"docs/source/git@developer.sourcefind.cn:SIYIXNI/vllm.git" did not exist on "ab3a5a8259922ce312d01be39d29e27666968039"
Commit 8c0f9364 authored by Adam Osewski's avatar Adam Osewski
Browse files

Device GroupedGemmXdlSplitKCShuffle

parent de330330
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/ck.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/hip_check_error.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/utility/tuple.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <typename GridwiseGemm,
typename GemmDesc,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_grouped_gemm_xdl_splitk(const void CK_CONSTANT_ADDRESS_SPACE* gemm_descs_const,
const index_t group_count)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
const index_t block_id = get_block_1d_id();
const auto gemm_desc_ptr =
reinterpret_cast<const GemmDesc*>(cast_pointer_to_generic_address_space(gemm_descs_const));
index_t left = 0;
index_t right = group_count;
index_t group_id = index_t((left + right) / 2);
while((!(block_id >= gemm_desc_ptr[group_id].block_start_ &&
block_id < gemm_desc_ptr[group_id].block_end_)) &&
left <= right)
{
if(block_id < gemm_desc_ptr[group_id].block_start_)
{
right = group_id;
}
else
{
left = group_id;
}
group_id = index_t((left + right) / 2);
}
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
gemm_desc_ptr[group_id].karg_,
static_cast<void*>(p_shared),
gemm_desc_ptr[group_id].block_2_ctile_map_);
#else
ignore = gemm_descs_const;
ignore = group_count;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
template <typename ALayout,
typename BLayout,
typename DsLayout,
typename ELayout,
typename ADataType,
typename BDataType,
typename AccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
ck::index_t NumPrefetch,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t KPerBlock,
ck::index_t AK1,
ck::index_t BK1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler(),
// Current implementation does not support multiple D fusions.
enable_if_t<AK1 == BK1 && is_same_v<DsLayout, ck::Tuple<>> &&
is_same_v<DsDataType, ck::Tuple<>>,
bool> = false>
struct DeviceGroupedGemmXdlSplitKCShuffle : public DeviceGroupedGemm<ALayout,
BLayout,
DsLayout,
ELayout,
ADataType,
BDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static_assert(KPerBlock % AK1 == 0);
static constexpr index_t K0PerBlock = KPerBlock / AK1;
using GridwiseGemm = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
EDataType,
ALayout,
BLayout,
ELayout,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
GemmSpec,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
AK1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferScalarPerVector_NPerBlock,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock>;
using CGridDesc_M_N = typename GridwiseGemm::CGridDesc_M_N;
using Block2ETileMapKSplit =
BlockToCTileMap_KSplit_M00_N0_M01Adapt<MPerBlock, NPerBlock, CGridDesc_M_N>;
using GroupedGemmBlock2ETileMap = OffsettedBlockToCTileMap<Block2ETileMapKSplit>;
using KernelArgument = typename GridwiseGemm::Argument;
struct GemmTransKernelArg
{
KernelArgument karg_;
GroupedGemmBlock2ETileMap block_2_ctile_map_;
index_t block_start_, block_end_;
GemmTransKernelArg() = default;
GemmTransKernelArg(KernelArgument&& karg,
GroupedGemmBlock2ETileMap&& b2c_map,
index_t block_start,
index_t block_end)
: karg_{karg},
block_2_ctile_map_{b2c_map},
block_start_{block_start},
block_end_{block_end}
{
}
};
// Argument
struct Argument : public BaseArgument
{
Argument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs)
{
grid_size_ = 0;
// TODO: use occupancy api to calculate appropriate batch size.
const index_t K_BATCH = 4;
// Block2CTileMap configuration parameter.
constexpr index_t B2C_M01 = 8;
group_count_ = ck::type_convert<ck::index_t>(gemm_descs.size());
if(!(group_count_ == ck::type_convert<ck::index_t>(p_As.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Bs.size()) &&
group_count_ == ck::type_convert<ck::index_t>(p_Es.size())))
{
throw std::runtime_error("wrong! group_count_ != p_As/b/c.size");
}
gemm_kernel_args_.reserve(group_count_);
skipped_group_count_ = 0;
for(std::size_t i = 0; i < gemm_descs.size(); i++)
{
const index_t M = gemm_descs[i].M_;
const index_t N = gemm_descs[i].N_;
const index_t K = gemm_descs[i].K_;
if(M == 0)
{
skipped_group_count_++;
continue;
}
const index_t stride_a = gemm_descs[i].stride_A_;
const index_t stride_b = gemm_descs[i].stride_B_;
const index_t stride_c = gemm_descs[i].stride_C_;
const index_t m_padded = GridwiseGemm::CalculateMPadded(M);
const index_t n_padded = GridwiseGemm::CalculateNPadded(N);
const index_t k_padded = GridwiseGemm::CalculateKPadded(K);
const index_t k0 = GridwiseGemm::CalculateK0(K, K_BATCH);
const auto c_grid_desc_m_n =
GridwiseGemm::MakeCGridDescriptor_M_N(M, N, m_padded, n_padded, stride_c);
const auto local_b2c_tile_map =
Block2ETileMapKSplit{c_grid_desc_m_n, B2C_M01, K_BATCH};
const index_t grid_size_grp = local_b2c_tile_map.CalculateGridSize(c_grid_desc_m_n);
const index_t block_start = grid_size_;
const index_t block_end = grid_size_ + grid_size_grp;
grid_size_ += grid_size_grp;
// block-to-e-tile map
auto grouped_block_2_ctile_map =
GroupedGemmBlock2ETileMap(local_b2c_tile_map, block_start);
auto karg = KernelArgument{type_convert<const ADataType*>(p_As[i]),
type_convert<const BDataType*>(p_Bs[i]),
type_convert<EDataType*>(p_Es[i]),
M,
N,
K,
stride_a,
stride_b,
stride_c,
m_padded,
n_padded,
k_padded,
k0,
K_BATCH};
gemm_kernel_args_.emplace_back(
std::move(karg), std::move(grouped_block_2_ctile_map), block_start, block_end);
}
}
// private:
index_t group_count_;
index_t skipped_group_count_;
std::vector<GemmTransKernelArg> gemm_kernel_args_;
index_t grid_size_;
};
// Invoker
struct Invoker : public BaseInvoker
{
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
index_t K0 = arg.gemm_kernel_args_[0].karg_.K0;
bool all_have_kbatch_gt_one = arg.gemm_kernel_args_[0].karg_.k_batch > 1;
bool all_have_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
for(std::size_t i = 0; i < arg.gemm_kernel_args_.size(); ++i)
{
const auto& karg = arg.gemm_kernel_args_[i].karg_;
if(stream_config.log_level_ > 0)
{
karg.Print();
}
auto kbatch = karg.k_batch;
if(!GridwiseGemm::CheckValidity(karg))
{
std::ostringstream err;
err << "Group id: " << i << " has invalid GridwiseGemm settings!" << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
K0 = karg.K0;
bool not_all_have_main_k0_block_loop_same =
all_have_main_k0_block_loop xor GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
bool not_all_have_kbatch_value_same = all_have_kbatch_gt_one xor (kbatch > 1);
if(not_all_have_main_k0_block_loop_same)
{
std::ostringstream err;
err << "Not all gemms have same value for main_k0_block_loop! in " << __FILE__
<< ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
if(not_all_have_kbatch_value_same)
{
std::ostringstream err;
err << "Not all gemms have same kbatch value (=1 or >1)! "
<< "group [" << i << "], kbatch: " << kbatch
<< ", group [0], kbatch: " << arg.gemm_kernel_args_[0].karg_.k_batch
<< " in " << __FILE__ << ":" << __LINE__ << ", in function: " << __func__;
throw std::runtime_error(err.str());
}
}
hip_check_error(hipMemcpy(arg.p_workspace_,
arg.gemm_kernel_args_.data(),
arg.gemm_kernel_args_.size() * sizeof(GemmTransKernelArg),
hipMemcpyHostToDevice));
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
if(all_have_kbatch_gt_one)
{
for(const auto& trans_arg : arg.gemm_kernel_args_)
{
const auto& karg = trans_arg.karg_;
hip_check_error(
hipMemset(karg.p_c_grid, 0, karg.M * karg.N * sizeof(EDataType)));
}
}
ave_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(arg.grid_size_),
dim3(BlockSize),
0,
cast_pointer_to_constant_address_space(arg.p_workspace_),
arg.gemm_kernel_args_.size());
};
if(all_have_main_k0_block_loop)
{
if(all_have_kbatch_gt_one)
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmTransKernelArg,
true,
InMemoryDataOperationEnum::AtomicAdd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmTransKernelArg,
true,
InMemoryDataOperationEnum::Set>;
Run(kernel);
}
}
else
{
if(all_have_kbatch_gt_one)
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmTransKernelArg,
false,
InMemoryDataOperationEnum::AtomicAdd>;
Run(kernel);
}
else
{
const auto kernel =
kernel_grouped_gemm_xdl_splitk<GridwiseGemm,
GemmTransKernelArg,
false,
InMemoryDataOperationEnum::Set>;
Run(kernel);
}
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
if((ck::type_convert<ck::index_t>(arg.gemm_kernel_args_.size()) +
arg.skipped_group_count_) != arg.group_count_)
{
return false;
}
bool supported = true;
for(std::size_t i = 0; i < arg.gemm_kernel_args_.size(); ++i)
{
const auto& a = arg.gemm_kernel_args_[i].karg_;
bool group_arg_valid = GridwiseGemm::CheckValidity(a);
if(not group_arg_valid)
{
std::cout << "[" << __func__ << "] group id: " << i << " is not supported!\n";
a.Print();
}
supported &= group_arg_valid;
}
return supported;
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>&,
std::vector<void*>& p_Es,
std::vector<GemmDesc> gemm_descs,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation)
{
return Argument{p_As, p_Bs, p_Es, gemm_descs};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(std::vector<const void*>& p_As,
std::vector<const void*>& p_Bs,
std::vector<std::array<const void*, NumDTensor>>&,
std::vector<void*>& p_Es,
std::vector<GemmDesc>& gemm_descs,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation) override
{
return std::make_unique<Argument>(p_As, p_Bs, p_Es, gemm_descs);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGroupedGemm_XdlSplitK"
<< "<"
<< std::string(ALayout::name)[0] << ","
<< std::string(BLayout::name)[0] << ","
<< std::string(ELayout::name)[0] << ","
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1 << ", "
<< MPerXDL << ", "
<< NPerXDL << ", "
<< MXdlPerWave << ", "
<< NXdlPerWave << ", "
<< ABlockTransferSrcScalarPerVector << ", "
<< BBlockTransferSrcScalarPerVector << ", "
<< CShuffleMXdlPerWavePerShuffle << ", "
<< CShuffleNXdlPerWavePerShuffle << ", "
<< getGemmSpecializationString(GemmSpec)
<< ">";
// clang-format on
return str.str();
}
size_t GetWorkSpaceSize(const BaseArgument* p_arg) const override
{
return dynamic_cast<const Argument*>(p_arg)->gemm_kernel_args_.size() *
sizeof(GemmTransKernelArg);
}
static void SetKBatchSize(const Argument& karg, index_t kbatch)
{
for(auto& arg : karg.gemm_kernel_args_)
{
arg.k_batch = kbatch;
}
}
// polymorphic
void SetKBatchSize(const BaseArgument* p_arg, index_t kbatch)
{
return SetKBatchSize(*dynamic_cast<const Argument*>(p_arg), kbatch);
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment