Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
853e797e
Unverified
Commit
853e797e
authored
May 25, 2023
by
Po Yen Chen
Committed by
GitHub
May 25, 2023
Browse files
Merge branch 'develop' into feature/integrage-karg-simplification-pr
parents
4ddee80b
ac9e01e2
Changes
140
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
143 additions
and
2909 deletions
+143
-2909
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
+83
-0
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
...ckward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
+0
-275
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
...ward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
+0
-355
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
...ht_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
+0
-150
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
...rd_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
+0
-132
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
...ht_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
+0
-150
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
...rd_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
+0
-135
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
...rd_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
+0
-147
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
...orm_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
+0
-260
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
...orm_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
+0
-179
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
...m_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
+0
-132
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nhwc_kyxc_nhwk.hpp
...m_forward_convolution_into_gemm_v4r4r2_nhwc_kyxc_nhwk.hpp
+0
-132
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
...m_forward_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
+0
-134
include/ck/problem_transform/transform_forward_convolution_into_gemm_v6r1_nchw_kcyx_nkhw.hpp
...orm_forward_convolution_into_gemm_v6r1_nchw_kcyx_nkhw.hpp
+0
-135
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+5
-3
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
.../gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
+5
-2
include/ck/tensor_operation/gpu/device/device_pool_fwd.hpp
include/ck/tensor_operation/gpu/device/device_pool_fwd.hpp
+44
-0
include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
...gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
+3
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_bias_e_permute_xdl.hpp
...ration/gpu/device/impl/device_gemm_bias_e_permute_xdl.hpp
+0
-586
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
...de/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
+3
-1
No files found.
example/48_pool3d_fwd/pool3d_fwd_fp16.cpp
0 → 100644
View file @
853e797e
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/utility/reduction_enums.hpp"
#include "pool3d_fwd_common.hpp"
using
InDataType
=
ck
::
half_t
;
using
OutDataType
=
ck
::
half_t
;
using
ComputeDataType
=
float
;
using
IndexDataType
=
int32_t
;
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
NDHWC
;
#if 1
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
MAX
;
#else
static
constexpr
auto
ReduceOpId
=
ck
::
ReduceTensorOp
::
AVG
;
#endif
static
constexpr
bool
OutputIndex
=
false
;
static
constexpr
bool
PropagateNan
=
false
;
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
false
;
// Pool shape
ck
::
index_t
N
=
2
;
ck
::
index_t
C
=
32
;
ck
::
index_t
Z
=
2
;
ck
::
index_t
Y
=
2
;
ck
::
index_t
X
=
2
;
ck
::
index_t
Di
=
30
;
ck
::
index_t
Hi
=
30
;
ck
::
index_t
Wi
=
30
;
ck
::
index_t
window_stride_d
=
2
;
ck
::
index_t
window_stride_h
=
2
;
ck
::
index_t
window_stride_w
=
2
;
ck
::
index_t
in_left_pad_d
=
1
;
ck
::
index_t
in_left_pad_h
=
1
;
ck
::
index_t
in_left_pad_w
=
1
;
ck
::
index_t
in_right_pad_d
=
1
;
ck
::
index_t
in_right_pad_h
=
1
;
ck
::
index_t
in_right_pad_w
=
1
;
bool
pass
=
pool3d_test
<
InDataType
,
OutDataType
,
ComputeDataType
,
IndexDataType
,
InLayout
,
OutLayout
,
ReduceOpId
,
PropagateNan
,
OutputIndex
>
(
do_verification
,
time_kernel
,
N
,
C
,
Z
,
Y
,
X
,
Di
,
Hi
,
Wi
,
window_stride_d
,
window_stride_h
,
window_stride_w
,
in_left_pad_d
,
in_left_pad_h
,
in_left_pad_w
,
in_right_pad_d
,
in_right_pad_h
,
in_right_pad_w
);
return
(
pass
?
0
:
1
);
}
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// Number of GEMMs = YTilde * XTilde
// GemmM = C
// GemmN = N * HTildeSlice * WTildeSlice
// GemmK = K * YDotSlice * XDotSlice
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
IYTildeValue
,
index_t
IXTildeValue
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1_nhwc_kyxc_nhwk
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
IYTildeValue
>
,
Number
<
IXTildeValue
>
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
constexpr
auto
IYTilde
=
Number
<
IYTildeValue
>
{};
constexpr
auto
IXTilde
=
Number
<
IXTildeValue
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// GemmK is different for each GEMM
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
IYTilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
IXTilde
,
XTilde
);
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// weight tensor
const
auto
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_y_x_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
make_tuple
(
ConvStrideW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_freeze_transform
(
IYTilde
),
make_freeze_transform
(
IXTilde
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
2
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
4
>
{}));
#if 1
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
2
,
3
,
0
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
,
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// output tensor
// this add padding check
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
=
transform_tensor_descriptor
(
out_n_hop_wop_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YDot
,
HTilde
),
make_tuple
(
-
ConvDilationH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
WTilde
),
make_tuple
(
-
ConvDilationW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
>
{}));
#if 1
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
5
,
1
,
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
XTilde
,
WTilde
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_n_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_freeze_transform
(
IYTilde
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_freeze_transform
(
IXTilde
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_htildeslice_wtildeslice_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
C
),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
))),
make_tuple
(
Sequence
<
3
>
{},
Sequence
<
0
,
1
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1R2_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_DATA_CONVOLUTION_INTO_GEMM_V4R1R2_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: out
// B: wei
// C: in
// Number of GEMMs = YTilde * XTilde
// GemmM = N * HTildeSlice * WTildeSlice
// GemmN = C
// GemmK = K * YDotSlice * XDotSlice
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
typename
IYTilde
,
typename
IXTilde
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk
(
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
IYTilde
i_ytilde
,
IXTilde
i_xtilde
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GcdStrideDilationH
=
math
::
gcd
(
ConvStrideH
,
ConvDilationH
);
const
auto
GcdStrideDilationW
=
math
::
gcd
(
ConvStrideW
,
ConvDilationW
);
const
auto
YTilde
=
ConvStrideH
/
GcdStrideDilationH
;
const
auto
XTilde
=
ConvStrideW
/
GcdStrideDilationW
;
const
auto
YDot
=
math
::
integer_divide_ceil
(
Y
,
YTilde
);
const
auto
XDot
=
math
::
integer_divide_ceil
(
X
,
XTilde
);
const
auto
HTilde
=
Ho
+
math
::
integer_divide_ceil
(
ConvDilationH
*
(
Y
-
I1
),
ConvStrideH
);
const
auto
WTilde
=
Wo
+
math
::
integer_divide_ceil
(
ConvDilationW
*
(
X
-
I1
),
ConvStrideW
);
// only work on HTilde and WTilde that contribute to non-padding area of input tensor
const
auto
IHTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadH
-
ConvDilationH
*
(
YTilde
-
I1
)),
ConvStrideH
);
const
auto
IWTildeSliceBegin
=
math
::
integer_divide_floor
(
math
::
max
(
I0
,
InLeftPadW
-
ConvDilationW
*
(
XTilde
-
I1
)),
ConvStrideW
);
const
auto
IHTildeSliceEnd
=
math
::
min
(
HTilde
,
math
::
integer_divide_ceil
(
InLeftPadH
+
Hi
-
I1
,
ConvStrideH
)
+
I1
);
const
auto
IWTildeSliceEnd
=
math
::
min
(
WTilde
,
math
::
integer_divide_ceil
(
InLeftPadW
+
Wi
-
I1
,
ConvStrideW
)
+
I1
);
const
auto
HTildeSlice
=
IHTildeSliceEnd
-
IHTildeSliceBegin
;
const
auto
WTildeSlice
=
IWTildeSliceEnd
-
IWTildeSliceBegin
;
// GemmK is different for each GEMM
const
auto
YDotSlice
=
math
::
integer_divide_ceil
(
Y
-
i_ytilde
,
YTilde
);
const
auto
XDotSlice
=
math
::
integer_divide_ceil
(
X
-
i_xtilde
,
XTilde
);
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// A: output tensor
// this add padding check
const
auto
out_n_hop_wop_k_grid_desc
=
transform_tensor_descriptor
(
out_n_ho_wo_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Ho
,
I0
,
I0
),
make_pad_transform
(
Wo
,
I0
,
I0
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
=
transform_tensor_descriptor
(
out_n_hop_wop_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YDot
,
HTilde
),
make_tuple
(
-
ConvDilationH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
WTilde
),
make_tuple
(
-
ConvDilationW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydot_htilde_xdot_wtilde_k_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
,
6
>
{}));
#if 1
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_n_ydotslice_htildeslice_xdotslice_wtildeslice_k0_k1_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
5
,
1
,
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
6
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// B: weight tensor
const
auto
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_y_x_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
K
),
make_embed_transform
(
make_tuple
(
YDot
,
YTilde
),
make_tuple
(
ConvStrideH
/
GcdStrideDilationH
,
I1
)),
make_embed_transform
(
make_tuple
(
XDot
,
XTilde
),
make_tuple
(
ConvStrideW
/
GcdStrideDilationW
,
I1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
=
transform_tensor_descriptor
(
wei_k_ydot_ytilde_xdot_xtilde_c_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_slice_transform
(
YDot
,
I0
,
YDotSlice
),
make_slice_transform
(
XDot
,
I0
,
XDotSlice
),
make_freeze_transform
(
i_ytilde
),
make_freeze_transform
(
i_xtilde
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
2
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
4
>
{}));
#if 1
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
YDotSlice
,
XDotSlice
,
K0
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
2
,
3
,
0
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#else
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_k0_k1_ydotslice_xdotslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
K0
,
YDotSlice
,
XDotSlice
)),
make_pass_through_transform
(
C
),
make_pass_through_transform
(
K1
)),
make_tuple
(
Sequence
<
0
,
2
,
3
>
{},
Sequence
<
4
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}));
#endif
// C: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
YTilde
,
HTilde
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
XTilde
,
WTilde
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_n_htildeslice_wtildeslice_c_grid_desc
=
transform_tensor_descriptor
(
in_n_ytilde_htilde_xtilde_wtilde_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_freeze_transform
(
i_ytilde
),
make_slice_transform
(
HTilde
,
IHTildeSliceBegin
,
HTildeSlice
),
make_freeze_transform
(
i_xtilde
),
make_slice_transform
(
WTilde
,
IWTildeSliceBegin
,
WTildeSlice
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<>
{},
Sequence
<
1
>
{},
Sequence
<>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_htildeslice_wtildeslice_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
N
,
HTildeSlice
,
WTildeSlice
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
// A: out
// B: wei
// C: in
// Number of GEMMs = 1
// GemmM = N * Ho * Wo
// GemmN = C
// GemmK = K
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_data_convolution_into_gemm_v4r1r2_nhwc_kyxc_nhwk_1x1
(
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
/* wei_k_y_x_c_grid_desc */
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
ConvStrides
&
conv_strides
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
K1
=
GemmK1
;
const
auto
K0
=
K
/
K1
;
// A: output tensor
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_unmerge_transform
(
make_tuple
(
K0
,
K1
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}));
// B: weight tensor
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
K0
,
K1
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: input tensor
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
I1
,
Ho
),
make_tuple
(
I1
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
I1
,
Wo
),
make_tuple
(
I1
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_freeze_transform
(
I0
),
make_freeze_transform
(
I0
),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
3
>
{},
Sequence
<
0
,
2
,
4
>
{},
Sequence
<
5
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
in_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_ATOMIC_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r2_atomic_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
C
*
Y
*
X
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmK = N * Ho * Wo
// GemmN = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
C
*
Y
*
X
;
const
auto
GemmK
=
N
*
Ho
*
Wo
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
out_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
out_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_ATOMIC_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r4_atomic_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
Y
*
X
*
C
;
const
auto
GemmN
=
K
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: output tensor
const
auto
out_gemmktotal_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
in_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
Y
*
X
*
C
;
const
auto
GemmN
=
K
;
const
auto
GemmK
=
N
*
Ho
*
Wo
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// A: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// B: output tensor
const
auto
out_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
in_gemmk0_gemmm_gemmk1_grid_desc
,
out_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_BACKWARD_WEIGHT_CONVOLUTION_INTO_GEMM_V4R4R5_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: out
// B: in
// C: wei
// GemmM = K
// GemmN = Y * X * C
// GemmKTotal = N * Ho * Wo
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
,
typename
GemmKBatchType
,
typename
GemmKPadType
>
__host__
__device__
constexpr
auto
transform_backward_weight_convolution_into_gemm_v4r4r5_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
,
GemmKBatchType
GemmKBatch
,
GemmKPadType
GemmKPad
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
Y
*
X
*
C
;
const
auto
GemmKTotal
=
N
*
Ho
*
Wo
;
const
index_t
GemmK0
=
GemmKPad
/
(
GemmKBatch
*
GemmK1
);
// A: output tensor
const
auto
out_gemmktotal_gemmm_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
));
const
auto
out_gemmkpad_gemmm_grid_desc
=
transform_tensor_descriptor
(
out_gemmktotal_gemmm_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
out_gemmkpad_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// B: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmktotal_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
in_gemmkpad_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_gemmktotal_gemmn_grid_desc
,
make_tuple
(
make_right_pad_transform
(
GemmKTotal
,
GemmKPad
-
GemmKTotal
),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmkpad_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmKBatch
,
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
// C: weight tensor
const
auto
wei_gemmm_gemmn_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
));
return
make_tuple
(
out_gemmkbatch_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmkbatch_gemmk0_gemmn_gemmk1_grid_desc
,
wei_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_global_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_no_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_c_y_ho_x_wo_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_global_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nchw_kcyx_nkhw_1x1
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_global_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_global_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_global_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_global_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I1
);
const
auto
Ho
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_global_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
Y
==
1
&&
X
==
1
&&
ConvStrideH
==
1
&&
ConvStrideW
==
1
&&
ConvDilationH
==
1
&&
ConvDilationW
==
1
&&
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_gemmk_gemmn_global_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_global_desc
,
make_tuple
(
make_pass_through_transform
(
C
),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
,
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_global_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_global_desc
,
in_gemmk_gemmn_global_desc
,
out_gemmm_gemmn_global_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_grid_desc
,
in_gemmk_gemmn_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4_nhwc_kyxc_nhwk_1x1
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
assert
(
Y
==
1
&&
X
==
1
&&
ConvStrideH
==
1
&&
ConvStrideW
==
1
&&
ConvDilationH
==
1
&&
ConvDilationW
==
1
&&
InLeftPadH
==
0
&&
InLeftPadW
==
0
&&
InRightPadH
==
0
&&
InRightPadW
==
0
);
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// input tensor
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
C
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
wei_gemmk_gemmm_grid_desc
,
in_gemmk_gemmn_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4r2_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
N
*
Ho
*
Wo
;
const
auto
GemmK
=
C
*
Y
*
X
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
C
*
Y
*
X
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_c_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_c_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C
,
Y
,
X
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
2
,
4
>
{},
Sequence
<
0
,
3
,
5
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_merge_transform
(
make_tuple
(
N
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
,
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
wei_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmk0_gemmn_gemmk1_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r2_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R2_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM = K
// GemmN = N * Ho * Wo
// GemmK = C * Y * X
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4r2_nhwc_kyxc_nhwk_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
K
;
const
auto
GemmN
=
N
*
Ho
*
Wo
;
const
auto
GemmK
=
C
*
Y
*
X
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// weight tensor
const
auto
wei_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
wei_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
return
make_tuple
(
wei_gemmk0_gemmm_gemmk1_grid_desc
,
in_gemmk0_gemmn_gemmk1_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_GEMM_V4R4R4_NHWC_KYXC_NHWK_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// A: in
// B: wei
// C: out
// GemmM = N * Ho * Wo
// GemmN = K
// GemmK = Y * X * C
template
<
typename
...
In
,
typename
...
Wei
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
index_t
GemmK1Value
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_gemm_v4r4r4_nhwc_kyxc_nhwk
(
const
TensorDescriptor
<
In
...
>&
in_n_hi_wi_c_grid_desc
,
const
TensorDescriptor
<
Wei
...
>&
wei_k_y_x_c_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_ho_wo_k_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
Number
<
GemmK1Value
>
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
GemmK1
=
Number
<
GemmK1Value
>
{};
const
auto
N
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I3
);
const
auto
K
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I3
);
const
auto
Hi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I1
);
const
auto
Wi
=
in_n_hi_wi_c_grid_desc
.
GetLength
(
I2
);
const
auto
Ho
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I1
);
const
auto
Wo
=
out_n_ho_wo_k_grid_desc
.
GetLength
(
I2
);
const
auto
Y
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I1
);
const
auto
X
=
wei_k_y_x_c_grid_desc
.
GetLength
(
I2
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
GemmM
=
N
*
Ho
*
Wo
;
const
auto
GemmN
=
K
;
const
auto
GemmK
=
Y
*
X
*
C
;
const
auto
GemmK0
=
GemmK
/
GemmK1
;
// A: input tensor
const
auto
in_n_hip_wip_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hi_wi_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n_y_ho_x_wo_c_grid_desc
=
transform_tensor_descriptor
(
in_n_hip_wip_c_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
)),
make_pass_through_transform
(
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
4
>
{},
Sequence
<
5
>
{}));
const
auto
in_gemmk_gemmm_grid_desc
=
transform_tensor_descriptor
(
in_n_y_ho_x_wo_c_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
Y
,
X
,
C
)),
make_merge_transform
(
make_tuple
(
N
,
Ho
,
Wo
))),
make_tuple
(
Sequence
<
1
,
3
,
5
>
{},
Sequence
<
0
,
2
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
in_gemmk0_gemmm_gemmk1_grid_desc
=
transform_tensor_descriptor
(
in_gemmk_gemmm_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmM
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// B: weight tensor
const
auto
wei_gemmk_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
Y
*
X
*
C
)),
make_tuple
(
make_pass_through_transform
(
K
),
make_pass_through_transform
(
Y
*
X
*
C
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}));
const
auto
wei_gemmk0_gemmn_gemmk1_grid_desc
=
transform_tensor_descriptor
(
wei_gemmk_gemmn_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
GemmK0
,
GemmK1
)),
make_pass_through_transform
(
GemmN
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
// C: output tensor
const
auto
out_gemmm_gemmn_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
*
Ho
*
Wo
,
K
)),
make_tuple
(
make_pass_through_transform
(
N
*
Ho
*
Wo
),
make_pass_through_transform
(
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
make_tuple
(
in_gemmk0_gemmm_gemmk1_grid_desc
,
wei_gemmk0_gemmn_gemmk1_grid_desc
,
out_gemmm_gemmn_grid_desc
);
}
}
// namespace ck
#endif
include/ck/problem_transform/transform_forward_convolution_into_gemm_v6r1_nchw_kcyx_nkhw.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_CONTRACTION_V6R1_NCHW_KCYX_NKHW_HPP
#define CK_TRANSFORM_FORWARD_CONVOLUTION_INTO_CONTRACTION_V6R1_NCHW_KCYX_NKHW_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace
ck
{
// GemmM0 = 1
// GemmM1 = K
// GemmN0 = N0
// GemmN1 = (N / N0) * Ho * Wo
// GemmK0 = (C / C0) * Y * X
// GemmK1 = C0
template
<
typename
...
Wei
,
typename
...
In
,
typename
...
Out
,
typename
ConvStrides
,
typename
ConvDilations
,
typename
InLeftPads
,
typename
InRightPads
,
typename
N0Type
,
typename
C0Type
>
__host__
__device__
constexpr
auto
transform_forward_convolution_into_contraction_v6r1_nchw_kcyx_nkhw_pad
(
const
TensorDescriptor
<
Wei
...
>&
wei_k_c_y_x_grid_desc
,
const
TensorDescriptor
<
In
...
>&
in_n_c_hi_wi_grid_desc
,
const
TensorDescriptor
<
Out
...
>&
out_n_k_ho_wo_grid_desc
,
const
ConvStrides
&
conv_strides
,
const
ConvDilations
&
conv_dilations
,
const
InLeftPads
&
in_left_pads
,
const
InRightPads
&
in_right_pads
,
const
N0Type
&
N0
,
const
C0Type
&
C0
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
const
auto
N
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I0
);
const
auto
C
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I1
);
const
auto
K
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I1
);
const
auto
Hi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I2
);
const
auto
Wi
=
in_n_c_hi_wi_grid_desc
.
GetLength
(
I3
);
const
auto
Ho
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I2
);
const
auto
Wo
=
out_n_k_ho_wo_grid_desc
.
GetLength
(
I3
);
const
auto
Y
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I2
);
const
auto
X
=
wei_k_c_y_x_grid_desc
.
GetLength
(
I3
);
const
auto
ConvStrideH
=
conv_strides
[
I0
];
const
auto
ConvStrideW
=
conv_strides
[
I1
];
const
auto
ConvDilationH
=
conv_dilations
[
I0
];
const
auto
ConvDilationW
=
conv_dilations
[
I1
];
const
auto
InLeftPadH
=
in_left_pads
[
I0
];
const
auto
InLeftPadW
=
in_left_pads
[
I1
];
const
auto
InRightPadH
=
in_right_pads
[
I0
];
const
auto
InRightPadW
=
in_right_pads
[
I1
];
const
auto
N1
=
N
/
N0
;
const
auto
C1
=
C
/
C0
;
// weight tensor
const
auto
wei_gk0_gm0_gm1_gk1_grid_desc
=
transform_tensor_descriptor
(
make_naive_tensor_descriptor_packed
(
make_tuple
(
K
,
C
*
Y
*
X
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
I1
,
K
)),
make_unmerge_transform
(
make_tuple
(
C0
,
C1
*
Y
*
X
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
1
,
2
>
{},
Sequence
<
3
,
0
>
{}));
// input tensor
const
auto
in_n_c_hip_wip_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hi_wi_grid_desc
,
make_tuple
(
make_pass_through_transform
(
N
),
make_pass_through_transform
(
C
),
make_pad_transform
(
Hi
,
InLeftPadH
,
InRightPadH
),
make_pad_transform
(
Wi
,
InLeftPadW
,
InRightPadW
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
const
auto
in_n0_n1_c0_c1_y_ho_x_wo_grid_desc
=
transform_tensor_descriptor
(
in_n_c_hip_wip_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
N0
,
N1
)),
make_unmerge_transform
(
make_tuple
(
C0
,
C1
)),
make_embed_transform
(
make_tuple
(
Y
,
Ho
),
make_tuple
(
ConvDilationH
,
ConvStrideH
)),
make_embed_transform
(
make_tuple
(
X
,
Wo
),
make_tuple
(
ConvDilationW
,
ConvStrideW
))),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
,
5
>
{},
Sequence
<
6
,
7
>
{}));
const
auto
in_gk0_gn0_gn1_gk1_grid_desc
=
transform_tensor_descriptor
(
in_n0_n1_c0_c1_y_ho_x_wo_grid_desc
,
make_tuple
(
make_merge_transform
(
make_tuple
(
C1
,
Y
,
X
)),
make_pass_through_transform
(
N0
),
make_merge_transform
(
make_tuple
(
N1
,
Ho
,
Wo
)),
make_pass_through_transform
(
C0
)),
make_tuple
(
Sequence
<
3
,
4
,
6
>
{},
Sequence
<
0
>
{},
Sequence
<
1
,
5
,
7
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
// output tensor
const
auto
out_n_k_howo_grid_desc
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
N
,
K
,
Ho
*
Wo
));
const
auto
out_n0_n1_1_k_howo_grid_desc
=
transform_tensor_descriptor
(
out_n_k_howo_grid_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
N0
,
N1
)),
make_unmerge_transform
(
make_tuple
(
I1
,
K
)),
make_pass_through_transform
(
Ho
*
Wo
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{}),
make_tuple
(
Sequence
<
0
,
1
>
{},
Sequence
<
2
,
3
>
{},
Sequence
<
4
>
{}));
const
auto
out_gm0_gm1_gn0_gn1_grid_desc
=
transform_tensor_descriptor
(
out_n0_n1_1_k_howo_grid_desc
,
make_tuple
(
make_pass_through_transform
(
I1
),
make_pass_through_transform
(
K
),
make_pass_through_transform
(
N0
),
make_merge_transform_v2_magic_division
(
make_tuple
(
N1
,
Ho
*
Wo
))),
make_tuple
(
Sequence
<
2
>
{},
Sequence
<
3
>
{},
Sequence
<
0
>
{},
Sequence
<
1
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{},
Sequence
<
2
>
{},
Sequence
<
3
>
{}));
return
make_tuple
(
wei_gk0_gm0_gm1_gk1_grid_desc
,
in_gk0_gn0_gn1_gk1_grid_desc
,
out_gm0_gm1_gn0_gn1_grid_desc
);
}
}
// namespace ck
#endif
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
View file @
853e797e
...
...
@@ -134,8 +134,9 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx940__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx90a__) || defined(__gfx908__) || defined(__gfx940__) || defined(__gfx1100__) || \
defined(__gfx1101__) || defined(__gfx1102__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
...
@@ -711,7 +712,8 @@ struct DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx940"
))
ck
::
get_device_name
()
==
"gfx940"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_nhwc_kyxc_nhwk.hpp
View file @
853e797e
...
...
@@ -106,7 +106,8 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__))
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__) || \
defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
...
...
@@ -600,7 +601,9 @@ struct DeviceGroupedConvFwdDl_NHWC_KYXC_NHWK : public DeviceGroupedConvFwd<NDimS
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/device_pool
2d
_fwd.hpp
→
include/ck/tensor_operation/gpu/device/device_pool_fwd.hpp
View file @
853e797e
...
...
@@ -3,8 +3,7 @@
#pragma once
#include <iostream>
#include <array>
#include <vector>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/utility/reduction_enums.hpp"
...
...
@@ -13,28 +12,33 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
template
<
ck
::
ReduceTensorOp
ReduceOpId
>
struct
DevicePool2dFwd
:
public
BaseOperator
template
<
index_t
InOutRank
,
index_t
WindowRank
,
typename
InDataType
,
typename
OutDataType
,
typename
IndexDataType
,
ReduceTensorOp
ReduceOpId
,
bool
OutputIndex
>
struct
DevicePoolFwd
:
public
BaseOperator
{
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
in_dev
,
void
*
out_dev
,
void
*
out_indices_dev
,
ck
::
index_t
N
,
ck
::
index_t
C
,
std
::
array
<
ck
::
index_t
,
2
>
input_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
output_spatial_lengths
,
std
::
array
<
ck
::
index_t
,
2
>
window_strides
,
std
::
array
<
ck
::
index_t
,
2
>
input_left_pads
,
std
::
array
<
ck
::
index_t
,
2
>
input_right_pads
)
=
0
;
MakeArgumentPointer
(
const
void
*
p_in_dev
,
void
*
p_out_dev
,
void
*
p_out_indices_dev
,
std
::
vector
<
ck
::
index_t
>
input_lengths
,
std
::
vector
<
ck
::
index_t
>
window_lengths
,
std
::
vector
<
ck
::
index_t
>
output_lengths
,
std
::
vector
<
ck
::
index_t
>
input_stride
,
std
::
vector
<
ck
::
index_t
>
output_stride
,
std
::
vector
<
ck
::
index_t
>
indices_stride
,
std
::
vector
<
ck
::
index_t
>
window_strides
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
std
::
vector
<
ck
::
index_t
>
pooling_dims
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
ck
::
ReduceTensorOp
ReduceOpId
>
using
DevicePool2dFwdPtr
=
std
::
unique_ptr
<
DevicePool2dFwd
<
ReduceOpId
>>
;
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_convnd_bwd_data_nwc_kxc_nwk_dl.hpp
View file @
853e797e
...
...
@@ -1393,7 +1393,9 @@ struct DeviceConvNdBwdDataNwcKxcNwk_Dl
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
))
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_bias_e_permute_xdl.hpp
deleted
100644 → 0
View file @
4ddee80b
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_e_permute.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatDsPointer
,
typename
FloatE
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
Block2ETileMap
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_gemm_bias_e_permute
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatDsPointer
p_ds_grid
,
FloatE
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
const
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock
,
const
Block2ETileMap
block_2_etile_map
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainKBlockLoop
>(
p_a_grid
,
p_b_grid
,
p_ds_grid
,
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
ds_grid_desc_mblock_mperblock_nblock_nperblock
,
e_grid_desc_mblock_mperblock_nblock_nperblock
,
block_2_etile_map
);
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
a_grid_desc_ak0_m_ak1
;
ignore
=
b_grid_desc_bk0_n_bk1
;
ignore
=
ds_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
e_grid_desc_mblock_mperblock_nblock_nperblock
;
ignore
=
block_2_etile_map
;
#endif
}
}
// namespace ck
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
// input : A[M, K], or A[K, N]
// input : B[K, N], or A[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template
<
typename
ALayout
,
typename
BLayout
,
typename
CDELayout
,
typename
ADataType
,
typename
BDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
index_t
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
index_t
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGemmBiasEPermute_Xdl
:
public
DeviceGemmBiasCPermute
<
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGemmBiasEPermute_Xdl
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
KPerBlock
};
static
constexpr
index_t
NumDTensor
=
1
;
static
auto
MakeAGridDescriptor_M_K
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
return
matrix_padder
.
PadADescriptor_M_K
(
a_grid_desc_mraw_kraw
);
}
static
auto
MakeBGridDescriptor_N_K
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
return
matrix_padder
.
PadBDescriptor_N_K
(
b_grid_desc_nraw_kraw
);
}
static
auto
MakeEGridDescriptor_M_N
(
DEGridDesc_M0_M1_M2_N0_N1
d_e_grid_desc
)
{
index_t
M0
=
d_e_grid_desc
.
M0_
;
index_t
M1
=
d_e_grid_desc
.
M1_
;
index_t
M2
=
d_e_grid_desc
.
M2_
;
index_t
N0
=
d_e_grid_desc
.
N0_
;
index_t
N1
=
d_e_grid_desc
.
N1_
;
index_t
stride_M0
=
d_e_grid_desc
.
stride_M0_
;
index_t
stride_M1
=
d_e_grid_desc
.
stride_M1_
;
index_t
stride_M2
=
d_e_grid_desc
.
stride_M2_
;
index_t
stride_N0
=
d_e_grid_desc
.
stride_N0_
;
index_t
stride_N1
=
d_e_grid_desc
.
stride_N1_
;
const
auto
e_grid_desc_mraw_nraw
=
[
&
]()
{
const
auto
e_grid_desc_m0_m1_m2_n0_n1
=
make_naive_tensor_descriptor
(
make_tuple
(
M0
,
M1
,
M2
,
N0
,
N1
),
make_tuple
(
stride_M0
,
stride_M1
,
stride_M2
,
stride_N0
,
stride_N1
));
return
transform_tensor_descriptor
(
e_grid_desc_m0_m1_m2_n0_n1
,
make_tuple
(
make_merge_transform
(
make_tuple
(
M0
,
M1
,
M2
)),
make_merge_transform
(
make_tuple
(
N0
,
N1
))),
make_tuple
(
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}();
return
matrix_padder
.
PadCDescriptor_M_N
(
e_grid_desc_mraw_nraw
);
}
using
AGridDesc_M_K
=
decltype
(
MakeAGridDescriptor_M_K
(
1
,
1
,
1
));
using
BGridDesc_N_K
=
decltype
(
MakeBGridDescriptor_N_K
(
1
,
1
,
1
));
using
EGridDesc_M_N
=
decltype
(
MakeEGridDescriptor_M_N
(
DEGridDesc_M0_M1_M2_N0_N1
{}));
using
DsGridDesc_M_N
=
Tuple
<
EGridDesc_M_N
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleD_xdl_cshuffle
<
ADataType
,
// TODO: distinguish A/B datatype
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
DDataType
>
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
AGridDesc_M_K
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
BGridDesc_N_K
{}))
>
;
using
Block2ETileMap
=
typename
GridwiseGemm
::
DefaultBlock2ETileMap
;
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a_grid
,
const
void
*
p_b_grid
,
const
void
*
p_d_grid
,
void
*
p_e_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
DEGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a_grid
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b_grid
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e_grid
)},
a_grid_desc_m_k_
{
DeviceOp
::
MakeAGridDescriptor_M_K
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_n_k_
{
DeviceOp
::
MakeBGridDescriptor_N_K
(
KRaw
,
NRaw
,
StrideB
)},
ds_grid_desc_m_n_
{},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
(
e_grid_desc
)},
a_grid_desc_ak0_m_ak1_
{
GridwiseGemm
::
MakeDefaultAGridDescriptor_AK0_M_AK1
(
a_grid_desc_m_k_
)},
b_grid_desc_bk0_n_bk1_
{
GridwiseGemm
::
MakeDefaultBGridDescriptor_BK0_N_BK1
(
b_grid_desc_n_k_
)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_
{},
e_grid_desc_mblock_mperblock_nblock_nperblock_
{},
block_2_etile_map_
{
GridwiseGemm
::
MakeDefaultBlock2ETileMap
(
e_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
}
{
if
(
MRaw
!=
d_grid_desc
.
M0_
*
d_grid_desc
.
M1_
*
d_grid_desc
.
M2_
)
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
if
(
NRaw
!=
d_grid_desc
.
N0_
*
d_grid_desc
.
N1_
)
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
// populate pointer, desc for Ds
// D pointer
p_ds_grid_
(
I0
)
=
static_cast
<
const
DDataType
*>
(
p_d_grid
);
// D desc
ds_grid_desc_m_n_
(
I0
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
(
d_grid_desc
);
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_m_k_
,
b_grid_desc_n_k_
,
ds_grid_desc_m_n_
,
e_grid_desc_m_n_
,
block_2_etile_map_
))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
e_grid_desc_m_n_
);
ds_grid_desc_mblock_mperblock_nblock_nperblock_
(
I0
)
=
GridwiseGemm
::
MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
ds_grid_desc_m_n_
[
I0
]);
}
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
AGridDesc_M_K
a_grid_desc_m_k_
;
BGridDesc_N_K
b_grid_desc_n_k_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_
;
// block-to-e-tile map
Block2ETileMap
block_2_etile_map_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
arg
.
block_2_etile_map_
.
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
);
const
auto
K
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
)
*
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I2
);
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
const
auto
kernel
=
kernel_gemm_bias_e_permute
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DefaultBlock2ETileMap
,
has_main_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
ds_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
e_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
block_2_etile_map_
);
};
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K
))
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{});
}
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
!
(
ck
::
get_device_name
()
==
"gfx908"
||
ck
::
get_device_name
()
==
"gfx90a"
||
ck
::
get_device_name
()
==
"gfx940"
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_m_k_
,
arg
.
b_grid_desc_n_k_
,
arg
.
ds_grid_desc_m_n_
,
arg
.
e_grid_desc_m_n_
,
arg
.
block_2_etile_map_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_d
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
DEGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_d
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
d_grid_desc
,
e_grid_desc
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
void
*
p_d
,
void
*
p_e
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
DEGridDesc_M0_M1_M2_N0_N1
d_grid_desc
,
DEGridDesc_M0_M1_M2_N0_N1
e_grid_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_d
,
p_e
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
d_grid_desc
,
e_grid_desc
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGemmBiasEPermute_Xdl"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
K1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
ABlockTransferDstScalarPerVector_K1
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferDstScalarPerVector_K1
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
CBlockTransferScalarPerVector_NWaveNPerXdl
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_gemm_dl.hpp
View file @
853e797e
...
...
@@ -485,7 +485,9 @@ struct DeviceGemmDl : public DeviceGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
)
if
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
||
ck
::
get_device_name
()
==
"gfx1100"
||
ck
::
get_device_name
()
==
"gfx1101"
||
ck
::
get_device_name
()
==
"gfx1102"
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
);
...
...
Prev
1
2
3
4
5
6
7
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment