
false
)
>
;
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
,
true
,
false
)
>
;
// clang-format on
// clang-format on
// use this in single thread, but gemm_n is not multiple of 8
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_local_c_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
64
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
,
true
,
true
)
>
;
// clang-format on
// use this in multi thread environment (need local C buffer to avoid cache coherence, although some
// time no local c is better...)
using
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_mt_instances
=
std
::
tuple
<
// clang-format off
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
48
,
24
,
128
,
4
,
24
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
16
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
72
,
32
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
96
,
32
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
96
,
64
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
120
,
32
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
120
,
64
,
128
,
6
,
16
,
true
,
true
,
true
),
// DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32(PT, PT, PT, 256, 128, 64, 6, 16, true, true, true),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
256
,
128
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
128
,
256
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
240
,
128
,
4
,
24
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
512
,
256
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
768
,
320
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
896
,
352
,
128
,
6
,
16
,
true
,
true
,
true
),
DEVICE_CONV2D_FWD_AVX2_NHWC_KYXC_NHWK_F32
(
PT
,
PT
,
PT
,
1024
,
416
,
128
,
6
,
16
,
true
,
true
,
true
)
>
;
// clang-format on
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
{});
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_instances
{});
}
}
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_local_c_instances
{});
}
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PT
,
PT
,
PT
>>&
instances
)
{
ck
::
tensor_operation
::
device
::
add_device_operation_instances
(
instances
,
device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_f32_mt_instances
{});
}
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace device
}
// namespace cpu
}
// namespace cpu
...
...
profiler/include/profile_conv_fwd_cpu_impl.hpp
View file @
8ce9fe57
#pragma once
#pragma once
#include "config.hpp"
#include "config.hpp"
#include "device.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "tensor_layout.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "device_convnd_fwd_avx2_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation_cpu.hpp"
#include "element_wise_operation_cpu.hpp"
#include "reference_conv_fwd.hpp"
#include "reference_conv_fwd.hpp"
namespace
ck
{
namespace
ck
{
namespace
tensor_operation
{
namespace
tensor_operation
{
namespace
cpu
{
namespace
cpu
{
namespace
device
{
namespace
device
{
namespace
device_conv2d_fwd_avx2_instance
{
namespace
device_conv2d_fwd_avx2_instance
{
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
}
// namespace device_conv2d_fwd_avx2_instance
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
}
// namespace device
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
}
// namespace cpu
}
// namespace tensor_operation
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
}
// namespace ck
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
namespace
ck
{
}
// namespace device_conv2d_fwd_avx2_instance
namespace
profiler
{
}
// namespace device
}
// namespace cpu
#define AVX2_DATA_ALIGNMENT
}
// namespace tensor_operation
}
// namespace ck
template
<
int
NDimSpatial
,
typename
InDataType
,
namespace
ck
{
typename
WeiDataType
,
namespace
profiler
{
typename
OutDataType
,
typename
InLayout
,
#define AVX2_DATA_ALIGNMENT
typename
WeiLayout
,
typename
OutLayout
>
template
<
int
NDimSpatial
,
void
profile_conv_cpu_fwd_impl
(
int
do_verification
,
typename
InDataType
,
int
init_method
,
typename
WeiDataType
,
bool
do_log
,
typename
OutDataType
,
int
nrepeat
,
typename
InLayout
,
ck
::
index_t
N
,
typename
WeiLayout
,
ck
::
index_t
K
,
typename
OutLayout
>
ck
::
index_t
C
,
void
profile_conv_cpu_fwd_impl
(
int
do_verification
,
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
int
init_method
,
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
bool
do_log
,
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
int
nrepeat
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
ck
::
index_t
N
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
ck
::
index_t
K
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
ck
::
index_t
C
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
std
::
vector
<
ck
::
index_t
>
input_spatial_lengths
,
{
std
::
vector
<
ck
::
index_t
>
filter_spatial_lengths
,
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
std
::
vector
<
ck
::
index_t
>
output_spatial_lengths
,
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
std
::
vector
<
ck
::
index_t
>
input_right_pads
)
{
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
const
ck
::
index_t
Y
=
filter_spatial_lengths
[
0
];
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
const
ck
::
index_t
X
=
filter_spatial_lengths
[
1
];
auto
f_host_tensor_descriptor
=
const
ck
::
index_t
Hi
=
input_spatial_lengths
[
0
];
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
const
ck
::
index_t
Wi
=
input_spatial_lengths
[
1
];
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
const
ck
::
index_t
Ho
=
output_spatial_lengths
[
0
];
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
const
ck
::
index_t
Wo
=
output_spatial_lengths
[
1
];
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
auto
f_host_tensor_descriptor
=
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
[](
std
::
size_t
N_
,
std
::
size_t
C_
,
std
::
size_t
H
,
std
::
size_t
W
,
auto
layout
)
{
}
if
constexpr
(
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NCHW
>::
value
||
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
KCYX
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
convolution
::
NKHW
>::
value
)
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
{
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
H
*
W
,
W
,
1
}));
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
}
}
else
if
constexpr
(
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWC
>::
value
||
};
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
KYXC
>::
value
||
is_same
<
decltype
(
layout
),
tensor_layout
::
convolution
::
NHWK
>::
value
)
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
{
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
N_
,
C_
,
H
,
W
}),
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
std
::
vector
<
std
::
size_t
>
({
C_
*
H
*
W
,
1
,
W
*
C_
,
C_
}));
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
}
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
};
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
InDataType
>
in_n_c_hi_wi
(
f_host_tensor_descriptor
(
N
,
C
,
Hi
,
Wi
,
InLayout
{}));
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
Tensor
<
WeiDataType
>
wei_k_c_y_x
(
f_host_tensor_descriptor
(
K
,
C
,
Y
,
X
,
WeiLayout
{}));
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
Tensor
<
OutDataType
>
out_n_k_ho_wo_host_result
(
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
Tensor
<
OutDataType
>
out_n_k_ho_wo_device_result
(
switch
(
init_method
)
f_host_tensor_descriptor
(
N
,
K
,
Ho
,
Wo
,
OutLayout
{}));
{
case
0
:
break
;
std
::
cout
<<
"in_n_c_hi_wi: "
<<
in_n_c_hi_wi
.
mDesc
<<
std
::
endl
;
case
1
:
std
::
cout
<<
"wei_k_c_y_x: "
<<
wei_k_c_y_x
.
mDesc
<<
std
::
endl
;
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
std
::
cout
<<
"out_n_k_ho_wo: "
<<
out_n_k_ho_wo_host_result
.
mDesc
<<
std
::
endl
;
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
break
;
switch
(
init_method
)
default:
{
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
case
0
:
break
;
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
case
1
:
}
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
5
,
5
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
5
,
5
});
using
InElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
break
;
using
WeiElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
default:
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
in_n_c_hi_wi
.
GenerateTensorValue
(
GeneratorTensor_3
<
InDataType
>
{
0.0
,
1.0
});
wei_k_c_y_x
.
GenerateTensorValue
(
GeneratorTensor_3
<
WeiDataType
>
{
-
0.5
,
0.5
});
const
auto
in_element_op
=
InElementOp
{};
}
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{};
using
InElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
using
WeiElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
if
(
do_verification
)
using
OutElementOp
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
{
using
ReferenceConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
const
auto
in_element_op
=
InElementOp
{};
WeiDataType
,
const
auto
wei_element_op
=
WeiElementOp
{};
OutDataType
,
const
auto
out_element_op
=
OutElementOp
{};
InElementOp
,
WeiElementOp
,
if
(
do_verification
)
OutElementOp
>
;
{
using
ReferenceConvFwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
InDataType
,
auto
ref_conv
=
ReferenceConvFwdInstance
{};
WeiDataType
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
OutDataType
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
InElementOp
,
wei_k_c_y_x
,
WeiElementOp
,
out_n_k_ho_wo_host_result
,
OutElementOp
>
;
conv_filter_strides
,
conv_filter_dilations
,
auto
ref_conv
=
ReferenceConvFwdInstance
{};
input_left_pads
,
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
input_right_pads
,
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in_n_c_hi_wi
,
in_element_op
,
wei_k_c_y_x
,
wei_element_op
,
out_n_k_ho_wo_host_result
,
out_element_op
);
conv_filter_strides
,
conv_filter_dilations
,
ref_invoker
.
Run
(
ref_argument
);
input_left_pads
,
}
input_right_pads
,
in_element_op
,
DeviceAlignedMemCPU
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
(),
wei_element_op
,
AVX2_DATA_ALIGNMENT
);
out_element_op
);
DeviceAlignedMemCPU
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
ref_invoker
.
Run
(
ref_argument
);
DeviceAlignedMemCPU
out_device_buf
(
sizeof
(
OutDataType
)
*
}
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
in_device_buf
(
sizeof
(
InDataType
)
*
in_n_c_hi_wi
.
mDesc
.
GetElementSpace
(),
AVX2_DATA_ALIGNMENT
);
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
DeviceAlignedMemCPU
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei_k_c_y_x
.
mDesc
.
GetElementSpace
(),
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
AVX2_DATA_ALIGNMENT
);
DeviceAlignedMemCPU
out_device_buf
(
sizeof
(
OutDataType
)
*
memcpy
(
in_device_buf
.
mpDeviceBuf
,
in_n_c_hi_wi
.
mData
.
data
(),
in_device_buf
.
mMemSize
);
out_n_k_ho_wo_device_result
.
mDesc
.
GetElementSpace
(),
memcpy
(
wei_device_buf
.
mpDeviceBuf
,
wei_k_c_y_x
.
mData
.
data
(),
wei_device_buf
.
mMemSize
);
AVX2_DATA_ALIGNMENT
);
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
in_device_buf
.
ToDevice
(
in_n_c_hi_wi
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei_k_c_y_x
.
mData
.
data
());
using
DeviceConvFwdNoOpPtr
=
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>
;
memcpy
(
in_device_buf
.
mpDeviceBuf
,
in_n_c_hi_wi
.
mData
.
data
(),
in_device_buf
.
mMemSize
);
memcpy
(
wei_device_buf
.
mpDeviceBuf
,
wei_k_c_y_x
.
mData
.
data
(),
wei_device_buf
.
mMemSize
);
// add device Conv instances
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
using
PassThrough
=
ck
::
tensor_operation
::
cpu
::
element_wise
::
PassThrough
;
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_instance
::
using
DeviceConvFwdNoOpPtr
=
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
ck
::
tensor_operation
::
device
::
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>
;
if
(
conv_ptrs
.
size
()
<=
0
)
// add device Conv instances
{
std
::
vector
<
DeviceConvFwdNoOpPtr
>
conv_ptrs
;
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
std
::
string
best_conv_name
;
float
best_ave_time
=
0
;
if
(
conv_ptrs
.
size
()
<=
0
)
float
best_gflops
=
0
;
{
float
best_gb_per_sec
=
0
;
throw
std
::
runtime_error
(
"wrong! no device Conv instance found"
);
}
// profile device Conv instances
for
(
auto
&
conv_ptr
:
conv_ptrs
)
std
::
string
best_conv_name
;
{
float
best_ave_time
=
0
;
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
float
best_gflops
=
0
;
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
float
best_gb_per_sec
=
0
;
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
// profile device Conv instances
N
,
for
(
auto
&
conv_ptr
:
conv_ptrs
)
K
,
{
C
,
auto
argument_ptr
=
conv_ptr
->
MakeArgumentPointer
(
input_spatial_lengths
,
static_cast
<
InDataType
*>
(
in_device_buf
.
GetDeviceBuffer
()),
filter_spatial_lengths
,
static_cast
<
WeiDataType
*>
(
wei_device_buf
.
GetDeviceBuffer
()),
output_spatial_lengths
,
static_cast
<
OutDataType
*>
(
out_device_buf
.
GetDeviceBuffer
()),
conv_filter_strides
,
N
,
conv_filter_dilations
,
K
,
input_left_pads
,
C
,
input_right_pads
,
input_spatial_lengths
,
in_element_op
,
filter_spatial_lengths
,
wei_element_op
,
output_spatial_lengths
,
out_element_op
);
conv_filter_strides
,
conv_filter_dilations
,
auto
invoker_ptr
=
conv_ptr
->
MakeInvokerPointer
();
input_left_pads
,
input_right_pads
,
if
(
conv_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
in_element_op
,
{
wei_element_op
,
std
::
string
conv_name
=
conv_ptr
->
GetTypeString
();
out_element_op
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
auto
invoker_ptr
=
conv_ptr
->
MakeInvokerPointer
();
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
if
(
conv_ptr
->
IsSupportedArgument
(
argument_ptr
.
get
()))
{
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
std
::
string
conv_name
=
conv_ptr
->
GetTypeString
();
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
float
ave_time
=
invoker_ptr
->
Run
(
argument_ptr
.
get
(),
nrepeat
);
float
gflops
=
static_cast
<
float
>
(
flop
)
/
1.E6
/
ave_time
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
N
*
K
*
Ho
*
Wo
*
C
*
Y
*
X
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
size_t
num_btype
=
sizeof
(
InDataType
)
*
(
N
*
C
*
Hi
*
Wi
)
+
sizeof
(
WeiDataType
)
*
(
K
*
C
*
Y
*
X
)
+
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gflops
<<
" GFlops, "
<<
gb_per_sec
sizeof
(
OutDataType
)
*
(
N
*
K
*
Ho
*
Wo
);
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
float
gflops
=
static_cast
<
float
>
(
flop
)
/
1.E6
/
ave_time
;
if
(
gflops
>
best_gflops
)
{
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
best_conv_name
=
conv_name
;
best_gflops
=
gflops
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
gflops
<<
" GFlops, "
<<
gb_per_sec
best_ave_time
=
ave_time
;
<<
" GB/s, "
<<
conv_name
<<
std
::
endl
;
best_gb_per_sec
=
gb_per_sec
;
}
if
(
gflops
>
best_gflops
)
{
if
(
do_verification
)
best_conv_name
=
conv_name
;
{
best_gflops
=
gflops
;
memcpy
(
out_n_k_ho_wo_device_result
.
mData
.
data
(),
best_ave_time
=
ave_time
;
out_device_buf
.
mpDeviceBuf
,
best_gb_per_sec
=
gb_per_sec
;
out_device_buf
.
mMemSize
);
}
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
if
(
do_verification
)
{
if
(
do_log
)
memcpy
(
out_n_k_ho_wo_device_result
.
mData
.
data
(),
{
out_device_buf
.
mpDeviceBuf
,
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
out_device_buf
.
mMemSize
);
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
check_error
(
out_n_k_ho_wo_host_result
,
out_n_k_ho_wo_device_result
);
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
if
(
do_log
)
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
{
<<
std
::
endl
;
LogRangeAsType
<
float
>
(
std
::
cout
<<
"in : "
,
in_n_c_hi_wi
.
mData
,
","
)
LogRangeAsType
<
float
>
(
<<
std
::
endl
;
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
LogRangeAsType
<
float
>
(
std
::
cout
<<
"wei: "
,
wei_k_c_y_x
.
mData
,
","
)
<<
std
::
endl
;
<<
std
::
endl
;
}
LogRangeAsType
<
float
>
(
}
std
::
cout
<<
"out_host : "
,
out_n_k_ho_wo_host_result
.
mData
,
","
)
}
<<
std
::
endl
;
}
LogRangeAsType
<
float
>
(
std
::
cout
<<
"out_device: "
,
out_n_k_ho_wo_device_result
.
mData
,
","
)
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gflops
<<
" GFlops, "
<<
std
::
endl
;
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
}
}
}
// namespace profiler
}
}
// namespace ck
std
::
cout
<<
"Best Perf: "
<<
best_ave_time
<<
" ms, "
<<
best_gflops
<<
" GFlops, "
<<
best_gb_per_sec
<<
" GB/s, "
<<
best_conv_name
<<
std
::
endl
;
}
}
// namespace profiler
}
// namespace ck
test/convnd_fwd_cpu/conv2d_fwd_cpu.cpp
View file @
8ce9fe57
...
@@ -26,6 +26,12 @@ using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
...
@@ -26,6 +26,12 @@ using PassThrough = ck::tensor_operation::cpu::element_wise::PassThrough;
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
void
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
std
::
vector
<
DeviceConvFwdPtr
<
PassThrough
,
PassThrough
,
PassThrough
>>&
instances
);
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device_conv2d_fwd_avx2_instance
}
// namespace device
}
// namespace device
}
// namespace cpu
}
// namespace cpu
...
@@ -300,8 +306,22 @@ int main(int argc, char* argv[])
...
@@ -300,8 +306,22 @@ int main(int argc, char* argv[])
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
WeiDataType
>
,
float
>
&&
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
float
>
)
ck
::
is_same_v
<
ck
::
remove_cv_t
<
OutDataType
>
,
float
>
)
{
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
if
(
omp_get_max_threads
()
>
1
)
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
{
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_mt
(
conv_ptrs
);
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
}
else
{
if
(
K
%
8
==
0
)
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk
(
conv_ptrs
);
else
ck
::
tensor_operation
::
cpu
::
device
::
device_conv2d_fwd_avx2_instance
::
add_device_conv2d_fwd_avx2_nhwc_kyxc_nhwk_local_c
(
conv_ptrs
);
}
}
}
if
(
conv_ptrs
.
size
()
<=
0
)
if
(
conv_ptrs
.
size
()
<=
0
)
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment