Commit 8820cf9f authored by Po-Yen, Chen's avatar Po-Yen, Chen
Browse files

Merge branch 'develop' into feature/integrage-karg-simplification-pr

parents cb46ef7a 4feebedd
......@@ -42,7 +42,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const CBlockClusterAdaptor c_block_cluster_adaptor)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr index_t shared_block_size =
GridwiseGemm::GetSharedMemoryNumberOfByte() / sizeof(FloatAB);
......
......@@ -15,26 +15,32 @@
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_pipeline_selector.hpp"
namespace ck {
template <typename GridwiseGemm,
bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation>
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v2r4r2_simplified(typename GridwiseGemm::Argument karg)
kernel_gemm_xdlops_v2r4r2_simplified(typename GridwiseGemm::Argument karg,
const Block2CTileMap& b2c_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
constexpr index_t shared_size = GridwiseGemm::GetSharedMemoryNumberOfByte();
__shared__ uint8_t p_shared[shared_size];
GridwiseGemm::template Run<HasMainKBlockLoop, CGlobalMemoryDataOperation>(
karg, static_cast<void*>(p_shared));
karg, static_cast<void*>(p_shared), b2c_map);
#else
ignore = karg;
ignore = b2c_map;
#endif // end of if (defined(__gfx908__) || defined(__gfx90a__))
}
......@@ -478,8 +484,21 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
Number<CShuffleNRepeatPerShuffle * NWave * NPerXDL>{}));
}
template <bool HasMainKBlockLoop, InMemoryDataOperationEnum CGlobalMemoryDataOperation>
__device__ static void Run(const Argument& karg, void* __restrict__ p_shared_block)
// return block_id to C matrix tile idx (m0, n0, k_split) mapping
__host__ __device__ static constexpr auto MakeDefaultBlock2CTileMap()
{
return BlockToCTileMap_3DGrid_KSplit<MPerBlock, NPerBlock>();
}
using CGridDesc_M_N = remove_cvref_t<decltype(MakeCGridDescriptor_M_N(1, 1, 1, 1, 1))>;
using DefaultBlock2CTileMap = remove_cvref_t<decltype(MakeDefaultBlock2CTileMap())>;
template <bool HasMainKBlockLoop,
InMemoryDataOperationEnum CGlobalMemoryDataOperation,
typename Block2CTileMap>
__device__ static void Run(const Argument& karg,
void* __restrict__ p_shared_block,
const Block2CTileMap& block_2_ctile_map)
{
const FloatAB* p_a_grid = karg.p_a_grid;
const FloatAB* p_b_grid = karg.p_b_grid;
......@@ -504,11 +523,21 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_c_grid, c_grid_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize());
const auto K0 = a_b_k0_m_k1_grid_desc.GetLength(I1);
// divide block work by [KBatch, M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
const index_t block_m_id = __builtin_amdgcn_readfirstlane(blockIdx.y);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(blockIdx.x);
const index_t k_batch_id = __builtin_amdgcn_readfirstlane(blockIdx.z);
if(!block_2_ctile_map.ValidCTileIndex(
block_work_idx,
make_tuple(c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I0),
c_grid_desc_mblock_mperblock_nblock_nperblock.GetLength(I2))))
{
return;
}
const index_t block_m_id = __builtin_amdgcn_readfirstlane(block_work_idx[I1]);
const index_t block_n_id = __builtin_amdgcn_readfirstlane(block_work_idx[I2]);
const index_t k_batch_id = __builtin_amdgcn_readfirstlane(block_work_idx[I0]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
......@@ -651,6 +680,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
#if 1
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
......@@ -662,6 +692,20 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
MRepeat,
NRepeat,
K1>{};
#else
auto blockwise_gemm = BlockwiseGemmXdlopsInterwave_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<
BlockSize,
FloatAB,
FloatAcc,
decltype(a_k0_m_k1_block_desc),
decltype(b_k0_n_k1_block_desc),
MPerXDL,
NPerXDL,
MRepeat,
NRepeat,
K1>{};
#endif
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
......@@ -680,6 +724,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
p_b_block, b_k0_n_k1_block_desc.GetElementSpaceSize());
#if 0
// preload data into LDS
{
a_blockwise_copy.RunRead(a_b_k0_m_k1_grid_desc, a_grid_buf);
......@@ -725,6 +770,31 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
#else
// gridwise GEMM pipeline
const auto gridwise_gemm_pipeline =
GridwiseGemmPipeline_Selector<PipelineVersion::v2, 1, LoopScheduler::Default>();
const index_t num_k_block_main_loop = __builtin_amdgcn_readfirstlane(
(a_b_k0_m_k1_grid_desc.GetLength(I1) * a_b_k0_m_k1_grid_desc.GetLength(I3)) /
(K0PerBlock * K1));
gridwise_gemm_pipeline.template Run<HasMainKBlockLoop>(a_b_k0_m_k1_grid_desc,
a_b_k0_m_k1_block_desc,
a_blockwise_copy,
a_grid_buf,
a_block_buf,
a_block_slice_copy_step,
b_b_k0_n_k1_grid_desc,
b_b_k0_n_k1_block_desc,
b_blockwise_copy,
b_grid_buf,
b_block_buf,
b_block_slice_copy_step,
blockwise_gemm,
c_thread_buf,
num_k_block_main_loop);
#endif
// output: register to global memory
{
......
......@@ -46,7 +46,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainK0BlockLoop>(
......
......@@ -49,7 +49,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(
......
......@@ -53,7 +53,8 @@ __global__ void
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(
......
......@@ -27,6 +27,8 @@ enum struct MfmaInstr
mfma_f32_16x16x8bf16,
mfma_i32_32x32x8i8,
mfma_i32_16x16x16i8,
mfma_i32_32x32x16i8,
mfma_i32_16x16x32i8,
mfma_f64_16x16x4f64
};
......@@ -386,6 +388,50 @@ struct mfma_type<MfmaInstr::mfma_i32_16x16x16i8>
}
};
template <>
struct mfma_type<MfmaInstr::mfma_i32_32x32x16i8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 4;
static constexpr index_t num_regs_per_blk = 16;
static constexpr index_t num_threads_per_blk = 32;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 2;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 32;
static constexpr index_t n_per_blk = 32;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_i32_32x32x16i8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_type<MfmaInstr::mfma_i32_16x16x32i8>
{
static constexpr index_t group_size = 4;
static constexpr index_t num_groups_per_blk = 1;
static constexpr index_t num_regs_per_blk = 4;
static constexpr index_t num_threads_per_blk = 16;
static constexpr index_t wave_size = 64;
static constexpr index_t num_input_blks = 4;
static constexpr index_t num_output_blks = 1;
static constexpr index_t m_per_blk = 16;
static constexpr index_t n_per_blk = 16;
static constexpr index_t k_per_blk = 8;
static constexpr bool is_k_reduction = true;
template <index_t MPerXdlops, index_t NPerXdlops, class FloatA, class FloatB, class FloatC>
__device__ void run(const FloatA& a, const FloatB& b, FloatC& reg_c) const
{
intrin_mfma_i32_16x16x32i8<MPerXdlops, NPerXdlops>::Run(a, b, reg_c);
}
};
template <>
struct mfma_type<MfmaInstr::mfma_f64_16x16x4f64>
{
......@@ -524,17 +570,29 @@ struct MfmaSelector
#endif
}
#if defined(CK_USE_AMD_MFMA_GFX940)
template <>
static constexpr auto GetMfma<int8_t, 32, 32>()
{
return MfmaInstr::mfma_i32_32x32x16i8;
}
template <>
static constexpr auto GetMfma<int8_t, 16, 16>()
{
return MfmaInstr::mfma_i32_16x16x32i8;
}
#else
template <>
static constexpr auto GetMfma<int8_t, 32, 32>()
{
return MfmaInstr::mfma_i32_32x32x8i8;
}
template <>
static constexpr auto GetMfma<int8_t, 16, 16>()
{
return MfmaInstr::mfma_i32_16x16x16i8;
}
#endif
static constexpr auto selected_mfma = mfma_type<GetMfma<base_type, MPerXdlops, NPerXdlops>()>{};
......
......@@ -297,6 +297,44 @@ struct intrin_mfma_i32_16x16x16i8<16, 16>
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_i32_32x32x16i8;
template <>
struct intrin_mfma_i32_32x32x16i8<32, 32>
{
template <class FloatC>
__device__ static void Run(const int8x8_t& reg_a, const int8x8_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<int32x16_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_i32_32x32x16_i8(bit_cast<int64_t>(reg_a),
bit_cast<int64_t>(reg_b),
reg_c.template AsType<int32x16_t>()[Number<0>{}],
0,
0,
0);
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_i32_16x16x32i8;
template <>
struct intrin_mfma_i32_16x16x32i8<16, 16>
{
template <class FloatC>
__device__ static void Run(const int8x8_t& reg_a, const int8x8_t& reg_b, FloatC& reg_c)
{
reg_c.template AsType<int32x4_t>()(Number<0>{}) =
__builtin_amdgcn_mfma_i32_16x16x32i8(bit_cast<int64_t>(reg_a),
bit_cast<int64_t>(reg_b),
reg_c.template AsType<int32x4_t>()[Number<0>{}],
0,
0,
0);
}
};
template <index_t MPerWave, index_t NPerWave>
struct intrin_mfma_f64_16x16x4f64;
......@@ -306,7 +344,7 @@ struct intrin_mfma_f64_16x16x4f64<16, 16>
template <class FloatC>
__device__ static void Run(const double& reg_a, const double& reg_b, FloatC& reg_c)
{
#ifdef __gfx90a__
#if defined(__gfx90a__) || defined(__gfx940__)
reg_c.template AsType<double4_t>()(Number<0>{}) = __builtin_amdgcn_mfma_f64_16x16x4f64(
reg_a, reg_b, reg_c.template AsType<double4_t>()[Number<0>{}], 0, 0, 0);
#else
......
......@@ -898,6 +898,8 @@ struct vector_type<T, 256>
}
};
using int64_t = long;
// fp64
using double2_t = typename vector_type<double, 2>::type;
using double4_t = typename vector_type<double, 4>::type;
......
......@@ -168,6 +168,10 @@ __device__ double exp<double>(double x)
return exp(x);
}
static inline __host__ float exp(float x) { return std::expf(x); }
static inline __host__ double exp(double x) { return std::exp(x); }
// greatest common divisor, aka highest common factor
__host__ __device__ constexpr index_t gcd(index_t x, index_t y)
{
......
......@@ -26,6 +26,7 @@ using Empty_Tuple = ck::Tuple<>;
using F16_Tuple = ck::Tuple<F16>;
using F16_F16_Tuple = ck::Tuple<F16, F16>;
using F64_Tuple = ck::Tuple<F64>;
using F32_Tuple = ck::Tuple<F32>;
using I32_Tuple = ck::Tuple<I32>;
using I32_F32_Tuple = ck::Tuple<I32, F32>;
......@@ -95,6 +96,7 @@ using FastGelu = ck::tensor_operation::element_wise::FastGelu;
using AddMultiply = ck::tensor_operation::element_wise::AddMultiply;
using ScaleAdd = ck::tensor_operation::element_wise::ScaleAdd;
using Gelu = ck::tensor_operation::element_wise::Gelu;
using Swish = ck::tensor_operation::element_wise::Swish;
template <typename Activation>
using Activation_Mul_Clamp = ck::tensor_operation::element_wise::Activation_Mul_Clamp<Activation>;
......
......@@ -19,6 +19,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
// float
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -67,6 +68,55 @@ void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn
PassThrough,
Bilinear>>>& instances);
// double
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear>>>& instances);
void add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
F64_Tuple,
F64,
PassThrough,
PassThrough,
Bilinear>>>& instances);
// Contraction + Bilinear
template <index_t NumDimM,
index_t NumDimN,
......@@ -118,6 +168,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
}
}
if constexpr(is_same_v<ADataType, double> && is_same_v<BDataType, double> &&
is_same_v<DDataType, double> && is_same_v<EDataType, double>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance(
op_ptrs);
add_device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
......
......@@ -19,6 +19,7 @@ namespace tensor_operation {
namespace device {
namespace instance {
// float
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
......@@ -67,6 +68,55 @@ void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_mnn_instanc
PassThrough,
Scale>>>& instances);
// double
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances);
void add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
std::vector<std::unique_ptr<DeviceContractionMultipleD<2,
2,
2,
F64,
F64,
Empty_Tuple,
F64,
PassThrough,
PassThrough,
Scale>>>& instances);
// Contraction + Scale
template <index_t NumDimM,
index_t NumDimN,
......@@ -117,6 +167,22 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceContra
}
}
if constexpr(is_same_v<ADataType, double> && is_same_v<BDataType, double> &&
is_same_v<EDataType, double>)
{
if constexpr(NumDimM == 2 && NumDimN == 2 && NumDimK == 2)
{
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_kkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_knn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mkn_instance(
op_ptrs);
add_device_contraction_scale_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_mnn_instance(
op_ptrs);
}
}
return op_ptrs;
}
};
......
......@@ -117,20 +117,6 @@ void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
Empty_Tuple,
int8_t,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
......@@ -159,20 +145,21 @@ void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
int8_t,
int8_t,
NHWGK,
BF16,
BF16,
Empty_Tuple,
int8_t,
BF16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
......@@ -187,6 +174,20 @@ void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
NHWGC,
GKYXC,
Empty_Tuple,
NHWGK,
F32,
F32,
Empty_Tuple,
F32,
PassThrough,
PassThrough,
PassThrough>>>& instances);
// grouped conv3d forward, GNDHWC/GKZYXC/GNDHWK
void add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<3,
......@@ -385,12 +386,6 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_int8_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
......@@ -398,7 +393,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
if constexpr(is_same_v<InDataType, float> && is_same_v<WeiDataType, float> &&
is_same_v<OutDataType, float>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances(op_ptrs);
}
else if constexpr(is_same_v<InDataType, half_t> && is_same_v<WeiDataType, half_t> &&
is_same_v<OutDataType, half_t>)
......@@ -409,12 +404,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<WeiDataType, ck::bhalf_t> &&
is_same_v<OutDataType, ck::bhalf_t>)
{
// no instance
}
else if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
{
// no instance
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances(op_ptrs);
}
}
else if constexpr(NumDimSpatial == 3 && is_same_v<InLayout, GNDHWC> &&
......
......@@ -68,6 +68,58 @@ void add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Col,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
std::vector<std::unique_ptr<DeviceGroupedGemm<Row,
Row,
Empty_Tuple,
Row,
F16,
F16,
Empty_Tuple,
F16,
PassThrough,
PassThrough,
PassThrough>>>& instances);
template <typename ALayout,
typename BLayout,
typename ELayout,
......@@ -109,11 +161,17 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Row> && is_same_v<BLayout, Col> &&
is_same_v<ELayout, Row>)
{
add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(op_ptrs);
add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_irregular_instances(
op_ptrs);
}
else if constexpr(is_same_v<ALayout, Col> && is_same_v<BLayout, Row> &&
is_same_v<ELayout, Row>)
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
namespace instance {
// FP16
void add_device_normalization_rank_5_3_swish_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F16, F16, F32, F16, Swish, 5, 3>>>&);
// FP32
void add_device_normalization_rank_5_3_swish_f32_instances(
std::vector<std::unique_ptr<DeviceNormalization<F32, F32, F32, F32, F32, Swish, 5, 3>>>&);
// [x, gamma, beta, y] = [f16, f32, f32, f16]
void add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(
std::vector<std::unique_ptr<DeviceNormalization<F16, F32, F32, F32, F16, Swish, 5, 3>>>&);
template <typename XDataType,
typename GammaDataType,
typename BetaDataType,
typename YDataType,
index_t Rank,
index_t NumReduceDim>
struct DeviceOperationInstanceFactory<
ck::tensor_operation::device::DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>>
{
using DeviceOp = DeviceNormalization<XDataType,
GammaDataType,
BetaDataType,
F32,
YDataType,
ck::tensor_operation::element_wise::Swish,
Rank,
NumReduceDim>;
static auto GetInstances()
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F16> &&
is_same_v<BetaDataType, F16> && is_same_v<YDataType, F16>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_normalization_rank_5_3_swish_f16_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F32> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F32>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_normalization_rank_5_3_swish_f32_instances(op_ptrs);
}
}
else if constexpr(is_same_v<XDataType, F16> && is_same_v<GammaDataType, F32> &&
is_same_v<BetaDataType, F32> && is_same_v<YDataType, F16>)
{
if constexpr(Rank == 5 && NumReduceDim == 3)
{
add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances(op_ptrs);
}
}
return op_ptrs;
}
};
} // namespace instance
} // namespace device
} // namespace tensor_operation
} // namespace ck
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -52,10 +52,10 @@ void add_device_conv2d_dl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -68,10 +68,10 @@ void add_device_conv2d_dl_bias_tanh_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -83,10 +83,10 @@ void add_device_conv2d_xdl_bias_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -99,10 +99,10 @@ void add_device_conv2d_xdl_bias_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perchannel_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_F32_Tuple,
......@@ -154,9 +154,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -220,9 +220,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_F32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,14 +17,14 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -36,10 +36,10 @@ void add_device_conv2d_dl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -51,10 +51,10 @@ void add_device_conv2d_dl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -67,10 +67,10 @@ void add_device_conv2d_dl_bias_tanh_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
std::vector<
std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -82,10 +82,10 @@ void add_device_conv2d_xdl_bias_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -97,10 +97,10 @@ void add_device_conv2d_xdl_bias_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_bias_tanh_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
I32_Tuple,
......@@ -152,9 +152,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......@@ -218,9 +218,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<DsDataType, I32_Tuple> && is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perchannel_quantization_int8_instances(
void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perchannel_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perchannel_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
GK_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
F32_Tuple,
......@@ -119,9 +119,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<DsLayout, GK_Tuple> &&
is_same_v<OutLayout, GNHWK>)
is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
......@@ -17,13 +17,13 @@ namespace tensor_operation {
namespace device {
namespace instance {
// grouped conv2d forward, GNHWC/GKYXC/GNHWK
// grouped conv2d forward, NHWGC/GKYXC/NHWGK
void add_device_conv2d_dl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -35,10 +35,10 @@ void add_device_conv2d_dl_perlayer_quantization_int8_instances(
void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -50,10 +50,10 @@ void add_device_conv2d_dl_relu_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -65,10 +65,10 @@ void add_device_conv2d_xdl_perlayer_quantization_int8_instances(
void add_device_conv2d_xdl_relu_perlayer_quantization_int8_instances(
std::vector<std::unique_ptr<DeviceGroupedConvFwdMultipleD<2,
GNHWC,
NHWGC,
GKYXC,
Empty_Tuple,
GNHWK,
NHWGK,
int8_t,
int8_t,
Empty_Tuple,
......@@ -117,8 +117,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
std::vector<std::unique_ptr<DeviceOp>> op_ptrs;
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, GNHWC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, GNHWK>)
if constexpr(NumDimSpatial == 2 && is_same_v<InLayout, NHWGC> &&
is_same_v<WeiLayout, GKYXC> && is_same_v<OutLayout, NHWGK>)
{
if constexpr(is_same_v<InDataType, int8_t> && is_same_v<WeiDataType, int8_t> &&
is_same_v<OutDataType, int8_t>)
......
add_instance_library(device_contraction_bilinear_instance
#float
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f32_f32_f32_f32_mnnn_instance.cpp
#double
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_kknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_knnn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mknn_instance.cpp
device_contraction_bilinear_m2_n2_k2_xdl_c_shuffle_f64_f64_f64_f64_mnnn_instance.cpp
)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment