"test/signed_distance.py" did not exist on "e1eb521b11dc1a7517681b385806b14ba110ddb5"
Commit 847359c6 authored by Chao Liu's avatar Chao Liu
Browse files

adding output shuffle in conv+bias+relu+add

parent bc6513a2
......@@ -5,7 +5,7 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v3r2.hpp"
#include "threadwise_tensor_slice_transfer_v3r1.hpp"
namespace ck {
......@@ -35,13 +35,13 @@ template <index_t BlockSize,
index_t DstScalarStrideInVector,
bool ThreadTransferSrcResetCoordinateAfterRun,
bool ThreadTransferDstResetCoordinateAfterRun>
struct BlockwiseTensorSliceTransfer_v4
struct BlockwiseTensorSliceTransfer_v4r1
{
static constexpr index_t nDim = remove_reference_t<SrcDesc>::GetNumOfDimension();
using Index = MultiIndex<nDim>;
__device__ constexpr BlockwiseTensorSliceTransfer_v4(
__device__ constexpr BlockwiseTensorSliceTransfer_v4r1(
const SrcDesc& src_desc,
const Index& src_block_slice_origin,
const SrcElementwiseOperation& src_element_op,
......@@ -165,7 +165,7 @@ struct BlockwiseTensorSliceTransfer_v4
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v3r2<ThreadSliceLengths,
ThreadwiseTensorSliceTransfer_v3r1<ThreadSliceLengths,
SrcElementwiseOperation,
DstElementwiseOperation,
DstInMemOp,
......
#ifndef CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V4R3_HPP
#define CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V4R3_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v3r3.hpp"
namespace ck {
// this version does following things to avoid scratch memory issue
// 1. Use StaticallyIndexedArray instead of C array for thread buffer
// 2. ThreadwiseTensorSliceTransfer_v3 does not keep reference to tensor descriptor
// 3. ThreadwiseTensorSliceTransfer_v3::Run() does not construct new tensor coordinate
template <index_t BlockSize,
typename SrcElementwiseOperation,
typename DstElementwiseOperation,
InMemoryDataOperationEnum_t DstInMemOp,
typename BlockSliceLengths,
typename ThreadSliceLengths,
typename ThreadClusterLengths,
typename ThreadClusterArrangeOrder,
typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename Dst0Desc, // this is really one of sources, but it has same shape as DstDesc
typename Dst1Desc, // this is really one of sources, but it has same shape as DstDesc
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
index_t SrcScalarPerVector,
index_t DstScalarPerVector,
index_t SrcScalarStrideInVector,
index_t DstScalarStrideInVector,
bool ThreadTransferSrcResetCoordinateAfterRun,
bool ThreadTransferDstResetCoordinateAfterRun>
struct BlockwiseTensorSliceTransfer_v4r3
{
static constexpr index_t nDim = remove_reference_t<SrcDesc>::GetNumOfDimension();
using Index = MultiIndex<nDim>;
__device__ constexpr BlockwiseTensorSliceTransfer_v4r3(
const SrcDesc& src_desc,
const Index& src_block_slice_origin,
const SrcElementwiseOperation& src_element_op,
const DstDesc& dst_desc,
const Dst0Desc& dst0_desc,
const Dst1Desc& dst1_desc,
const Index& dst_block_slice_origin,
const DstElementwiseOperation& dst_element_op)
: threadwise_transfer_(src_desc,
make_zero_multi_index<nDim>(),
src_element_op,
dst_desc,
dst0_desc,
dst1_desc,
make_zero_multi_index<nDim>(),
dst_element_op)
{
static_assert(nDim == remove_reference_t<remove_cv_t<SrcDesc>>::GetNumOfDimension() &&
nDim == remove_reference_t<remove_cv_t<DstDesc>>::GetNumOfDimension() &&
nDim == remove_reference_t<remove_cv_t<Dst0Desc>>::GetNumOfDimension() &&
nDim == remove_reference_t<remove_cv_t<Dst1Desc>>::GetNumOfDimension() &&
nDim == BlockSliceLengths::Size() && nDim == ThreadSliceLengths::Size() &&
nDim == ThreadClusterLengths::Size() &&
nDim == ThreadClusterArrangeOrder::Size() &&
nDim == SrcDimAccessOrder::Size() && nDim == DstDimAccessOrder::Size(),
"wrong! nDim not consistent");
static_assert(
is_same<BlockSliceLengths, decltype(ThreadSliceLengths{} * ThreadClusterLengths{})>{},
"wrong! threads should be mapped to cover entire slicing window");
static_assert(BlockSize >= thread_cluster_desc_.GetElementSize(),
"wrong! BlockSize too small");
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
const auto thread_cluster_idx = thread_cluster_desc_.CalculateBottomIndex(
make_multi_index(get_thread_local_1d_id()));
const auto thread_data_idx_begin = thread_cluster_idx * ThreadSliceLengths{};
threadwise_transfer_.SetSrcSliceOrigin(src_desc,
src_block_slice_origin + thread_data_idx_begin);
threadwise_transfer_.SetDstSliceOrigin(
dst_desc, dst0_desc, dst1_desc, dst_block_slice_origin + thread_data_idx_begin);
}
}
template <typename SrcBuffer>
__device__ void RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunRead(src_desc, src_buf);
}
}
// this is really load dst0 and dst1 and write to dst
template <typename DstBuffer, typename Dst0Bufferm typename Dst1Buffer>
__device__ void RunWrite(const DstDesc& dst_desc,
DstBuffer& dst_buf,
const Dst0Desc& dst0_desc,
const Dst0Buffer& dst0_buf,
const Dst1Desc& dst1_desc,
const Dst1Buffer& dst1_buf)
{
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.RunWrite(
dst_desc, dst_buf, dst0_desc, dst0_buf, dst1_desc, dst1_buf);
}
}
template <typename SrcBuffer, typename DstBuffer>
__device__ void Run(const SrcDesc& src_desc,
const SrcBuffer& src_buf,
const DstDesc& dst_desc,
DstBuffer& dst_buf,
const Dst0Desc& dst0_desc,
const Dst0Buffer& dst0_buf,
const Dst1Desc& dst1_desc,
const Dst1Buffer& dst1_buf);
{
RunRead(src_desc, src_buf);
RunWrite(dst_desc, dst_buf, dst0_desc, dst0_buf, dst1_desc, dst1_buf);
}
__device__ void MoveSrcSliceWindow(const SrcDesc& src_desc, const Index& step)
{
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveSrcSliceWindow(src_desc, step);
}
}
__device__ void MoveDstSliceWindow(const DstDesc& dst_desc,
const Dst0Desc& dst0_desc,
const Dst1Desc& dst1_desc,
const Index& step)
{
if(BlockSize == thread_cluster_desc_.GetElementSize() or
get_thread_local_1d_id() < thread_cluster_desc_.GetElementSize())
{
threadwise_transfer_.MoveDstSliceWindow(dst_desc, dst0_desc, dst1_desc, step);
}
}
private:
static constexpr auto thread_cluster_desc_ =
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v3r3<ThreadSliceLengths,
SrcElementwiseOperation,
DstElementwiseOperation,
DstInMemOp,
SrcData,
DstData,
SrcDesc,
DstDesc,
Dst0Desc,
Dst1Desc,
SrcDimAccessOrder,
DstDimAccessOrder,
SrcVectorDim,
DstVectorDim,
SrcScalarPerVector,
DstScalarPerVector,
SrcScalarStrideInVector,
DstScalarStrideInVector,
ThreadTransferSrcResetCoordinateAfterRun,
ThreadTransferDstResetCoordinateAfterRun>;
ThreadwiseTransfer threadwise_transfer_;
};
} // namespace ck
#endif
#ifndef CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V2_HPP
#define CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V2_HPP
#ifndef CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#define CK_BLOCKWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "cluster_descriptor.hpp"
#include "threadwise_tensor_slice_transfer_v2.hpp"
#include "threadwise_tensor_slice_transfer_v5r1.hpp"
namespace ck {
......@@ -31,13 +31,13 @@ template <index_t BlockSize,
typename DstVectorTensorContiguousDimOrder,
bool ThreadTransferSrcResetCoordinateAfterRun,
bool ThreadTransferDstResetCoordinateAfterRun>
struct BlockwiseTensorSliceTransfer_v4r1
struct BlockwiseTensorSliceTransfer_v5r1
{
static constexpr index_t nDim = remove_reference_t<SrcDesc>::GetNumOfDimension();
using Index = MultiIndex<nDim>;
__device__ constexpr BlockwiseTensorSliceTransfer_v4r1(const SrcDesc& src_desc,
__device__ constexpr BlockwiseTensorSliceTransfer_v5r1(const SrcDesc& src_desc,
const Index& src_block_slice_origin,
const DstDesc& dst_desc,
const Index& dst_block_slice_origin)
......@@ -134,7 +134,7 @@ struct BlockwiseTensorSliceTransfer_v4r1
make_cluster_descriptor(ThreadClusterLengths{}, ThreadClusterArrangeOrder{});
using ThreadwiseTransfer =
ThreadwiseTensorSliceTransfer_v3r1<ThreadSliceLengths,
ThreadwiseTensorSliceTransfer_v5r1<ThreadSliceLengths,
DstInMemOp,
SrcData,
DstData,
......
......@@ -381,7 +381,7 @@ struct GridwiseContractionDlops_A_GK0_GM0_GM1_GK1_B_GK0_GN0_GN1_GK1_C_GM0_GM1_GN
"wrong!");
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v4r1<
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<GK0PerBlock, GM0, 1, GM1PerBlockGM11, GK1.value>,
......@@ -405,7 +405,7 @@ struct GridwiseContractionDlops_A_GK0_GM0_GM1_GK1_B_GK0_GN0_GN1_GK1_C_GM0_GM1_GN
make_multi_index(0, 0, 0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v4r1<
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<GK0PerBlock, GN0, 1, GN1PerBlockGN11, GK1.value>,
......
......@@ -6,7 +6,7 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_dlops_v2r3.hpp"
#include "blockwise_tensor_slice_transfer_v2.hpp"
#include "blockwise_tensor_slice_transfer_v5r1.hpp"
#include "threadwise_tensor_slice_transfer_v2.hpp"
#include "threadwise_tensor_slice_set.hpp"
......@@ -380,7 +380,7 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
"wrong!");
// A matrix blockwise copy
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v4r1<
auto a_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, 1, MPerBlockM1, K1.value>,
......@@ -404,7 +404,7 @@ struct GridwiseGemmDlops_km_kn_mn_v1r3
make_multi_index(0, 0, 0, 0));
// B matrix blockwise copy
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v4r1<
auto b_blockwise_copy = BlockwiseTensorSliceTransfer_v5r1<
BlockSize,
InMemoryDataOperationEnum_t::Set,
Sequence<KPerBlock, 1, NPerBlockN1, K1.value>,
......
......@@ -6,9 +6,8 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
......@@ -435,7 +434,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -466,7 +465,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......
......@@ -6,9 +6,8 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
......@@ -452,7 +451,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
}();
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -483,7 +482,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......
......@@ -6,9 +6,8 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer_v1r4.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
......@@ -405,7 +404,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -436,7 +435,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r5
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......
......@@ -6,9 +6,8 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer_v1r5.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
......@@ -391,7 +390,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r6
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -422,7 +421,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r6
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......
......@@ -6,9 +6,8 @@
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer.hpp"
#include "blockwise_tensor_slice_transfer_v4r1.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
#include "threadwise_tensor_slice_set.hpp"
namespace ck {
......@@ -111,6 +110,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
// TODO: need to calculate LDS usage for C shuffle
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
......@@ -354,7 +354,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -385,7 +385,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4<BlockSize,
BlockwiseTensorSliceTransfer_v4r1<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
......@@ -654,7 +654,7 @@ struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r1
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
auto c_block_copy_lds_to_global = BlockwiseTensorSliceTransfer_v4<
auto c_block_copy_lds_to_global = BlockwiseTensorSliceTransfer_v4r1<
BlockSize, // index_t BlockSize,
ck::tensor_operation::element_wise::PassThrough, // SrcElementwiseOperation,
CElementwiseOperation, // DstElementwiseOperation,
......
#ifndef CK_GRIDWISE_GEMM_XDLOPS_V3R3_HPP
#define CK_GRIDWISE_GEMM_XDLOPS_V3R3_HPP
#include "common_header.hpp"
#include "multi_index_transform_helper.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "blockwise_gemm_xdlops.hpp"
#include "blockwise_tensor_slice_transfer_v4r3.hpp"
#include "threadwise_tensor_slice_transfer.hpp"
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatC,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl,
typename C0GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl,
typename C1GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename Block2CTileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_xdlops_v3r1(
const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
const AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1,
const CGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const C0GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const C1GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CElementwiseOperation c_element_op,
const Block2CTileMap block_2_ctile_map)
{
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(
p_a_grid,
p_b_grid,
p_c_grid,
p_c0_grid,
p_c1_grid,
p_shared,
a_grid_desc_k0_m_k1,
b_grid_desc_k0_n_k1,
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
a_element_op,
b_element_op,
c_element_op,
block_2_ctile_map);
}
template <index_t BlockSize,
typename FloatAB,
typename FloatAcc,
typename FloatC,
InMemoryDataOperationEnum_t CGlobalMemoryDataOperation,
typename AGridDesc_K0_M_K1,
typename BGridDesc_K0_N_K1,
typename CGridDesc_M_N,
typename C0GridDesc_M_N,
typename C1GridDesc_M_N,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
index_t MPerBlock,
index_t NPerBlock,
index_t K0PerBlock,
index_t MPerXdl,
index_t NPerXdl,
index_t K1Value,
index_t MRepeat,
index_t NRepeat,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_K1,
bool AThreadTransferSrcResetCoordinateAfterRun,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_K1,
bool BThreadTransferSrcResetCoordinateAfterRun,
typename CThreadTransferSrcDstAccessOrder,
index_t CThreadTransferSrcDstVectorDim,
index_t CThreadTransferDstScalarPerVector,
bool CAccessOrderMRepeatNRepeat,
bool ABlockLdsExtraM,
bool BBlockLdsExtraN>
struct GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
// K1 should be Number<...>
static constexpr auto K1 = Number<K1Value>{};
// TODO: need to calculate LDS usage for C shuffle
__host__ __device__ static constexpr index_t GetSharedMemoryNumberOfByte()
{
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_block_desc_k0_m_k1.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_block_desc_k0_n_k1.GetElementSpaceSize(), max_lds_align);
return (a_block_space_size + b_block_space_size) * sizeof(FloatAB);
}
// block_id to matrix tile idx (m0, n0) mapping are controlled by {M01, N01}
__host__ __device__ static constexpr bool
CheckValidity(const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDesc_M_N& c_grid_desc_m_n,
index_t M01,
index_t N01)
{
static_assert(is_known_at_compile_time<remove_cv_t<decltype(K1)>>::value,
"wrong! K1 need to be known at compile-time");
static_assert((MPerBlock % (MPerXdl * MRepeat) == 0) &&
(NPerBlock % (NRepeat * NPerXdl)) == 0,
"Invalid tuning param!");
const auto M = a_grid_desc_k0_m_k1.GetLength(I1);
const auto N = b_grid_desc_k0_n_k1.GetLength(I1);
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
if(!(M == c_grid_desc_m_n.GetLength(I0) && N == c_grid_desc_m_n.GetLength(I1) &&
K0 == b_grid_desc_k0_n_k1.GetLength(I0) && K1 == a_grid_desc_k0_m_k1.GetLength(I2) &&
K1 == b_grid_desc_k0_n_k1.GetLength(I2)))
return false;
if(!(M % MPerBlock == 0 && N % NPerBlock == 0 && K0 % K0PerBlock == 0))
return false;
// check M01, N01
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
if(!(M0 % M01 == 0 && N0 % N01 == 0))
return false;
// TODO: also check validity of all components (blockwise-copy, threadwise-copy, etc)
return true;
}
__host__ __device__ static constexpr index_t
CalculateGridSize(const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const index_t grid_size = (M / MPerBlock) * (N / NPerBlock);
return grid_size;
}
__host__ __device__ static constexpr bool CalculateHasMainK0BlockLoop(index_t K0)
{
const bool has_main_k0_block_loop = (K0 / K0PerBlock) > 1;
return has_main_k0_block_loop;
}
__host__ __device__ static constexpr auto
MakeCGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl(
const CGridDesc_M_N& c_grid_desc_m_n)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
const auto MBlock = M / MPerBlock;
const auto NBlock = N / NPerBlock;
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXdl);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXdl);
const auto c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl =
transform_tensor_descriptor(
c_grid_desc_m_n,
make_tuple(make_unmerge_transform(
make_tuple(MBlock, Number<MRepeat>{}, Number<MWave * MPerXdl>{})),
make_unmerge_transform(
make_tuple(NBlock, Number<NRepeat>{}, Number<NWave * NPerXdl>{}))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 1, 2>{}, Sequence<3, 4, 5>{}));
return c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl;
}
// return block_id to C matrix tile idx (m0, n0) mapping
__host__ __device__ static constexpr auto
MakeBlock2CTileMap(const CGridDesc_M_N& c_grid_desc_m_n, index_t M01, index_t N01)
{
const auto M = c_grid_desc_m_n.GetLength(I0);
const auto N = c_grid_desc_m_n.GetLength(I1);
constexpr auto M1 = Number<MPerBlock>{};
constexpr auto N1 = Number<NPerBlock>{};
const auto M0 = M / M1;
const auto N0 = N / N1;
const auto M00 = M0 / M01;
const auto N00 = N0 / N01;
const auto m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_unmerge_transform(make_tuple(M00, M01)),
make_unmerge_transform(make_tuple(N00, N01))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1, 3>{}));
const auto c_blockid_to_m00_m01_n00_n01_block_cluster_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M00, N00, M01, N01))),
make_tuple(Sequence<0, 1, 2, 3>{}),
make_tuple(Sequence<0>{}));
const auto c_blockid_to_m0_n0_block_cluster_adaptor =
chain_tensor_adaptors(m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor,
c_blockid_to_m00_m01_n00_n01_block_cluster_adaptor);
return c_blockid_to_m0_n0_block_cluster_adaptor;
}
using CGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl =
remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl(
CGridDesc_M_N{}))>;
using C0GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl =
remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl(
C0GridDesc_M_N{}))>;
using C1GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl =
remove_cvref_t<decltype(
MakeCGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl(
C1GridDesc_M_N{}))>;
using Block2CTileMap = remove_cvref_t<decltype(MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1))>;
template <bool HasMainKBlockLoop>
__device__ static void
Run(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatC* __restrict__ p_c_grid,
void* __restrict__ p_shared,
const AGridDesc_K0_M_K1& a_grid_desc_k0_m_k1,
const BGridDesc_K0_N_K1& b_grid_desc_k0_n_k1,
const CGridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl&
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const C0GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl&
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const C0GridDescriptor_MBlock_MRepeat_MWaveMPerXdl_NBlock_NRepeat_NWaveNPerXdl&
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
const AElementwiseOperation& a_element_op,
const BElementwiseOperation& b_element_op,
const CElementwiseOperation& c_element_op,
const Block2CTileMap& block_2_ctile_map)
{
const auto a_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_a_grid, a_grid_desc_k0_m_k1.GetElementSpaceSize());
const auto b_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_b_grid, b_grid_desc_k0_n_k1.GetElementSpaceSize());
auto c_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c_grid,
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl
.GetElementSpaceSize());
auto c0_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c0_grid,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl
.GetElementSpaceSize());
auto c1_grid_buf = make_dynamic_buffer<AddressSpaceEnum_t::Global>(
p_c1_grid,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl
.GetElementSpaceSize());
const auto K0 = a_grid_desc_k0_m_k1.GetLength(I0);
// divide block work by [M, N]
const auto block_work_idx =
block_2_ctile_map.CalculateBottomIndex(make_multi_index(get_block_1d_id()));
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const index_t m_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I0] * MPerBlock);
const index_t n_block_data_idx_on_grid =
__builtin_amdgcn_readfirstlane(block_work_idx[I1] * NPerBlock);
// lds max alignment
constexpr auto max_lds_align = K1;
// A matrix in LDS memory, dst of blockwise copy
constexpr auto a_block_desc_k0_m_k1 = [&]() {
if constexpr(ABlockLdsExtraM)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1),
make_tuple(Number<MPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<MPerBlock>{}, K1), max_lds_align);
}
}();
// B matrix in LDS memory, dst of blockwise copy
constexpr auto b_block_desc_k0_n_k1 = [&]() {
if constexpr(BBlockLdsExtraN)
{
return make_naive_tensor_descriptor(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1),
make_tuple(Number<NPerBlock + 1>{} * K1, K1, I1));
}
else
{
return make_naive_tensor_descriptor_aligned(
make_tuple(Number<K0PerBlock>{}, Number<NPerBlock>{}, K1), max_lds_align);
}
}();
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseTensorSliceTransfer_v4r3<BlockSize,
AElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
Sequence<K0PerBlock, MPerBlock, K1>,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(a_grid_desc_k0_m_k1),
decltype(a_block_desc_k0_m_k1),
ABlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
ABlockTransferSrcVectorDim,
2,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
1,
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_grid_desc_k0_m_k1,
make_multi_index(0, m_block_data_idx_on_grid, 0),
a_element_op,
a_block_desc_k0_m_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// B matrix blockwise copy
auto b_blockwise_copy =
BlockwiseTensorSliceTransfer_v4r3<BlockSize,
BElementwiseOperation,
ck::tensor_operation::element_wise::PassThrough,
InMemoryDataOperationEnum_t::Set,
Sequence<K0PerBlock, NPerBlock, K1>,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
FloatAB,
FloatAB,
decltype(b_grid_desc_k0_n_k1),
decltype(b_block_desc_k0_n_k1),
BBlockTransferSrcAccessOrder,
Sequence<1, 0, 2>,
BBlockTransferSrcVectorDim,
2,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
1,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(
b_grid_desc_k0_n_k1,
make_multi_index(0, n_block_data_idx_on_grid, 0),
b_element_op,
b_block_desc_k0_n_k1,
make_multi_index(0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[K0PerBlock, MPerBlock] is in LDS
// b_mtx[K0PerBlock, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
auto blockwise_gemm =
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_v1<BlockSize,
FloatAB,
FloatAcc,
decltype(a_block_desc_k0_m_k1),
decltype(b_block_desc_k0_n_k1),
MPerXdl,
NPerXdl,
MRepeat,
NRepeat,
K1>{};
auto c_thread_buf = blockwise_gemm.GetCThreadBuffer();
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_block_desc_k0_m_k1.GetElementSpaceSize(), max_lds_align);
auto a_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
static_cast<FloatAB*>(p_shared), a_block_desc_k0_m_k1.GetElementSpaceSize());
auto b_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
static_cast<FloatAB*>(p_shared) + a_block_space_size,
b_block_desc_k0_n_k1.GetElementSpaceSize());
constexpr auto a_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(K0PerBlock, 0, 0);
// preload data into LDS
{
a_blockwise_copy.RunRead(a_grid_desc_k0_m_k1, a_grid_buf);
b_blockwise_copy.RunRead(b_grid_desc_k0_n_k1, b_grid_buf);
a_blockwise_copy.RunWrite(a_block_desc_k0_m_k1, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n_k1, b_block_buf);
}
// Initialize C
c_thread_buf.Clear();
// main body
if constexpr(HasMainKBlockLoop)
{
index_t k0_block_data_begin = 0;
do
{
a_blockwise_copy.MoveSrcSliceWindow(a_grid_desc_k0_m_k1, a_block_slice_copy_step);
b_blockwise_copy.MoveSrcSliceWindow(b_grid_desc_k0_n_k1, b_block_slice_copy_step);
a_blockwise_copy.RunRead(a_grid_desc_k0_m_k1, a_grid_buf);
block_sync_lds();
b_blockwise_copy.RunRead(b_grid_desc_k0_n_k1, b_grid_buf);
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
block_sync_lds();
a_blockwise_copy.RunWrite(a_block_desc_k0_m_k1, a_block_buf);
b_blockwise_copy.RunWrite(b_block_desc_k0_n_k1, b_block_buf);
k0_block_data_begin += K0PerBlock;
} while(k0_block_data_begin < (K0 - K0PerBlock));
}
// tail
{
block_sync_lds();
blockwise_gemm.Run(a_block_buf, b_block_buf, c_thread_buf);
}
// shuffle and write out
{
#if 1
// TODO: make it tunable
constexpr index_t MRepeatPerShuffle_CCopy = 1;
constexpr index_t NRepeatPerShuffle_CCopy = 1;
// TODO: this is hardcoded, only works for BlockSize = 256. fix it!
constexpr index_t MRepeatThread_CCopy = 1;
constexpr index_t MThread_CCopy = 32;
constexpr index_t NRepeatThread_CCopy = 1;
constexpr index_t NThread_CCopy = 8;
// vector length for blockwise copy from LDS to global
constexpr index_t NScalarPerVector_CCopy = 8;
#else
// TODO: make it tunable
constexpr index_t MRepeatPerShuffle_CCopy = 1;
constexpr index_t NRepeatPerShuffle_CCopy = 2;
// TODO: this is hardcoded, only works for BlockSize = 256. fix it!
constexpr index_t MRepeatThread_CCopy = 1;
constexpr index_t MThread_CCopy = 16;
constexpr index_t NRepeatThread_CCopy = 2;
constexpr index_t NThread_CCopy = 8;
// vector length for blockwise copy from LDS to global
constexpr index_t NScalarPerVector_CCopy = 8;
#endif
static_assert(MRepeat % MRepeatPerShuffle_CCopy == 0 &&
NRepeat % NRepeatPerShuffle_CCopy == 0,
"wrong!");
constexpr index_t MWave = MPerBlock / (MRepeat * MPerXdl);
constexpr index_t NWave = NPerBlock / (NRepeat * NPerXdl);
constexpr index_t MPerBlock_CCopy = MWave * MPerXdl;
constexpr index_t NPerBlock_CCopy = NWave * NPerXdl;
constexpr index_t MPerThread_CCopy = MPerBlock_CCopy / MThread_CCopy;
constexpr index_t NPerThread_CCopy = NPerBlock_CCopy / NThread_CCopy;
constexpr index_t MRepeatPerThread_CCopy =
MRepeatPerShuffle_CCopy / MRepeatThread_CCopy;
constexpr index_t NRepeatPerThread_CCopy =
NRepeatPerShuffle_CCopy / NRepeatThread_CCopy;
// TODO: hacky, fix it!
constexpr auto c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2 =
blockwise_gemm.GetCThreadDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
// TODO: hacky, fix it!
// c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp is only used to get lengths
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp =
blockwise_gemm.GetCBlockDescriptor_M0_N0_M1_N1_M2_M3_M4_N2();
constexpr auto M0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I0);
constexpr auto N0 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I1);
constexpr auto M1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I2);
constexpr auto N1 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I3);
constexpr auto M2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I4);
constexpr auto M3 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I5);
constexpr auto M4 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I6);
constexpr auto N2 = c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2_tmp.GetLength(I7);
constexpr auto c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl =
make_naive_tensor_descriptor_packed(make_tuple(I1,
Number<MRepeatPerShuffle_CCopy>{},
Number<MWave * MPerXdl>{},
I1,
Number<NRepeatPerShuffle_CCopy>{},
Number<NWave * NPerXdl>{}));
auto c_block_buf = make_dynamic_buffer<AddressSpaceEnum_t::Lds>(
static_cast<FloatC*>(p_shared),
c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl
.GetElementSpaceSize());
constexpr auto c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2 = transform_tensor_descriptor(
c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
make_tuple(make_freeze_transform(I0), // freeze mblock
make_pass_through_transform(
Number<MRepeatPerShuffle_CCopy>{}), // M0 (MRepeat) per shuffle
make_unmerge_transform(
make_tuple(M1, M2, M3, M4)), // M1 = MWave, M2 * M3 * M4 = MPerXdl
make_freeze_transform(I0), // freeze nblock
make_pass_through_transform(
Number<NRepeatPerShuffle_CCopy>{}), // N0 (NRepeat) per shuffle
make_unmerge_transform(
make_tuple(N1, N2))), // M1 = MWave, M2 * M3 * M4 = MPerXdl
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4>{},
Sequence<5>{}),
make_tuple(Sequence<>{},
Sequence<0>{},
Sequence<2, 4, 5, 6>{},
Sequence<>{},
Sequence<1>{},
Sequence<3, 7>{})
);
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const auto c_thread_mtx_on_block =
blockwise_gemm.CalculateCThreadOriginDataIndex(I0, I0, I0, I0);
const index_t m_thread_data_on_block = c_thread_mtx_on_block[I0];
const index_t n_thread_data_on_block = c_thread_mtx_on_block[I1];
const auto m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(M0, M1, M2, M3, M4))),
make_tuple(Sequence<0, 1, 2, 3, 4>{}),
make_tuple(Sequence<0>{}));
const auto m_thread_data_on_block_idx =
m_thread_data_on_block_to_m0_m1_m2_m3_m4_adaptor.CalculateBottomIndex(
make_multi_index(m_thread_data_on_block));
const auto n_thread_data_on_block_to_n0_n1_n2_adaptor =
make_single_stage_tensor_adaptor(
make_tuple(make_merge_transform(make_tuple(N0, N1, N2))),
make_tuple(Sequence<0, 1, 2>{}),
make_tuple(Sequence<0>{}));
const auto n_thread_data_on_block_idx =
n_thread_data_on_block_to_n0_n1_n2_adaptor.CalculateBottomIndex(
make_multi_index(n_thread_data_on_block));
// VGPR to LDS
auto c_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
FloatAcc,
FloatC,
decltype(c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2),
decltype(c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2),
ck::tensor_operation::element_wise::PassThrough,
Sequence<MRepeatPerShuffle_CCopy, NRepeatPerShuffle_CCopy, I1, I1, M2, I1, M4, I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7,
1,
InMemoryDataOperationEnum_t::Set,
1,
true>{c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_multi_index(0,
0,
m_thread_data_on_block_idx[I1],
n_thread_data_on_block_idx[I1],
m_thread_data_on_block_idx[I2],
m_thread_data_on_block_idx[I3],
m_thread_data_on_block_idx[I4],
n_thread_data_on_block_idx[I2]),
ck::tensor_operation::element_wise::PassThrough{}};
auto c_block_copy_lds_to_global = BlockwiseTensorSliceTransfer_v4r3<
BlockSize, // index_t BlockSize,
ck::tensor_operation::element_wise::PassThrough, // SrcElementwiseOperation,
CElementwiseOperation, // DstElementwiseOperation,
CGlobalMemoryDataOperation, // DstInMemOp,
Sequence<1,
MRepeatPerShuffle_CCopy,
MPerBlock_CCopy,
1,
NRepeatPerShuffle_CCopy,
NPerBlock_CCopy>, // BlockSliceLengths,
Sequence<1,
MRepeatPerShuffle_CCopy,
MPerThread_CCopy,
1,
NRepeatPerShuffle_CCopy,
NPerThread_CCopy>, // ThreadSliceLengths,
Sequence<1,
MRepeatPerThread_CCopy,
MThread_CCopy,
1,
NRepeatPerThread_CCopy,
NThread_CCopy>, // ThreadClusterLengths,
Sequence<0, 1, 2, 3, 4, 5>, // typename ThreadClusterArrangeOrder,
FloatC, // typename SrcData,
FloatC, // typename DstData,
decltype(c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl),
decltype(c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl),
decltype(c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl),
decltype(c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl),
Sequence<0, 1, 2, 3, 4, 5>, // typename SrcDimAccessOrder,
Sequence<0, 1, 2, 3, 4, 5>, // typename DstDimAccessOrder,
5, // index_t SrcVectorDim,
5, // index_t DstVectorDim,
NScalarPerVector_CCopy, // index_t SrcScalarPerVector,
NScalarPerVector_CCopy, // index_t DstScalarPerVector,
1, // index_t SrcScalarStrideInVector,
1, // index_t DstScalarStrideInVector,
true, // bool ThreadTransferSrcResetCoordinateAfterRun,
false> // bool ThreadTransferDstResetCoordinateAfterRun>
{c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
make_multi_index(0, 0, 0, 0, 0, 0),
ck::tensor_operation::element_wise::PassThrough{},
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
make_multi_index(block_work_idx[I0], 0, 0, block_work_idx[I1], 0, 0),
c_element_op};
constexpr auto mrepeat_forward_step =
make_multi_index(0, MRepeatPerShuffle_CCopy, 0, 0, 0, 0);
constexpr auto nrepeat_forward_step =
make_multi_index(0, 0, 0, 0, NRepeatPerShuffle_CCopy, 0);
constexpr auto nrepeat_backward_step =
make_multi_index(0, 0, 0, 0, -NRepeatPerShuffle_CCopy, 0);
static_for<0, MRepeat, MRepeatPerShuffle_CCopy>{}([&](auto mrepeat_iter) {
constexpr auto mrepeat = mrepeat_iter;
static_for<0, NRepeat, NRepeatPerShuffle_CCopy>{}([&](auto nrepeat_iter) {
constexpr bool nrepeat_forward_sweep =
(mrepeat % (2 * MRepeatPerShuffle_CCopy) == 0);
constexpr index_t nrepeat_value =
nrepeat_forward_sweep ? nrepeat_iter
: (NRepeat - nrepeat_iter - NRepeatPerShuffle_CCopy);
constexpr auto nrepeat = Number<nrepeat_value>{};
// make sure it's safe to do ds_write
block_sync_lds();
// VGPR to LDS
c_thread_copy_vgpr_to_lds.Run(
c_thread_desc_m0_n0_m1_n1_m2_m3_m4_n2,
make_tuple(mrepeat, nrepeat, I0, I0, I0, I0, I0, I0),
c_thread_buf,
c_block_desc_m0_n0_m1_n1_m2_m3_m4_n2,
c_block_buf);
// make sure it's safe to do ds_read
block_sync_lds();
// LDS to global
c_block_copy_lds_to_global.Run(
c_block_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c_block_buf,
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c_grid_buf);
// move on nrepeat dimension
if constexpr(nrepeat_forward_sweep &&
(nrepeat < NRepeat - NRepeatPerShuffle_CCopy))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
nrepeat_forward_step);
}
else if constexpr((!nrepeat_forward_sweep) && (nrepeat > 0))
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
nrepeat_backward_step);
}
});
// move on mrepeat dimension
if constexpr(mrepeat < MRepeat - MRepeatPerShuffle_CCopy)
{
c_block_copy_lds_to_global.MoveDstSliceWindow(
c_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c0_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
c1_grid_desc_mblock_mrepeat_mwavemperxdl_nblock_nrepeat_nwavenperxdl,
mrepeat_forward_step);
}
});
}
}
};
} // namespace ck
#endif
......@@ -141,7 +141,8 @@ struct ThreadwiseTensorSliceTransfer_v1r4
Number<nDim>{});
// make forward steps: dst0
// WARNING!!!!!!: this logic is only correct if DstScalarPerVector=1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst0_forward_steps = generate_tuple(
[&](auto i) {
......@@ -157,7 +158,8 @@ struct ThreadwiseTensorSliceTransfer_v1r4
Number<nDim>{});
// make forward steps: dst1
// WARNING!!!!!!: this logic is only correct if DstScalarPerVector=1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst1_forward_steps = generate_tuple(
[&](auto i) {
......@@ -187,7 +189,8 @@ struct ThreadwiseTensorSliceTransfer_v1r4
Number<nDim>{});
// make backward steps: dst0
// WARNING!!!!!!: this logic is only correct if DstScalarPerVector=1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst0_backward_steps = generate_tuple(
[&](auto i) {
......@@ -203,7 +206,8 @@ struct ThreadwiseTensorSliceTransfer_v1r4
Number<nDim>{});
// make backward steps: dst1
// WARNING!!!!!!: this logic is only correct if DstScalarPerVector=1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst1_backward_steps = generate_tuple(
[&](auto i) {
......
......@@ -4,15 +4,50 @@
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "static_tensor.hpp"
namespace ck {
namespace detail {
// TODO: How to fix this? It uses an struct instead of lambda because lambda
// doesn't have constructor
template <index_t SrcVectorDim,
index_t SrcScalarPerVector,
index_t DstVectorDim,
index_t DstScalarPerVector>
struct lambda_scalar_per_access_for_src_and_dst
{
__host__ __device__ constexpr auto operator()(index_t i) const
{
if(i == SrcVectorDim && i == DstVectorDim)
{
return math::lcm(SrcScalarPerVector, DstScalarPerVector);
}
else if(i == SrcVectorDim)
{
return SrcScalarPerVector;
}
else if(i == DstVectorDim)
{
return DstScalarPerVector;
}
else
{
return 1;
}
}
};
} // namespace detail
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
// 4. Use thread buffer
template <typename SliceLengths,
typename SrcElementwiseOperation,
typename DstElementwiseOperation,
InMemoryDataOperationEnum_t DstInMemOp,
typename SrcData,
typename DstData,
......@@ -20,10 +55,12 @@ template <typename SliceLengths,
typename DstDesc,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
typename SrcVectorTensorLengths,
typename DstVectorTensorLengths,
typename SrcVectorTensorContiguousDimOrder,
typename DstVectorTensorContiguousDimOrder,
index_t SrcVectorDim,
index_t DstVectorDim,
index_t SrcScalarPerVector,
index_t DstScalarPerVector,
index_t SrcScalarStrideInVector,
index_t DstScalarStrideInVector,
bool SrcResetCoordinateAfterRun, // control whether to move back src coordinate after each
// RunRead(), will be fused with MoveSrcSliceWindow to
// save addr computation
......@@ -32,9 +69,6 @@ template <typename SliceLengths,
// save addr computation
struct ThreadwiseTensorSliceTransfer_v3r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
......@@ -44,22 +78,18 @@ struct ThreadwiseTensorSliceTransfer_v3r1
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
using DstCoordStep = decltype(make_tensor_coordinate_step(DstDesc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v3r1(const SrcDesc& src_desc,
__device__ constexpr ThreadwiseTensorSliceTransfer_v3r1(
const SrcDesc& src_desc,
const Index& src_slice_origin,
const SrcElementwiseOperation& src_element_op,
const DstDesc& dst_desc,
const Index& dst_slice_origin)
const Index& dst_slice_origin,
const DstElementwiseOperation& dst_element_op)
: src_coord_(make_tensor_coordinate(src_desc, src_slice_origin)),
dst_coord_(make_tensor_coordinate(dst_desc, dst_slice_origin))
dst_coord_(make_tensor_coordinate(dst_desc, dst_slice_origin)),
src_element_op_(src_element_op),
dst_element_op_(dst_element_op)
{
// TODO: fix this
static_assert(is_same<SrcData, DstData>::value,
"wrong! current implementation assume SrcData and DstData are same type");
static_for<0, nDim, 1>{}([](auto i) {
static_assert(SliceLengths::At(i) % SrcVectorTensorLengths::At(i) == 0 &&
SliceLengths::At(i) % DstVectorTensorLengths::At(i) == 0,
"wrong!");
});
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
......@@ -84,23 +114,15 @@ struct ThreadwiseTensorSliceTransfer_v3r1
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value,
"wrong! SrcBuffer and SrcData data type are inconsistent");
// tensor descriptor for src_vector
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto src_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(src_vector_tensor_lengths,
SrcVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
SrcVectorTensorContiguousDimOrder{});
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto src_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(src_vector_tensor_lengths),
sequence_to_tuple_of_number(src_vector_tensor_strides));
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
// access order and lengths
constexpr auto src_access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
......@@ -113,7 +135,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? src_vector_tensor_lengths[i] : 0;
forward_step_idx(j) = (i.value == j.value) ? src_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
......@@ -127,7 +149,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -src_vector_tensor_lengths[i] : 0;
backward_step_idx(j) = (i.value == j.value) ? -src_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
......@@ -146,7 +168,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_src_access_idx[I0];
static_for<0, i, 1>{}([&](auto j) {
// TODO: BUG: should start at 1
static_for<1, i, 1>{}([&](auto j) {
tmp = tmp * ordered_src_access_lengths[j] + ordered_src_access_idx[j];
});
......@@ -167,34 +190,32 @@ struct ThreadwiseTensorSliceTransfer_v3r1
});
return container_reorder_given_old2new(ordered_idx, src_dim_access_order) *
src_vector_tensor_lengths;
src_scalar_per_access;
}();
vector_type_maker_t<SrcData, src_vector_desc.GetElementSpaceSize()> src_vector;
using src_vector_t = typename decltype(src_vector)::type;
constexpr auto src_data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<src_data_idx[i]>{}; }, Number<src_data_idx.Size()>{});
const bool is_src_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(src_desc, src_coord_);
// copy data from src_buf to src_vector
src_vector.template AsType<src_vector_t>()(I0) =
src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), is_src_valid);
// copy data from src_vector to buffer_
static_ford<SrcVectorTensorLengths>{}([&](auto src_vector_idx_) {
constexpr auto src_vector_idx = to_multi_index(src_vector_idx_);
using src_vector_type = vector_type_maker_t<SrcData, SrcScalarPerVector>;
using src_vector_t = typename src_vector_type::type;
constexpr index_t src_vector_offset =
src_vector_desc.CalculateOffset(src_vector_idx);
// copy data from src_buf into src_vector_container
auto src_vector_container = src_vector_type{
src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), is_src_valid)};
constexpr index_t buffer_offset =
buffer_desc_.CalculateOffset(src_data_idx + src_vector_idx);
buffer_(Number<buffer_offset>{}) =
src_vector.template AsType<SrcData>()[Number<src_vector_offset>{}];
// apply SrcElementwiseOperation on src_vector_container
static_for<0, SrcScalarPerVector, 1>{}([&](auto i) {
src_vector_container.template AsType<SrcData>()(i) =
src_element_op_(src_vector_container.template AsType<SrcData>()[i]);
});
// copy data from src_vector_container into src_thread_scratch_
src_thread_scratch_.template SetAsType<src_vector_t>(
src_data_idx_seq, src_vector_container.template AsType<src_vector_t>()[I0]);
constexpr auto move_on_dim = [&]() constexpr
{
StaticallyIndexedArray<bool, nDim> move_on_dim_;
......@@ -212,7 +233,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
}
();
// move
// move src coord
static_for<0, nDim, 1>{}([&](auto i) {
if constexpr(move_on_dim[i])
{
......@@ -240,10 +261,99 @@ struct ThreadwiseTensorSliceTransfer_v3r1
}
}
__device__ void TransferDataFromSrcThreadScratchToDstThreadScratch()
{
#if !CK_EXPERIMENTAL_USE_IN_REGISTER_SUB_DWORD_TRANSPOSE
static_ford<SliceLengths>{}([&](auto idx) {
// convert from SrcData to DstData here
dst_thread_scratch_(idx) = type_convert<DstData>(src_thread_scratch_[idx]);
});
#else
// sub-dword transpose between src_thread_scratch_ and dst_thread_scratch_
// TODO make this logic more generic for more sub-dword datatype
if constexpr(SrcVectorDim != DstVectorDim &&
is_same<half_t, remove_cvref_t<SrcData>>::value &&
is_same<half_t, remove_cvref_t<DstData>>::value &&
SrcScalarPerVector % 2 == 0 && DstScalarPerVector % 2 == 0)
{
// each transpose does
// DstScalarPerVector # of src vectors in src_thread_scratch_
// SrcScalarPerVector # of dst vectors in dst_thread_scratch_
constexpr index_t num_src_vector = Number<DstScalarPerVector>{};
constexpr index_t num_dst_vector = Number<SrcScalarPerVector>{};
// Assume SrcVectorDim is not the same as DstVectorDim, so we do transpose
// TODO: make this logic generic for all scenario
static_assert(SrcVectorDim != DstVectorDim, "wrong");
constexpr auto src_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<SrcVectorDim>{}, Number<nDim>{});
constexpr auto dst_scalar_step_in_vector = generate_sequence(
detail::lambda_scalar_step_in_vector<DstVectorDim>{}, Number<nDim>{});
constexpr auto scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access_for_src_and_dst<SrcVectorDim,
SrcScalarPerVector,
DstVectorDim,
DstScalarPerVector>{},
Number<nDim>{});
constexpr auto access_lengths = SliceLengths{} / scalar_per_access;
static_ford<decltype(access_lengths)>{}([&](auto access_idx) {
constexpr auto data_idx = access_idx * scalar_per_access;
constexpr auto data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<data_idx[i]>{}; }, Number<nDim>{});
// TODO type_convert is not used yet!!!!!
using src_vector_t = vector_type_maker_t<SrcData, SrcScalarPerVector>;
using dst_vector_t = vector_type_maker_t<DstData, DstScalarPerVector>;
// get DstScalarPerVector # of read-only references to src vectors from
// src_thread_scratch_
const auto src_vector_refs = generate_tie(
[&](auto i) -> const src_vector_t& {
// i increment corresponds to movement in DstVectorDim
return src_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * dst_scalar_step_in_vector);
},
Number<num_src_vector>{});
// get SrcScalarPerVector # of references to dst vectors from dst_thread_scratch_
auto dst_vector_refs = generate_tie(
[&](auto i) -> dst_vector_t& {
// i increment corresponds to movement in SrcVectorDim
return dst_thread_scratch_.GetVectorTypeReference(
data_idx_seq + i * src_scalar_step_in_vector);
},
Number<num_dst_vector>{});
// do data transpose
// TODO type_convert is not used yet!!!!!
transpose_vectors<SrcData, DstScalarPerVector, SrcScalarPerVector>{}(
src_vector_refs, dst_vector_refs);
});
}
else
{
static_ford<SliceLengths>{}([&](auto idx) {
// convert from SrcData to DstData here
dst_thread_scratch_(idx) = type_convert<DstData>(src_thread_scratch_[idx]);
});
}
#endif
}
template <typename DstBuffer, typename DstStepHacks>
__device__ void
RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf, const DstStepHacks& dst_step_hacks)
{
// if there is transpose, it's done here
// TODO move this elsewhere
TransferDataFromSrcThreadScratchToDstThreadScratch();
static_assert(DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Global or
DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
......@@ -252,23 +362,15 @@ struct ThreadwiseTensorSliceTransfer_v3r1
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
// tensor descriptor for dst_vector
constexpr auto dst_vector_tensor_lengths = DstVectorTensorLengths{};
constexpr auto dst_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(dst_vector_tensor_lengths,
DstVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
DstVectorTensorContiguousDimOrder{});
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto dst_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(dst_vector_tensor_lengths),
sequence_to_tuple_of_number(dst_vector_tensor_strides));
// src scalar per access on each dim
// TODO: don't use this
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
// dst access order and lengths
constexpr auto dst_access_lengths = SliceLengths{} / dst_vector_tensor_lengths;
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
constexpr auto dst_dim_access_order = DstDimAccessOrder{};
......@@ -281,7 +383,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? dst_vector_tensor_lengths[i] : 0;
forward_step_idx(j) = (i.value == j.value) ? dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
......@@ -295,7 +397,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -dst_vector_tensor_lengths[i] : 0;
backward_step_idx(j) = (i.value == j.value) ? -dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
......@@ -314,6 +416,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_dst_access_idx[I0];
// TODO: BUG: should start at 1
static_for<0, i, 1>{}([&](auto j) {
tmp = tmp * ordered_dst_access_lengths[j] + ordered_dst_access_idx[j];
});
......@@ -335,35 +438,33 @@ struct ThreadwiseTensorSliceTransfer_v3r1
});
return container_reorder_given_old2new(ordered_idx, dst_dim_access_order) *
dst_vector_tensor_lengths;
dst_scalar_per_access;
}();
vector_type_maker_t<DstData, dst_vector_desc.GetElementSpaceSize()> dst_vector;
constexpr auto dst_data_idx_seq = generate_sequence_v2(
[&](auto i) { return Number<dst_data_idx[i]>{}; }, Number<dst_data_idx.Size()>{});
// copy data from buffer_ to dst_vector (also cast from SrcData to DstData)
static_ford<DstVectorTensorLengths>{}([&](auto dst_vector_idx_) {
constexpr auto dst_vector_idx = to_multi_index(dst_vector_idx_);
const bool is_dst_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_desc, dst_coord_);
constexpr index_t buffer_offset =
buffer_desc_.CalculateOffset(dst_data_idx + dst_vector_idx);
using dst_vector_type = vector_type_maker_t<DstData, DstScalarPerVector>;
using dst_vector_t = typename dst_vector_type::type;
constexpr index_t dst_vector_offset =
dst_vector_desc.CalculateOffset(dst_vector_idx);
// copy data from dst_thread_scratch_ into dst_vector_container
auto dst_vector_container = dst_vector_type{
dst_thread_scratch_.template GetAsType<dst_vector_t>(dst_data_idx_seq)};
dst_vector.template AsType<DstData>()(Number<dst_vector_offset>{}) =
type_convert<DstData>(buffer_[Number<buffer_offset>{}]);
// apply DstElementwiseOperation on dst_vector_container
static_for<0, DstScalarPerVector, 1>{}([&](auto i) {
dst_vector_container.template AsType<DstData>()(i) =
dst_element_op_(dst_vector_container.template AsType<DstData>()[i]);
});
using dst_vector_t = typename decltype(dst_vector)::type;
// copy data from dst_vector to dst_buf
const bool is_dst_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_desc, dst_coord_);
// copy data from dst_vector_container to dst_buf
dst_buf.template Set<dst_vector_t>(
dst_coord_.GetOffset(),
is_dst_valid,
dst_vector.template AsType<dst_vector_t>()[Number<0>{}]);
dst_vector_container.template AsType<dst_vector_t>()[I0]);
constexpr auto move_on_dim = [&]() constexpr
{
......@@ -382,7 +483,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
}
();
// move
// move dst coord
static_for<0, nDim, 1>{}([&](auto i) {
if constexpr(move_on_dim[i])
{
......@@ -413,7 +514,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
template <typename SrcBuffer>
__device__ void RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
constexpr index_t ntransform_src = SrcDesc::GetNumOfTransform();
constexpr index_t ntransform_src = remove_cvref_t<SrcDesc>::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_src, 0>::type{};
......@@ -427,7 +528,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
template <typename DstBuffer>
__device__ void RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf)
{
constexpr index_t ntransform_dst = DstDesc::GetNumOfTransform();
// TODO: why need remove_cvref_t ?
constexpr index_t ntransform_dst = remove_cvref_t<DstDesc>::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_dst, 0>::type{};
......@@ -440,9 +542,14 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto I0 = Number<0>{};
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
......@@ -455,6 +562,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
forward_sweep_(I0) = true;
// TODO: BUG: should start at 1
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_src_access_lengths[I0] - 1;
......@@ -478,7 +586,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
});
return container_reorder_given_old2new(ordered_idx, src_dim_access_order) *
src_vector_tensor_lengths;
src_scalar_per_access;
}();
//
......@@ -495,9 +603,14 @@ struct ThreadwiseTensorSliceTransfer_v3r1
__device__ static constexpr auto GetDstCoordinateResetStep()
{
constexpr auto dst_vector_tensor_lengths = DstVectorTensorLengths{};
constexpr auto I0 = Number<0>{};
constexpr auto dst_access_lengths = SliceLengths{} / dst_vector_tensor_lengths;
// scalar per access on each dim
// TODO: don't use lambda_scalar_per_access
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
constexpr auto dst_dim_access_order = DstDimAccessOrder{};
......@@ -513,7 +626,8 @@ struct ThreadwiseTensorSliceTransfer_v3r1
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_dst_access_lengths[I0] - 1;
static_for<0, i, 1>{}([&](auto j) {
// TODO: BUG: should start at 1
static_for<1, i, 1>{}([&](auto j) {
tmp = tmp * ordered_dst_access_lengths[j] + ordered_dst_access_lengths[j] - 1;
});
......@@ -533,7 +647,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
});
return container_reorder_given_old2new(ordered_idx, dst_dim_access_order) *
dst_vector_tensor_lengths;
dst_scalar_per_access;
}();
//
......@@ -581,6 +695,7 @@ struct ThreadwiseTensorSliceTransfer_v3r1
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__ void MoveDstSliceWindow(const DstDesc& dst_desc,
const Index& dst_slice_origin_step_idx)
......@@ -596,16 +711,126 @@ struct ThreadwiseTensorSliceTransfer_v3r1
move_tensor_coordinate(dst_desc, dst_coord_, adjusted_step);
}
private:
static constexpr auto buffer_desc_ =
make_naive_tensor_descriptor_packed(sequence_to_tuple_of_number(SliceLengths{}));
__device__ static constexpr auto GetSrcThreadScratchDescriptor()
{
constexpr auto src_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<SrcVectorDim, SrcScalarPerVector>{}, Number<nDim>{});
constexpr auto src_access_lengths = SliceLengths{} / src_scalar_per_access;
constexpr auto src_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(src_access_lengths), Number<SrcScalarPerVector>{});
// 1st stage of transforms
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(src_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(src_access_lengths_and_vector_length[i],
src_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(src_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == SrcVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
static constexpr auto buffer_size_ = buffer_desc_.GetElementSpaceSize();
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
StaticBuffer<AddressSpaceEnum_t::Vgpr, SrcData, buffer_size_, true> buffer_;
__device__ static constexpr auto GetDstThreadScratchDescriptor()
{
// 1st stage of transforms
constexpr auto dst_scalar_per_access = generate_sequence(
detail::lambda_scalar_per_access<DstVectorDim, DstScalarPerVector>{}, Number<nDim>{});
constexpr auto dst_access_lengths = SliceLengths{} / dst_scalar_per_access;
constexpr auto dst_access_lengths_and_vector_length = container_push_back(
sequence_to_tuple_of_number(dst_access_lengths), Number<DstScalarPerVector>{});
constexpr auto desc0 =
make_naive_tensor_descriptor_packed(dst_access_lengths_and_vector_length);
// 2nd stage of transforms
constexpr auto transforms = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return make_merge_transform_v3_division_mod(
make_tuple(dst_access_lengths_and_vector_length[i],
dst_access_lengths_and_vector_length[Number<nDim>{}]));
}
else
{
return make_pass_through_transform(dst_access_lengths_and_vector_length[i]);
}
},
Number<nDim>{});
constexpr auto low_dim_idss = generate_tuple(
[&](auto i) {
if constexpr(i == DstVectorDim)
{
return Sequence<i.value, nDim>{};
}
else
{
return Sequence<i.value>{};
}
},
Number<nDim>{});
constexpr auto up_dim_idss =
generate_tuple([&](auto i) { return Sequence<i.value>{}; }, Number<nDim>{});
return transform_tensor_descriptor(desc0, transforms, low_dim_idss, up_dim_idss);
}
private:
static constexpr auto src_thread_scratch_desc_ = decltype(GetSrcThreadScratchDescriptor()){};
static constexpr auto dst_thread_scratch_desc_ = decltype(GetDstThreadScratchDescriptor()){};
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum_t::Vgpr,
SrcData,
SrcScalarPerVector,
decltype(src_thread_scratch_desc_),
true>
src_thread_scratch_;
StaticTensorTupleOfVectorBuffer<AddressSpaceEnum_t::Vgpr,
DstData,
DstScalarPerVector,
decltype(dst_thread_scratch_desc_),
true>
dst_thread_scratch_;
SrcCoord src_coord_;
DstCoord dst_coord_;
const SrcElementwiseOperation src_element_op_;
const DstElementwiseOperation dst_element_op_;
};
} // namespace ck
......
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R2_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R2_HPP
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R3_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V3R3_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
......@@ -53,6 +53,8 @@ template <typename SliceLengths,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename Dst0Desc,
typename Dst1Desc,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
index_t SrcVectorDim,
......@@ -67,26 +69,34 @@ template <typename SliceLengths,
bool DstResetCoordinateAfterRun> // control whether to move back dst coordinate after each
// RunWrite(), will be fused with MoveDstSliceWindow to
// save addr computation
struct ThreadwiseTensorSliceTransfer_v3r2
struct ThreadwiseTensorSliceTransfer_v3r3
{
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
using SrcCoord = decltype(make_tensor_coordinate(SrcDesc{}, Index{}));
using DstCoord = decltype(make_tensor_coordinate(DstDesc{}, Index{}));
using Dst0Coord = decltype(make_tensor_coordinate(Dst0Desc{}, Index{}));
using Dst1Coord = decltype(make_tensor_coordinate(Dst1Desc{}, Index{}));
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
using DstCoordStep = decltype(make_tensor_coordinate_step(DstDesc{}, Index{}));
using Dst0CoordStep = decltype(make_tensor_coordinate_step(Dst0Desc{}, Index{}));
using Dst1CoordStep = decltype(make_tensor_coordinate_step(Dst1Desc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v3r2(
__device__ constexpr ThreadwiseTensorSliceTransfer_v3r3(
const SrcDesc& src_desc,
const Index& src_slice_origin,
const SrcElementwiseOperation& src_element_op,
const DstDesc& dst_desc,
const Dst0Desc& dst0_desc,
const Dst1Desc& dst1_desc,
const Index& dst_slice_origin,
const DstElementwiseOperation& dst_element_op)
: src_coord_(make_tensor_coordinate(src_desc, src_slice_origin)),
dst_coord_(make_tensor_coordinate(dst_desc, dst_slice_origin)),
dst0_coord_(make_tensor_coordinate(dst0_desc, dst_slice_origin)),
dst1_coord_(make_tensor_coordinate(dst1_desc, dst_slice_origin)),
src_element_op_(src_element_op),
dst_element_op_(dst_element_op)
{
......@@ -97,14 +107,18 @@ struct ThreadwiseTensorSliceTransfer_v3r2
src_coord_ = make_tensor_coordinate(src_desc, src_slice_origin_idx);
}
__device__ void SetDstSliceOrigin(const DstDesc& dst_desc, const Index& dst_slice_origin_idx)
__device__ void SetDstSliceOrigin(const DstDesc& dst_desc,
const Dst0Desc& dst0_desc,
const Dst1Desc& dst1_desc,
const Index& dst_slice_origin_idx)
{
dst_coord_ = make_tensor_coordinate(dst_desc, dst_slice_origin_idx);
dst0_coord_ = make_tensor_coordinate(dst0_desc, dst_slice_origin_idx);
dst1_coord_ = make_tensor_coordinate(dst1_desc, dst_slice_origin_idx);
}
template <typename SrcBuffer, typename SrcStepHacks>
__device__ void
RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf, const SrcStepHacks& src_step_hacks)
template <typename SrcBuffer>
__device__ void RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
static_assert(SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Global or
SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
......@@ -138,8 +152,7 @@ struct ThreadwiseTensorSliceTransfer_v3r2
forward_step_idx(j) = (i.value == j.value) ? src_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
src_desc, forward_step_idx, src_step_hacks[I0][i]);
return make_tensor_coordinate_step(src_desc, forward_step_idx);
},
Number<nDim>{});
......@@ -152,8 +165,7 @@ struct ThreadwiseTensorSliceTransfer_v3r2
backward_step_idx(j) = (i.value == j.value) ? -src_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
src_desc, backward_step_idx, src_step_hacks[I1][i]);
return make_tensor_coordinate_step(src_desc, backward_step_idx);
},
Number<nDim>{});
......@@ -346,9 +358,13 @@ struct ThreadwiseTensorSliceTransfer_v3r2
#endif
}
template <typename DstBuffer, typename DstStepHacks>
__device__ void
RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf, const DstStepHacks& dst_step_hacks)
template <typename DstBuffer, typename Dst0Buffer, typename Dst1Buffer>
__device__ void RunWrite(const DstDesc& dst_desc,
DstBuffer& dst_buf,
const Dst0Desc& dst0_desc,
const Dst0Buffer& dst0_buf,
const Dst1Desc& dst1_desc,
const Dst1Buffer& dst1_buf)
{
// if there is transpose, it's done here
// TODO move this elsewhere
......@@ -386,8 +402,39 @@ struct ThreadwiseTensorSliceTransfer_v3r2
forward_step_idx(j) = (i.value == j.value) ? dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
dst_desc, forward_step_idx, dst_step_hacks[I0][i]);
return make_tensor_coordinate_step(dst_desc, forward_step_idx);
},
Number<nDim>{});
// make forward steps: dst0
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst0_forward_steps = generate_tuple(
[&](auto i) {
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(dst0_desc, forward_step_idx);
},
Number<nDim>{});
// make forward steps: dst1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst1_forward_steps = generate_tuple(
[&](auto i) {
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(dst1_desc, forward_step_idx);
},
Number<nDim>{});
......@@ -400,8 +447,39 @@ struct ThreadwiseTensorSliceTransfer_v3r2
backward_step_idx(j) = (i.value == j.value) ? -dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(
dst_desc, backward_step_idx, dst_step_hacks[I1][i]);
return make_tensor_coordinate_step(dst_desc, backward_step_idx);
},
Number<nDim>{});
// make backward steps: dst0
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst0_backward_steps = generate_tuple(
[&](auto i) {
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(dst0_desc, backward_step_idx);
},
Number<nDim>{});
// make backward steps: dst1
// WARNING!!!!!!: this logic is only correct if dst/dst0/dst1 can use the same
// DstScalarPerVector
// TODO: fix this
const auto dst1_backward_steps = generate_tuple(
[&](auto i) {
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -dst_scalar_per_access[i] : 0;
});
return make_tensor_coordinate_step(dst1_desc, backward_step_idx);
},
Number<nDim>{});
......@@ -511,35 +589,6 @@ struct ThreadwiseTensorSliceTransfer_v3r2
}
}
template <typename SrcBuffer>
__device__ void RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
constexpr index_t ntransform_src = remove_cvref_t<SrcDesc>::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_src, 0>::type{};
constexpr auto src_step_hacks =
make_tuple(generate_tuple([&](auto) { return zeros; }, Number<nDim>{}),
generate_tuple([&](auto) { return zeros; }, Number<nDim>{}));
RunRead(src_desc, src_buf, src_step_hacks);
}
template <typename DstBuffer>
__device__ void RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf)
{
// TODO: why need remove_cvref_t ?
constexpr index_t ntransform_dst = remove_cvref_t<DstDesc>::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_dst, 0>::type{};
constexpr auto dst_step_hacks =
make_tuple(generate_tuple([&](auto) { return zeros; }, Number<nDim>{}),
generate_tuple([&](auto) { return zeros; }, Number<nDim>{}));
RunWrite(dst_desc, dst_buf, dst_step_hacks);
}
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
constexpr auto I0 = Number<0>{};
......@@ -678,11 +727,8 @@ struct ThreadwiseTensorSliceTransfer_v3r2
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template <typename SrcMoveSliceWindowStepHack>
__device__ void
MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx,
const SrcMoveSliceWindowStepHack& src_move_slice_window_step_hack)
__device__ void MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const auto adjusted_step_idx =
......@@ -690,14 +736,15 @@ struct ThreadwiseTensorSliceTransfer_v3r2
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(
src_desc, adjusted_step_idx, src_move_slice_window_step_hack);
const auto adjusted_step = make_tensor_coordinate_step(src_desc, adjusted_step_idx);
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__ void MoveDstSliceWindow(const DstDesc& dst_desc,
const Dst0Desc dst0_desc,
const Dst1Desc dst1_desc,
const Index& dst_slice_origin_step_idx)
{
// if dst coord was not reset by RunWrite(), then need to adjust the step here
......@@ -709,6 +756,8 @@ struct ThreadwiseTensorSliceTransfer_v3r2
const auto adjusted_step = make_tensor_coordinate_step(dst_desc, adjusted_step_idx);
move_tensor_coordinate(dst_desc, dst_coord_, adjusted_step);
move_tensor_coordinate(dst0_desc, dst0_coord_, adjusted_step);
move_tensor_coordinate(dst1_desc, dst1_coord_, adjusted_step);
}
__device__ static constexpr auto GetSrcThreadScratchDescriptor()
......
#ifndef CK_THREADWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#define CK_THREADWISE_TENSOR_SLICE_TRANSFER_V5R1_HPP
#include "common_header.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
namespace ck {
// Assume:
// 1. src_desc and dst_desc are not known at compile-time
// 2. SrcBuffer and DstBuffer are DynamicBuffer
// 3. src_slice_origin and dst_slice_origin are not known at compile-time,
// 4. Use thread buffer
template <typename SliceLengths,
InMemoryDataOperationEnum_t DstInMemOp,
typename SrcData,
typename DstData,
typename SrcDesc,
typename DstDesc,
typename SrcDimAccessOrder,
typename DstDimAccessOrder,
typename SrcVectorTensorLengths,
typename DstVectorTensorLengths,
typename SrcVectorTensorContiguousDimOrder,
typename DstVectorTensorContiguousDimOrder,
bool SrcResetCoordinateAfterRun, // control whether to move back src coordinate after each
// RunRead(), will be fused with MoveSrcSliceWindow to
// save addr computation
bool DstResetCoordinateAfterRun> // control whether to move back dst coordinate after each
// RunWrite(), will be fused with MoveDstSliceWindow to
// save addr computation
struct ThreadwiseTensorSliceTransfer_v5r1
{
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr index_t nDim = SliceLengths::Size();
using Index = MultiIndex<nDim>;
using SrcCoord = decltype(make_tensor_coordinate(SrcDesc{}, Index{}));
using DstCoord = decltype(make_tensor_coordinate(DstDesc{}, Index{}));
using SrcCoordStep = decltype(make_tensor_coordinate_step(SrcDesc{}, Index{}));
using DstCoordStep = decltype(make_tensor_coordinate_step(DstDesc{}, Index{}));
__device__ constexpr ThreadwiseTensorSliceTransfer_v5r1(const SrcDesc& src_desc,
const Index& src_slice_origin,
const DstDesc& dst_desc,
const Index& dst_slice_origin)
: src_coord_(make_tensor_coordinate(src_desc, src_slice_origin)),
dst_coord_(make_tensor_coordinate(dst_desc, dst_slice_origin))
{
// TODO: fix this
static_assert(is_same<SrcData, DstData>::value,
"wrong! current implementation assume SrcData and DstData are same type");
static_for<0, nDim, 1>{}([](auto i) {
static_assert(SliceLengths::At(i) % SrcVectorTensorLengths::At(i) == 0 &&
SliceLengths::At(i) % DstVectorTensorLengths::At(i) == 0,
"wrong!");
});
}
__device__ void SetSrcSliceOrigin(const SrcDesc& src_desc, const Index& src_slice_origin_idx)
{
src_coord_ = make_tensor_coordinate(src_desc, src_slice_origin_idx);
}
__device__ void SetDstSliceOrigin(const DstDesc& dst_desc, const Index& dst_slice_origin_idx)
{
dst_coord_ = make_tensor_coordinate(dst_desc, dst_slice_origin_idx);
}
template <typename SrcBuffer, typename SrcStepHacks>
__device__ void
RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf, const SrcStepHacks& src_step_hacks)
{
static_assert(SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Global or
SrcBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(
is_same<remove_cvref_t<typename SrcBuffer::type>, remove_cvref_t<SrcData>>::value,
"wrong! SrcBuffer and SrcData data type are inconsistent");
// tensor descriptor for src_vector
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto src_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(src_vector_tensor_lengths,
SrcVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
SrcVectorTensorContiguousDimOrder{});
constexpr auto src_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(src_vector_tensor_lengths),
sequence_to_tuple_of_number(src_vector_tensor_strides));
// access order and lengths
constexpr auto src_access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
constexpr auto ordered_src_access_lengths =
container_reorder_given_new2old(src_access_lengths, src_dim_access_order);
// make forward steps
const auto src_forward_steps = generate_tuple(
[&](auto i) {
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? src_vector_tensor_lengths[i] : 0;
});
return make_tensor_coordinate_step(
src_desc, forward_step_idx, src_step_hacks[I0][i]);
},
Number<nDim>{});
// make backward steps
const auto src_backward_steps = generate_tuple(
[&](auto i) {
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -src_vector_tensor_lengths[i] : 0;
});
return make_tensor_coordinate_step(
src_desc, backward_step_idx, src_step_hacks[I1][i]);
},
Number<nDim>{});
// loop over tensor and copy
static_ford<decltype(ordered_src_access_lengths)>{}([&](auto ordered_src_access_idx) {
// judge move forward or move backward
constexpr auto forward_sweep = [&]() {
StaticallyIndexedArray<bool, nDim> forward_sweep_;
forward_sweep_(I0) = true;
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_src_access_idx[I0];
static_for<0, i, 1>{}([&](auto j) {
tmp = tmp * ordered_src_access_lengths[j] + ordered_src_access_idx[j];
});
forward_sweep_(i) = tmp % 2 == 0;
});
return forward_sweep_;
}();
// calculate src data index
constexpr auto src_data_idx = [&]() {
Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto i) {
ordered_idx(i) = forward_sweep[i] ? ordered_src_access_idx[i]
: ordered_src_access_lengths[i] - 1 -
ordered_src_access_idx[i];
});
return container_reorder_given_old2new(ordered_idx, src_dim_access_order) *
src_vector_tensor_lengths;
}();
vector_type_maker_t<SrcData, src_vector_desc.GetElementSpaceSize()> src_vector;
using src_vector_t = typename decltype(src_vector)::type;
const bool is_src_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(src_desc, src_coord_);
// copy data from src_buf to src_vector
src_vector.template AsType<src_vector_t>()(I0) =
src_buf.template Get<src_vector_t>(src_coord_.GetOffset(), is_src_valid);
// copy data from src_vector to buffer_
static_ford<SrcVectorTensorLengths>{}([&](auto src_vector_idx_) {
constexpr auto src_vector_idx = to_multi_index(src_vector_idx_);
constexpr index_t src_vector_offset =
src_vector_desc.CalculateOffset(src_vector_idx);
constexpr index_t buffer_offset =
buffer_desc_.CalculateOffset(src_data_idx + src_vector_idx);
buffer_(Number<buffer_offset>{}) =
src_vector.template AsType<SrcData>()[Number<src_vector_offset>{}];
});
constexpr auto move_on_dim = [&]() constexpr
{
StaticallyIndexedArray<bool, nDim> move_on_dim_;
static_for<0, nDim, 1>{}([&](auto i) {
move_on_dim_(i) = ordered_src_access_idx[i] < ordered_src_access_lengths[i] - 1;
static_for<i + 1, nDim, 1>{}([&](auto j) {
move_on_dim_(i) &=
ordered_src_access_idx[j] == ordered_src_access_lengths[j] - 1;
});
});
return move_on_dim_;
}
();
// move
static_for<0, nDim, 1>{}([&](auto i) {
if constexpr(move_on_dim[i])
{
if constexpr(forward_sweep[i])
{
move_tensor_coordinate(
src_desc, src_coord_, src_forward_steps[src_dim_access_order[i]]);
}
else
{
move_tensor_coordinate(
src_desc, src_coord_, src_backward_steps[src_dim_access_order[i]]);
}
}
});
});
// move src coordinate back to slice origin (or not)
if constexpr(SrcResetCoordinateAfterRun)
{
const auto src_reset_step =
make_tensor_coordinate_step(src_desc, GetSrcCoordinateResetStep());
move_tensor_coordinate(src_desc, src_coord_, src_reset_step);
}
}
template <typename DstBuffer, typename DstStepHacks>
__device__ void
RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf, const DstStepHacks& dst_step_hacks)
{
static_assert(DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Global or
DstBuffer::GetAddressSpace() == AddressSpaceEnum_t::Lds,
"wrong!");
static_assert(
is_same<remove_cvref_t<typename DstBuffer::type>, remove_cvref_t<DstData>>::value,
"wrong! SrcBuffer or DstBuffer data type is wrong");
// tensor descriptor for dst_vector
constexpr auto dst_vector_tensor_lengths = DstVectorTensorLengths{};
constexpr auto dst_vector_tensor_strides = container_reorder_given_old2new(
container_reverse_exclusive_scan(
container_reorder_given_new2old(dst_vector_tensor_lengths,
DstVectorTensorContiguousDimOrder{}),
math::multiplies{},
I1),
DstVectorTensorContiguousDimOrder{});
constexpr auto dst_vector_desc =
make_naive_tensor_descriptor(sequence_to_tuple_of_number(dst_vector_tensor_lengths),
sequence_to_tuple_of_number(dst_vector_tensor_strides));
// dst access order and lengths
constexpr auto dst_access_lengths = SliceLengths{} / dst_vector_tensor_lengths;
constexpr auto dst_dim_access_order = DstDimAccessOrder{};
constexpr auto ordered_dst_access_lengths =
container_reorder_given_new2old(dst_access_lengths, dst_dim_access_order);
// make forward steps
const auto dst_forward_steps = generate_tuple(
[&](auto i) {
Index forward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
forward_step_idx(j) = (i.value == j.value) ? dst_vector_tensor_lengths[i] : 0;
});
return make_tensor_coordinate_step(
dst_desc, forward_step_idx, dst_step_hacks[I0][i]);
},
Number<nDim>{});
// make backward steps
const auto dst_backward_steps = generate_tuple(
[&](auto i) {
Index backward_step_idx;
static_for<0, nDim, 1>{}([&](auto j) {
backward_step_idx(j) = (i.value == j.value) ? -dst_vector_tensor_lengths[i] : 0;
});
return make_tensor_coordinate_step(
dst_desc, backward_step_idx, dst_step_hacks[I1][i]);
},
Number<nDim>{});
// loop over tensor and copy
static_ford<decltype(ordered_dst_access_lengths)>{}([&](auto ordered_dst_access_idx) {
// judge move forward or move backward
constexpr auto forward_sweep = [&]() {
StaticallyIndexedArray<bool, nDim> forward_sweep_;
forward_sweep_(I0) = true;
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_dst_access_idx[I0];
static_for<0, i, 1>{}([&](auto j) {
tmp = tmp * ordered_dst_access_lengths[j] + ordered_dst_access_idx[j];
});
forward_sweep_(i) = tmp % 2 == 0;
});
return forward_sweep_;
}();
// calculate dst data index
constexpr auto dst_data_idx = [&]() {
Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto i) {
ordered_idx(i) = forward_sweep[i] ? ordered_dst_access_idx[i]
: ordered_dst_access_lengths[i] - 1 -
ordered_dst_access_idx[i];
});
return container_reorder_given_old2new(ordered_idx, dst_dim_access_order) *
dst_vector_tensor_lengths;
}();
vector_type_maker_t<DstData, dst_vector_desc.GetElementSpaceSize()> dst_vector;
// copy data from buffer_ to dst_vector (also cast from SrcData to DstData)
static_ford<DstVectorTensorLengths>{}([&](auto dst_vector_idx_) {
constexpr auto dst_vector_idx = to_multi_index(dst_vector_idx_);
constexpr index_t buffer_offset =
buffer_desc_.CalculateOffset(dst_data_idx + dst_vector_idx);
constexpr index_t dst_vector_offset =
dst_vector_desc.CalculateOffset(dst_vector_idx);
dst_vector.template AsType<DstData>()(Number<dst_vector_offset>{}) =
type_convert<DstData>(buffer_[Number<buffer_offset>{}]);
});
using dst_vector_t = typename decltype(dst_vector)::type;
// copy data from dst_vector to dst_buf
const bool is_dst_valid =
coordinate_has_valid_offset_assuming_visible_index_is_valid(dst_desc, dst_coord_);
dst_buf.template Set<dst_vector_t>(
dst_coord_.GetOffset(),
is_dst_valid,
dst_vector.template AsType<dst_vector_t>()[Number<0>{}]);
constexpr auto move_on_dim = [&]() constexpr
{
StaticallyIndexedArray<bool, nDim> move_on_dim_;
static_for<0, nDim, 1>{}([&](auto i) {
move_on_dim_(i) = ordered_dst_access_idx[i] < ordered_dst_access_lengths[i] - 1;
static_for<i + 1, nDim, 1>{}([&](auto j) {
move_on_dim_(i) &=
ordered_dst_access_idx[j] == ordered_dst_access_lengths[j] - 1;
});
});
return move_on_dim_;
}
();
// move
static_for<0, nDim, 1>{}([&](auto i) {
if constexpr(move_on_dim[i])
{
if constexpr(forward_sweep[i])
{
move_tensor_coordinate(
dst_desc, dst_coord_, dst_forward_steps[dst_dim_access_order[i]]);
}
else
{
move_tensor_coordinate(
dst_desc, dst_coord_, dst_backward_steps[dst_dim_access_order[i]]);
}
}
});
});
// move dst coordinate back to slice origin (or not)
if constexpr(DstResetCoordinateAfterRun)
{
const auto dst_reset_step =
make_tensor_coordinate_step(dst_desc, GetDstCoordinateResetStep());
move_tensor_coordinate(dst_desc, dst_coord_, dst_reset_step);
}
}
template <typename SrcBuffer>
__device__ void RunRead(const SrcDesc& src_desc, const SrcBuffer& src_buf)
{
constexpr index_t ntransform_src = SrcDesc::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_src, 0>::type{};
constexpr auto src_step_hacks =
make_tuple(generate_tuple([&](auto) { return zeros; }, Number<nDim>{}),
generate_tuple([&](auto) { return zeros; }, Number<nDim>{}));
RunRead(src_desc, src_buf, src_step_hacks);
}
template <typename DstBuffer>
__device__ void RunWrite(const DstDesc& dst_desc, DstBuffer& dst_buf)
{
constexpr index_t ntransform_dst = DstDesc::GetNumOfTransform();
constexpr auto zeros = typename uniform_sequence_gen<ntransform_dst, 0>::type{};
constexpr auto dst_step_hacks =
make_tuple(generate_tuple([&](auto) { return zeros; }, Number<nDim>{}),
generate_tuple([&](auto) { return zeros; }, Number<nDim>{}));
RunWrite(dst_desc, dst_buf, dst_step_hacks);
}
__device__ static constexpr auto GetSrcCoordinateResetStep()
{
constexpr auto src_vector_tensor_lengths = SrcVectorTensorLengths{};
constexpr auto src_access_lengths = SliceLengths{} / src_vector_tensor_lengths;
constexpr auto src_dim_access_order = SrcDimAccessOrder{};
constexpr auto ordered_src_access_lengths =
container_reorder_given_new2old(src_access_lengths, src_dim_access_order);
// judge move forward or move backward during the last iteration
constexpr auto forward_sweep = [&]() {
StaticallyIndexedArray<bool, nDim> forward_sweep_;
forward_sweep_(I0) = true;
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_src_access_lengths[I0] - 1;
static_for<0, i, 1>{}([&](auto j) {
tmp = tmp * ordered_src_access_lengths[j] + ordered_src_access_lengths[j] - 1;
});
forward_sweep_(i) = tmp % 2 == 0;
});
return forward_sweep_;
}();
// calculate src data index after last iteration in RunRead(), if it has not being reset by
// RunRead()
constexpr auto src_data_idx = [&]() {
Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto i) {
ordered_idx(i) = forward_sweep[i] ? ordered_src_access_lengths[i] - 1 : 0;
});
return container_reorder_given_old2new(ordered_idx, src_dim_access_order) *
src_vector_tensor_lengths;
}();
//
constexpr auto reset_src_data_step = [&]() {
Index reset_src_data_step_;
static_for<0, nDim, 1>{}([&](auto i) { reset_src_data_step_(i) = -src_data_idx[i]; });
return reset_src_data_step_;
}();
return reset_src_data_step;
}
__device__ static constexpr auto GetDstCoordinateResetStep()
{
constexpr auto dst_vector_tensor_lengths = DstVectorTensorLengths{};
constexpr auto dst_access_lengths = SliceLengths{} / dst_vector_tensor_lengths;
constexpr auto dst_dim_access_order = DstDimAccessOrder{};
constexpr auto ordered_dst_access_lengths =
container_reorder_given_new2old(dst_access_lengths, dst_dim_access_order);
// judge move forward or move backward during the last iteration
constexpr auto forward_sweep = [&]() {
StaticallyIndexedArray<bool, nDim> forward_sweep_;
forward_sweep_(I0) = true;
static_for<1, nDim, 1>{}([&](auto i) {
index_t tmp = ordered_dst_access_lengths[I0] - 1;
static_for<0, i, 1>{}([&](auto j) {
tmp = tmp * ordered_dst_access_lengths[j] + ordered_dst_access_lengths[j] - 1;
});
forward_sweep_(i) = tmp % 2 == 0;
});
return forward_sweep_;
}();
// calculate dst data index after last iteration in RunWrite(), if it has not being reset by
// RunWrite()
constexpr auto dst_data_idx = [&]() {
Index ordered_idx;
static_for<0, nDim, 1>{}([&](auto i) {
ordered_idx(i) = forward_sweep[i] ? ordered_dst_access_lengths[i] - 1 : 0;
});
return container_reorder_given_old2new(ordered_idx, dst_dim_access_order) *
dst_vector_tensor_lengths;
}();
//
constexpr auto reset_dst_data_step = [&]() {
Index reset_dst_data_step_;
static_for<0, nDim, 1>{}([&](auto i) { reset_dst_data_step_(i) = -dst_data_idx[i]; });
return reset_dst_data_step_;
}();
return reset_dst_data_step;
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__ void MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const auto adjusted_step_idx =
SrcResetCoordinateAfterRun ? src_slice_origin_step_idx
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(src_desc, adjusted_step_idx);
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
// src_slice_origin_step_idx need to be known at compile-time, for performance reason
template <typename SrcMoveSliceWindowStepHack>
__device__ void
MoveSrcSliceWindow(const SrcDesc& src_desc,
const Index& src_slice_origin_step_idx,
const SrcMoveSliceWindowStepHack& src_move_slice_window_step_hack)
{
// if src coord was not reset by RunRead(), then need to adjust the step here
const auto adjusted_step_idx =
SrcResetCoordinateAfterRun ? src_slice_origin_step_idx
: src_slice_origin_step_idx + GetSrcCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(
src_desc, adjusted_step_idx, src_move_slice_window_step_hack);
move_tensor_coordinate(src_desc, src_coord_, adjusted_step);
}
// dst_slice_origin_step_idx need to be known at compile-time, for performance reason
__device__ void MoveDstSliceWindow(const DstDesc& dst_desc,
const Index& dst_slice_origin_step_idx)
{
// if dst coord was not reset by RunWrite(), then need to adjust the step here
const auto adjusted_step_idx =
DstResetCoordinateAfterRun ? dst_slice_origin_step_idx
: dst_slice_origin_step_idx + GetDstCoordinateResetStep();
// is it OK to construct a new step every time?
const auto adjusted_step = make_tensor_coordinate_step(dst_desc, adjusted_step_idx);
move_tensor_coordinate(dst_desc, dst_coord_, adjusted_step);
}
private:
static constexpr auto buffer_desc_ =
make_naive_tensor_descriptor_packed(sequence_to_tuple_of_number(SliceLengths{}));
static constexpr auto buffer_size_ = buffer_desc_.GetElementSpaceSize();
StaticBuffer<AddressSpaceEnum_t::Vgpr, SrcData, buffer_size_, true> buffer_;
SrcCoord src_coord_;
DstCoord dst_coord_;
};
} // namespace ck
#endif
#ifndef DEVICE_CONV2D_FWD_XDL_OUTPUT_SHUFFLE_BIAS_ACTIVATION_ADD_NHWC_KYXC_NHWK_HPP
#define DEVICE_CONV2D_FWD_XDL_OUTPUT_SHUFFLE_BIAS_ACTIVATION_ADD_NHWC_KYXC_NHWK_HPP
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_fwd_bias_activation_add.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// out[N, Ho, Wo, K] =
// activate(in[N, Hi, Wi, C] * wei[K, Y, X, C] + bias[K]) + residual[N, Ho, Wo, K]
template <typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector,
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct
DeviceConv2dFwdXdl_Output_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
: public DeviceConvFwdBiasActivationAdd<InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation>
{
using DeviceOp =
DeviceConv2dFwdXdl_Output_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K;
using ADataType = InDataType;
using BDataType = WeiDataType;
using CDataType = OutDataType;
// TODO make A/B datatype different
using ABDataType = InDataType;
// TODO make it support any # of spatial dimensions
static constexpr index_t NDimSpatial = 2;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static constexpr auto I4 = Number<4>{};
static constexpr auto K1Number = Number<K1>{};
static constexpr auto GemmK1Number = K1Number;
static auto
MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads)
{
using namespace ck;
const index_t Hi = input_spatial_lengths[0];
const index_t Wi = input_spatial_lengths[1];
const index_t Ho = output_spatial_lengths[0];
const index_t Wo = output_spatial_lengths[1];
const index_t Y = filter_spatial_lengths[0];
const index_t X = filter_spatial_lengths[1];
const index_t ConvStrideH = conv_filter_strides[0];
const index_t ConvStrideW = conv_filter_strides[1];
const index_t ConvDilationH = conv_filter_dilations[0];
const index_t ConvDilationW = conv_filter_dilations[1];
const index_t InLeftPadH = input_left_pads[0];
const index_t InLeftPadW = input_left_pads[1];
const index_t InRightPadH = input_right_pads[0];
const index_t InRightPadW = input_right_pads[1];
const index_t GemmMRaw = N * Ho * Wo;
const index_t GemmN = K;
const index_t GemmK = Y * X * C;
const auto GemmMPad = math::integer_least_multiple(GemmMRaw, MPerBlock) - GemmMRaw;
const auto GemmM = GemmMRaw + GemmMPad;
assert(GemmK % GemmK1Number == 0);
const index_t GemmK0 = GemmK / GemmK1Number;
// A: input tensor
const auto in_n_hi_wi_c_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N, Hi, Wi, C));
const auto in_n_hip_wip_c_grid_desc = transform_tensor_descriptor(
in_n_hi_wi_c_grid_desc,
make_tuple(make_pass_through_transform(N),
make_pad_transform(Hi, InLeftPadH, InRightPadH),
make_pad_transform(Wi, InLeftPadW, InRightPadW),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}));
const auto in_n_y_ho_x_wo_c_grid_desc = transform_tensor_descriptor(
in_n_hip_wip_c_grid_desc,
make_tuple(
make_pass_through_transform(N),
make_embed_transform(make_tuple(Y, Ho), make_tuple(ConvDilationH, ConvStrideH)),
make_embed_transform(make_tuple(X, Wo), make_tuple(ConvDilationW, ConvStrideW)),
make_pass_through_transform(C)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}, Sequence<3>{}),
make_tuple(Sequence<0>{}, Sequence<1, 2>{}, Sequence<3, 4>{}, Sequence<5>{}));
const auto in_gemmk_gemmmraw_grid_desc =
transform_tensor_descriptor(in_n_y_ho_x_wo_c_grid_desc,
make_tuple(make_merge_transform(make_tuple(Y, X, C)),
make_merge_transform(make_tuple(N, Ho, Wo))),
make_tuple(Sequence<1, 3, 5>{}, Sequence<0, 2, 4>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto in_gemmk0_gemmmraw_gemmk1_grid_desc = transform_tensor_descriptor(
in_gemmk_gemmmraw_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmMRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
const auto in_gemmk0_gemmm_gemmk1_grid_desc =
transform_tensor_descriptor(in_gemmk0_gemmmraw_gemmk1_grid_desc,
make_tuple(make_pass_through_transform(GemmK0),
make_right_pad_transform(GemmMRaw, GemmMPad),
make_pass_through_transform(GemmK1Number)),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}, Sequence<2>{}));
// B: weight tensor
const auto wei_k_yxc_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(K, Y * X * C));
const auto wei_gemmk_gemmn_grid_desc = transform_tensor_descriptor(
wei_k_yxc_grid_desc,
make_tuple(make_pass_through_transform(K), make_pass_through_transform(Y * X * C)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<1>{}, Sequence<0>{}));
const auto wei_gemmk0_gemmn_gemmk1_grid_desc = transform_tensor_descriptor(
wei_gemmk_gemmn_grid_desc,
make_tuple(make_unmerge_transform(make_tuple(GemmK0, GemmK1Number)),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
// C: output tensor
const auto out_nhowo_k_grid_desc =
make_naive_tensor_descriptor_packed(make_tuple(N * Ho * Wo, K));
const auto out_gemmmraw_gemmn_grid_desc = transform_tensor_descriptor(
out_nhowo_k_grid_desc,
make_tuple(make_pass_through_transform(N * Ho * Wo), make_pass_through_transform(K)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto out_gemmm_gemmn_grid_desc =
transform_tensor_descriptor(out_gemmmraw_gemmn_grid_desc,
make_tuple(make_right_pad_transform(GemmMRaw, GemmMPad),
make_pass_through_transform(GemmN)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
// C0: bias tensor: assume a contiguous vector
const auto bias_grid_desc_gemmm_gemmn =
make_naive_tensor_descriptor(make_tuple(GemmM, GemmN), make_tuple(I0, I1));
// C1: residual tensor: assume same layout as output tensor
const auto resi_grid_desc_gemmm_gemmn = out_gemmm_gemmn_grid_desc;
return make_tuple(in_gemmk0_gemmm_gemmk1_grid_desc,
wei_gemmk0_gemmn_gemmk1_grid_desc,
out_gemmm_gemmn_grid_desc,
bias_grid_desc_gemmm_gemmn,
resi_grid_desc_gemmm_gemmn);
}
using ABCGridDescs = decltype(MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(
1, 1, 1, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}));
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
using BGridDesc_K0_N_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I1])>;
using CGridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I2])>;
using C0GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I3])>;
using C1GridDesc_M_N = remove_cvref_t<decltype(ABCGridDescs{}[I4])>;
// GridwiseGemm
using GridwiseGemm = GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v3r3<
BlockSize,
ABDataType, // TODO: distinguish A/B datatype
AccDataType,
CDataType,
InMemoryDataOperationEnum_t::Set,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXDL,
NPerXDL,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadSliceLengths_K0_M_K1,
ABlockTransferThreadClusterLengths_K0_M_K1,
Sequence<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // ABlockTransferSrcAccessOrder,
2, // ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
BBlockTransferThreadSliceLengths_K0_N_K1,
BBlockTransferThreadClusterLengths_K0_N_K1,
Sequence<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder,
Sequence<1, 0, 2>, // BBlockTransferSrcAccessOrder,
2, // BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
Sequence<2, 3, 0, 1, 7, 5, 4, 6>, // CThreadTransferSrcDstAccessOrder,
7, // CThreadTransferSrcDstVectorDim,
CThreadTransferDstScalarPerVector,
false, // CAccessOrderMRepeatNRepeat,
ABlockLdsAddExtraM,
BBlockLdsAddExtraN>;
using CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(CGridDesc_M_N{}));
using C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C0GridDesc_M_N{}));
using C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 =
decltype(GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(C1GridDesc_M_N{}));
using Block2CTileMap = decltype(GridwiseGemm::MakeBlock2CTileMap(CGridDesc_M_N{}, 1, 1));
// Argument
struct Argument : public BaseArgument
{
Argument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
const OutDataType* p_bias_grid,
const OutDataType* p_resi_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
ck::index_t M01,
ck::index_t N01,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
: p_a_grid_{p_in_grid},
p_b_grid_{p_wei_grid},
p_c_grid_{p_out_grid},
p_c0_grid_{p_bias_grid},
p_c1_grid_{p_resi_grid},
a_grid_desc_k0_m_k1_{},
b_grid_desc_k0_n_k1_{},
c_grid_desc_m_n_{},
c0_grid_desc_m_n_{},
c1_grid_desc_m_n_{},
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_{},
block_2_ctile_map_{},
M01_{M01},
N01_{N01},
in_element_op_{in_element_op},
wei_element_op_{wei_element_op},
out_element_op_{out_element_op}
{
const auto descs =
DeviceOp::MakeABCGridDescriptor_A_K0_M_K1_B_K0_N_K1_C_M_N(N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads);
a_grid_desc_k0_m_k1_ = descs[I0];
b_grid_desc_k0_n_k1_ = descs[I1];
c_grid_desc_m_n_ = descs[I2];
c0_grid_desc_m_n_ = descs[I3];
c1_grid_desc_m_n_ = descs[I4];
if(GridwiseGemm::CheckValidity(
a_grid_desc_k0_m_k1_, b_grid_desc_k0_n_k1_, c_grid_desc_m_n_, M01_, N01_))
{
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c_grid_desc_m_n_);
c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c0_grid_desc_m_n_);
c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2(c1_grid_desc_m_n_);
block_2_ctile_map_ = GridwiseGemm::MakeBlock2CTileMap(c_grid_desc_m_n_, M01, N01);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const CDataType* p_c0_grid_;
const CDataType* p_c1_grid_;
AGridDesc_K0_M_K1 a_grid_desc_k0_m_k1_;
BGridDesc_K0_N_K1 b_grid_desc_k0_n_k1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2 c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_;
Block2CTileMap block_2_ctile_map_;
index_t M01_;
index_t N01_;
InElementwiseOperation in_element_op_;
WeiElementwiseOperation wei_element_op_;
OutElementwiseOperation out_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, int nrepeat = 1)
{
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
<< arg.a_grid_desc_k0_m_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_k0_n_k1_{" << arg.b_grid_desc_k0_n_k1_.GetLength(I0)
<< ", " << arg.b_grid_desc_k0_n_k1_.GetLength(I1) << ", "
<< arg.b_grid_desc_k0_n_k1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c0_grid_desc_m_n_{ " << arg.c0_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c0_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.c1_grid_desc_m_n_{ " << arg.c1_grid_desc_m_n_.GetLength(I0)
<< ", " << arg.c1_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_))
{
throw std::runtime_error(
"wrong! GridwiseGemm_km_kn_m0m1n0n1_xdlops_v3r3 has invalid setting");
}
const index_t grid_size = GridwiseGemm::CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K0 = arg.a_grid_desc_k0_m_k1_.GetLength(I0);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceOp::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceOp::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_xdlops_v3r3<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceOp::C0GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
remove_reference_t<DeviceOp::C1GridDesc_M0_N0_M1_N1_M2_M3_M4_N2>,
InElementwiseOperation,
WeiElementwiseOperation,
OutElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
ave_time = launch_and_time_kernel(kernel,
nrepeat,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c0_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.c1_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_,
arg.in_element_op_,
arg.wei_element_op_,
arg.out_element_op_,
arg.block_2_ctile_map_);
}
return ave_time;
}
float Run(const BaseArgument* p_arg, int nrepeat = 1) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), nrepeat);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_k0_m_k1_,
arg.b_grid_desc_k0_n_k1_,
arg.c_grid_desc_m_n_,
arg.M01_,
arg.N01_);
}
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const InDataType* p_in_grid,
const WeiDataType* p_wei_grid,
OutDataType* p_out_grid,
const OutDataType* p_bias_grid,
const OutDataType* p_resi_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op)
{
return Argument{p_in_grid,
p_wei_grid,
p_out_grid,
p_bias_grid,
p_resi_grid,
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_in_grid,
const void* p_wei_grid,
void* p_out_grid,
const void* p_bias_grid,
const void* p_resi_grid,
ck::index_t N,
ck::index_t K,
ck::index_t C,
std::vector<ck::index_t> input_spatial_lengths,
std::vector<ck::index_t> filter_spatial_lengths,
std::vector<ck::index_t> output_spatial_lengths,
std::vector<ck::index_t> conv_filter_strides,
std::vector<ck::index_t> conv_filter_dilations,
std::vector<ck::index_t> input_left_pads,
std::vector<ck::index_t> input_right_pads,
InElementwiseOperation in_element_op,
WeiElementwiseOperation wei_element_op,
OutElementwiseOperation out_element_op) override
{
return std::make_unique<Argument>(static_cast<const InDataType*>(p_in_grid),
static_cast<const WeiDataType*>(p_wei_grid),
static_cast<OutDataType*>(p_out_grid),
static_cast<const OutDataType*>(p_bias_grid),
static_cast<const OutDataType*>(p_resi_grid),
N,
K,
C,
input_spatial_lengths,
filter_spatial_lengths,
output_spatial_lengths,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
1,
1,
in_element_op,
wei_element_op,
out_element_op);
}
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceConv2dFwdXdl_Output_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< K0PerBlock
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
# Instructions for ```conv_xdl_bias_relu_add``` Example
## Docker script
```bash
docker run \
-it \
--rm \
--privileged \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
/bin/bash
```
## Build ```conv_xdl_bias_relu_add```
```bash
mkdir build && cd build
```
```bash
# Need to specify target ID, example below is gfx908
cmake \
-D BUILD_DEV=OFF \
-D CMAKE_BUILD_TYPE=Release \
-D CMAKE_CXX_FLAGS="-DCK_AMD_GPU_GFX908 --amdgpu-target=gfx908 -O3 " \
-D CMAKE_CXX_COMPILER=/opt/rocm/bin/hipcc \
-D CMAKE_PREFIX_PATH=/opt/rocm \
..
```
```bash
make -j conv_xdl_bias_relu_add
```
## Run ```conv_xdl_bias_relu_add```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, RightPx
./example/conv_xdl_bias_relu_add 0 1 5
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
in_n_c_hi_wi: dim 4, lengths {128, 192, 71, 71}, strides {967872, 1, 13632, 192}
wei_k_c_y_x: dim 4, lengths {256, 192, 3, 3}, strides {1728, 1, 576, 192}
out_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
bias_k: dim 1, lengths {256}, strides {1}
resi_n_k_ho_wo: dim 4, lengths {128, 256, 36, 36}, strides {331776, 1, 9216, 256}
arg.a_grid_desc_k0_m_k1_{216, 165888, 8}
arg.b_grid_desc_k0_n_k1_{216, 256, 8}
arg.c_grid_desc_m_n_{ 165888, 256}
arg.c0_grid_desc_m_n_{ 165888, 256}
arg.c1_grid_desc_m_n_{ 165888, 256}
launch_and_time_kernel: grid_dim {1296, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.71779 ms, 85.4396 TFlops, 194.2 GB/s
```
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "tensor_layout.hpp"
#include "device_conv2d_fwd_xdl_output_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "element_wise_operation.hpp"
using InDataType = ck::half_t;
using WeiDataType = ck::half_t;
using OutDataType = ck::half_t;
using AccDataType = float;
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using InLayout = ck::tensor_layout::convolution::NHWC;
using WeiLayout = ck::tensor_layout::convolution::KYXC;
using OutLayout = ck::tensor_layout::convolution::NHWK;
using InElementOp = ck::tensor_operation::element_wise::PassThrough;
using WeiElementOp = ck::tensor_operation::element_wise::PassThrough;
using OutElementOp = ck::tensor_operation::element_wise::AddReluAdd;
// clang-format off
using DeviceConvFwdInstance = ck::tensor_operation::device::
DeviceConv2dFwdXdl_Ouput_Shuffle_Bias_Activation_Add_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
// | InData| WeiData| OutData| AccData| In| Wei| Out| Block| MPer| NPer| K0Per| K1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| CThreadTransfer| CThreadTransfer| ABlockLds| BBlockLds|
// | Type| Type| Type| Type| Elementwise| Elementwise| Elementwise| Size| Block| Block| Block| | XDL| XDL| Per| Per| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ThreadSlice| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| SrcDstVectorDim| DstScalar| AddExtraM| AddExtraN|
// | | | | | Operation| Operation| Operation| | | | | | | | Wave| Wave| Lengths_K0_N_K1| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| Lengths_K0_N_K1| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| | |
// | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<InDataType, WeiDataType, OutDataType, AccDataType, InElementOp, WeiElementOp, OutElementOp, 256, 128, 256, 4, 8, 32, 32, 2, 4, S<1, 2, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, S<1, 4, 8>, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 7, 1, true, true>;
// clang-format on
template <typename TIn,
typename TWei,
typename TOut,
typename InElementOp,
typename WeiElementOp,
typename OutElementOp>
void host_reference_calculation(const Tensor<TIn>& in_n_c_hi_wi,
const Tensor<TWei>& wei_k_c_y_x,
Tensor<TOut>& out_n_k_ho_wo,
const Tensor<TOut>& bias_k,
const Tensor<TOut>& resi_n_k_ho_wo,
const std::vector<ck::index_t>& conv_strides,
const std::vector<ck::index_t>& conv_dilations,
const std::vector<ck::index_t>& in_left_pads,
const std::vector<ck::index_t>& /* in_right_pads */,
const InElementOp& in_element_op,
const WeiElementOp& wei_element_op,
const OutElementOp& out_element_op)
{
auto f_nchw = [&](auto n, auto k, auto ho, auto wo) {
double v = 0;
for(int c = 0; c < wei_k_c_y_x.mDesc.GetLengths()[1]; ++c)
{
for(int y = 0; y < wei_k_c_y_x.mDesc.GetLengths()[2]; ++y)
{
int hi = ho * conv_strides[0] + y * conv_dilations[0] - in_left_pads[0];
for(int x = 0; x < wei_k_c_y_x.mDesc.GetLengths()[3]; ++x)
{
int wi = wo * conv_strides[1] + x * conv_dilations[1] - in_left_pads[1];
if(hi >= 0 && hi < in_n_c_hi_wi.mDesc.GetLengths()[2] && wi >= 0 &&
wi < in_n_c_hi_wi.mDesc.GetLengths()[3])
{
v += in_element_op(static_cast<const double>(in_n_c_hi_wi(n, c, hi, wi))) *
wei_element_op(static_cast<const double>(wei_k_c_y_x(k, c, y, x)));
}
}
}
}
out_n_k_ho_wo(n, k, ho, wo) = out_element_op(v, bias_k(k), resi_n_k_ho_wo(n, k, ho, wo));
};
make_ParallelTensorFunctor(f_nchw,
out_n_k_ho_wo.mDesc.GetLengths()[0],
out_n_k_ho_wo.mDesc.GetLengths()[1],
out_n_k_ho_wo.mDesc.GetLengths()[2],
out_n_k_ho_wo.mDesc.GetLengths()[3])(
std::thread::hardware_concurrency());
}
int main(int argc, char* argv[])
{
bool do_verification = 0;
int init_method = 0;
int nrepeat = 5;
// Conv shape
ck::index_t N = 128;
ck::index_t K = 256;
ck::index_t C = 192;
ck::index_t Y = 3;
ck::index_t X = 3;
ck::index_t Hi = 71;
ck::index_t Wi = 71;
ck::index_t conv_stride_h = 2;
ck::index_t conv_stride_w = 2;
ck::index_t conv_dilation_h = 1;
ck::index_t conv_dilation_w = 1;
ck::index_t in_left_pad_h = 1;
ck::index_t in_left_pad_w = 1;
ck::index_t in_right_pad_h = 1;
ck::index_t in_right_pad_w = 1;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
}
else if(argc == 19)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
nrepeat = std::stoi(argv[3]);
N = std::stoi(argv[4]);
K = std::stoi(argv[5]);
C = std::stoi(argv[6]);
Y = std::stoi(argv[7]);
X = std::stoi(argv[8]);
Hi = std::stoi(argv[9]);
Wi = std::stoi(argv[10]);
conv_stride_h = std::stoi(argv[11]);
conv_stride_w = std::stoi(argv[12]);
conv_dilation_h = std::stoi(argv[13]);
conv_dilation_w = std::stoi(argv[14]);
in_left_pad_h = std::stoi(argv[15]);
in_left_pad_w = std::stoi(argv[16]);
in_right_pad_h = std::stoi(argv[17]);
in_right_pad_w = std::stoi(argv[18]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: run kernel # of times (>1)\n");
printf("arg4 to 18: N, K, C, Y, X, Hi, Wi, Sy, Sx, Dy, Dx, LeftPy, LeftPx, RightPy, "
"RightPx\n");
exit(0);
}
const ck::index_t YEff = (Y - 1) * conv_dilation_h + 1;
const ck::index_t XEff = (X - 1) * conv_dilation_w + 1;
const ck::index_t Ho = (Hi + in_left_pad_h + in_right_pad_h - YEff) / conv_stride_h + 1;
const ck::index_t Wo = (Wi + in_left_pad_w + in_right_pad_w - XEff) / conv_stride_w + 1;
const std::vector<ck::index_t> conv_filter_strides{{conv_stride_h, conv_stride_w}};
const std::vector<ck::index_t> conv_filter_dilations{{conv_dilation_h, conv_dilation_w}};
const std::vector<ck::index_t> input_left_pads{{in_left_pad_h, in_left_pad_w}};
const std::vector<ck::index_t> input_right_pads{{in_right_pad_h, in_right_pad_w}};
// tensor layout
auto f_host_tensor_descriptor = [](std::size_t N_,
std::size_t C_,
std::size_t H,
std::size_t W,
auto layout) {
if constexpr(ck::is_same<decltype(layout), ck::tensor_layout::convolution::NCHW>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::KCYX>::value ||
ck::is_same<decltype(layout), ck::tensor_layout::convolution::NKHW>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, H * W, W, 1}));
}
else if constexpr(ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::KYXC>::value ||
ck::is_same<decltype(layout),
ck::tensor_layout::convolution::NHWK>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({N_, C_, H, W}),
std::vector<std::size_t>({C_ * H * W, 1, W * C_, C_}));
}
};
Tensor<InDataType> in_n_c_hi_wi(f_host_tensor_descriptor(N, C, Hi, Wi, InLayout{}));
Tensor<WeiDataType> wei_k_c_y_x(f_host_tensor_descriptor(K, C, Y, X, WeiLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_host_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
Tensor<OutDataType> out_n_k_ho_wo_device_result(
f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
// bias: assume contiguous 1d vector
Tensor<OutDataType> bias_k(
HostTensorDescriptor(std::vector<std::size_t>({static_cast<std::size_t>(K)})));
// residual: assume same layout as output tensor
Tensor<OutDataType> resi_n_k_ho_wo(f_host_tensor_descriptor(N, K, Ho, Wo, OutLayout{}));
std::cout << "in_n_c_hi_wi: " << in_n_c_hi_wi.mDesc << std::endl;
std::cout << "wei_k_c_y_x: " << wei_k_c_y_x.mDesc << std::endl;
std::cout << "out_n_k_ho_wo: " << out_n_k_ho_wo_host_result.mDesc << std::endl;
std::cout << "bias_k: " << bias_k.mDesc << std::endl;
std::cout << "resi_n_k_ho_wo: " << resi_n_k_ho_wo.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias_k.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
break;
default:
in_n_c_hi_wi.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
wei_k_c_y_x.GenerateTensorValue(GeneratorTensor_3<WeiDataType>{-0.5, 0.5});
bias_k.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
resi_n_k_ho_wo.GenerateTensorValue(GeneratorTensor_3<OutDataType>{0.0, 1.0});
}
DeviceMem in_device_buf(sizeof(InDataType) * in_n_c_hi_wi.mDesc.GetElementSpace());
DeviceMem wei_device_buf(sizeof(WeiDataType) * wei_k_c_y_x.mDesc.GetElementSpace());
DeviceMem out_device_buf(sizeof(OutDataType) *
out_n_k_ho_wo_device_result.mDesc.GetElementSpace());
DeviceMem bias_device_buf(sizeof(OutDataType) * bias_k.mDesc.GetElementSpace());
DeviceMem resi_device_buf(sizeof(OutDataType) * resi_n_k_ho_wo.mDesc.GetElementSpace());
in_device_buf.ToDevice(in_n_c_hi_wi.mData.data());
wei_device_buf.ToDevice(wei_k_c_y_x.mData.data());
bias_device_buf.ToDevice(bias_k.mData.data());
resi_device_buf.ToDevice(resi_n_k_ho_wo.mData.data());
auto conv = DeviceConvFwdInstance{};
auto invoker = conv.MakeInvoker();
auto argument =
conv.MakeArgument(static_cast<const InDataType*>(in_device_buf.GetDeviceBuffer()),
static_cast<const WeiDataType*>(wei_device_buf.GetDeviceBuffer()),
static_cast<OutDataType*>(out_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(bias_device_buf.GetDeviceBuffer()),
static_cast<const OutDataType*>(resi_device_buf.GetDeviceBuffer()),
N,
K,
C,
std::vector<ck::index_t>{{Hi, Wi}},
std::vector<ck::index_t>{{Y, X}},
std::vector<ck::index_t>{{Ho, Wo}},
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
if(!conv.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device operator with the specified compilation parameters does "
"not support this problem");
}
float ave_time = invoker.Run(argument, nrepeat);
std::size_t flop = std::size_t(2) * N * K * Ho * Wo * C * Y * X;
std::size_t num_btype = sizeof(InDataType) * (N * C * Hi * Wi) +
sizeof(WeiDataType) * (K * C * Y * X) +
sizeof(OutDataType) * (N * K * Ho * Wo) + sizeof(OutDataType) * (K) +
sizeof(OutDataType) * (N * K * Ho * Wo);
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
if(do_verification)
{
host_reference_calculation(in_n_c_hi_wi,
wei_k_c_y_x,
out_n_k_ho_wo_host_result,
bias_k,
resi_n_k_ho_wo,
conv_filter_strides,
conv_filter_dilations,
input_left_pads,
input_right_pads,
InElementOp{},
WeiElementOp{},
OutElementOp{});
out_device_buf.FromDevice(out_n_k_ho_wo_device_result.mData.data());
check_error(out_n_k_ho_wo_host_result, out_n_k_ho_wo_device_result);
}
}
#ifndef DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_CONV_FWD_XDL_BIAS_ACTIVATION_ADD_HPP
#include <iostream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
template <ck::index_t NDimSpatial,
typename InDataType,
typename WeiDataType,
typename OutDataType,
typename AccDataType,
typename InLayout,
typename WeiLayout,
typename OutLayout,
typename InElementwiseOperation,
typename WeiElementwiseOperation,
typename OutElementwiseOperation,
ck::index_t BlockSize,
ck::index_t MPerBlock,
ck::index_t NPerBlock,
ck::index_t K0PerBlock,
ck::index_t K1,
ck::index_t MPerXDL,
ck::index_t NPerXDL,
ck::index_t MXdlPerWave,
ck::index_t NXdlPerWave,
typename ABlockTransferThreadSliceLengths_K0_M_K1,
typename ABlockTransferThreadClusterLengths_K0_M_K1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
ck::index_t ABlockTransferSrcVectorDim,
ck::index_t ABlockTransferSrcScalarPerVector,
ck::index_t ABlockTransferDstScalarPerVector_K1,
typename BBlockTransferThreadSliceLengths_K0_N_K1,
typename BBlockTransferThreadClusterLengths_K0_N_K1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
ck::index_t BBlockTransferSrcVectorDim,
ck::index_t BBlockTransferSrcScalarPerVector,
ck::index_t BBlockTransferDstScalarPerVector_K1,
ck::index_t CThreadTransferSrcDstVectorDim,
ck::index_t CThreadTransferDstScalarPerVector,
bool ABlockLdsAddExtraM,
bool BBlockLdsAddExtraN>
struct DeviceConvFwdXdl_bias_activation_add;
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
......@@ -17,6 +17,7 @@ set(CONV2D_FWD_XDL_SOURCE 4_conv2d_fwd_xdl/conv2d_fwd_xdl.cpp)
set(CONV2D_FWD_XDL_OUTPUT_SHUFFLE_SOURCE 4_conv2d_fwd_xdl_output_shuffle/conv2d_fwd_xdl_output_shuffle.cpp)
set(CONV2D_FWD_XDL_BIAS_RELU_SOURCE 5_conv2d_fwd_xdl_bias_relu/conv2d_fwd_xdl_bias_relu.cpp)
set(CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp)
set(CONV2D_FWD_XDL_OUTPUT_SHUFFLE_BIAS_RELU_ADD_SOURCE 6_conv2d_fwd_xdl_output_shuffle_bias_relu_add/conv2d_fwd_xdl_bias_relu_add.cpp)
add_executable(gemm_xdl ${GEMM_XDL_SOURCE})
add_executable(gemm_xdl_bias_relu_add ${GEMM_XDL_BIAS_RELU_ADD_SOURCE})
......@@ -24,6 +25,7 @@ add_executable(conv2d_fwd_xdl ${CONV2D_FWD_XDL_SOURCE})
add_executable(conv2d_fwd_xdl_output_shuffle ${CONV2D_FWD_XDL_OUTPUT_SHUFFLE_SOURCE})
add_executable(conv2d_fwd_xdl_bias_relu ${CONV2D_FWD_XDL_BIAS_RELU_SOURCE})
add_executable(conv2d_fwd_xdl_bias_relu_add ${CONV2D_FWD_XDL_BIAS_RELU_ADD_SOURCE})
add_executable(conv2d_fwd_xdl_output_shuffle_bias_relu_add ${CONV2D_FWD_XDL_OUTPUT_SHUFFLE_BIAS_RELU_ADD_SOURCE})
target_link_libraries(gemm_xdl PRIVATE host_tensor)
target_link_libraries(gemm_xdl_bias_relu_add PRIVATE host_tensor)
......@@ -31,3 +33,4 @@ target_link_libraries(conv2d_fwd_xdl PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_output_shuffle PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_bias_relu PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_bias_relu_add PRIVATE host_tensor)
target_link_libraries(conv2d_fwd_xdl_output_shuffle_bias_relu_add PRIVATE host_tensor)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment