Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
8133713e
"vscode:/vscode.git/clone" did not exist on "545d9305687c083717274171fdb22c74a5b5615e"
Commit
8133713e
authored
Jul 05, 2019
by
Chao Liu
Browse files
adding implicit gemm v4r2
parent
923578a3
Changes
5
Expand all
Show whitespace changes
Inline
Side-by-side
Showing
5 changed files
with
1588 additions
and
0 deletions
+1588
-0
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
...ridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
+354
-0
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer.hpp
...n_implicit_gemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer.hpp
+415
-0
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw_lds_double_buffer.hpp
...n_implicit_gemm_v4r2_nchw_kcyx_nkhw_lds_double_buffer.hpp
+428
-0
driver/include/device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
.../device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
+232
-0
driver/include/device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw.hpp
.../device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw.hpp
+159
-0
No files found.
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
0 → 100644
View file @
8133713e
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R1_NCHW_KCYX_NKHW
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R1_NCHW_KCYX_NKHW
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "ConstantMergedTensorDescriptor.hpp"
#include "ConstantMatrixDescriptor.hpp"
#include "blockwise_generic_tensor_slice_copy.hpp"
#include "blockwise_gemm.hpp"
#include "threadwise_generic_tensor_slice_copy.hpp"
namespace
ck
{
// define B = merge(N0, Ho, Wo)
template
<
index_t
GridSize
,
index_t
BlockSize
,
class
Float
,
class
InGlobalDesc
,
class
WeiGlobalDesc
,
class
OutGlobalDesc
,
index_t
BPerBlock
,
index_t
KPerBlock
,
index_t
EPerBlock
,
index_t
N1
,
index_t
N2
,
index_t
GemmMPerThreadSubC
,
index_t
GemmNPerThreadSubC
,
index_t
GemmMLevel0Cluster
,
index_t
GemmNLevel0Cluster
,
index_t
GemmMLevel1Cluster
,
index_t
GemmNLevel1Cluster
,
index_t
GemmKPerThreadLoop
,
index_t
GemmDataPerReadA
,
index_t
GemmDataPerReadB
,
class
InBlockCopySubLengths_E_N1_B_N2
,
class
InBlockCopyClusterLengths_E_N1_B_N2
,
class
InBlockCopyThreadClusterArrangeOrder
,
class
InBlockCopySrcAccessOrder
,
class
InBlockCopyDstAccessOrder
,
index_t
InBlockCopySrcDataPerRead_B
,
index_t
InBlockCopyDstDataPerWrite_N2
,
class
WeiBlockCopySubLengths_E_K
,
class
WeiBlockCopyClusterLengths_E_K
,
class
WeiBlockCopyThreadClusterArrangeOrder
,
class
WeiBlockCopySrcAccessOrder
,
class
WeiBlockCopyDstAccessOrder
,
index_t
WeiBlockCopySrcDataPerRead_E
,
index_t
WeiBlockCopyDstDataPerWrite_K
>
struct
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw
{
__device__
void
Run
(
const
Float
*
const
__restrict__
p_in_global
,
const
Float
*
const
__restrict__
p_wei_global
,
Float
*
const
__restrict__
p_out_global
)
const
{
// this is a mess
// TODO: find more elegent way of specifying (or calculating) performance parameters
static_assert
(
N2
==
GemmNPerThreadSubC
,
"wrong!"
);
static_assert
((
N1
*
N2
*
BPerBlock
)
%
(
GemmNPerThreadSubC
*
GemmNLevel0Cluster
*
GemmNLevel1Cluster
)
==
0
,
"wrong!"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
I4
=
Number
<
4
>
{};
constexpr
auto
I5
=
Number
<
5
>
{};
constexpr
auto
I6
=
Number
<
6
>
{};
constexpr
auto
I7
=
Number
<
7
>
{};
constexpr
auto
True
=
integral_constant
<
bool
,
true
>
{};
constexpr
auto
in_n_c_h_w_global_desc
=
InGlobalDesc
{};
constexpr
auto
wei_k_c_y_x_global_desc
=
WeiGlobalDesc
{};
constexpr
auto
out_n_k_h_w_global_desc
=
OutGlobalDesc
{};
constexpr
index_t
N
=
in_n_c_h_w_global_desc
.
GetLength
(
I0
);
constexpr
index_t
C
=
in_n_c_h_w_global_desc
.
GetLength
(
I1
);
constexpr
index_t
Hi
=
in_n_c_h_w_global_desc
.
GetLength
(
I2
);
constexpr
index_t
Wi
=
in_n_c_h_w_global_desc
.
GetLength
(
I3
);
constexpr
index_t
K
=
out_n_k_h_w_global_desc
.
GetLength
(
I1
);
constexpr
index_t
Ho
=
out_n_k_h_w_global_desc
.
GetLength
(
I2
);
constexpr
index_t
Wo
=
out_n_k_h_w_global_desc
.
GetLength
(
I3
);
constexpr
index_t
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
constexpr
index_t
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
static_assert
(
N
%
(
N1
*
N2
)
==
0
,
"wrong! cannot divice N evenly among thread"
);
constexpr
index_t
N0
=
N
/
(
N1
*
N2
);
constexpr
index_t
B
=
N0
*
Ho
*
Wo
;
constexpr
index_t
E
=
C
*
Y
*
X
;
// divide block work by [K, B]
static_assert
(
K
%
KPerBlock
==
0
&&
B
%
BPerBlock
==
0
&&
E
%
EPerBlock
==
0
,
"wrong! cannot divide work evenly among block"
);
constexpr
index_t
KBlockWork
=
K
/
KPerBlock
;
constexpr
index_t
BBlockWork
=
B
/
BPerBlock
;
constexpr
auto
block_work_desc
=
make_ConstantTensorDescriptor_packed
(
Sequence
<
KBlockWork
,
BBlockWork
>
{});
const
auto
block_work_multi_id
=
block_work_desc
.
GetMultiIndexFrom1dIndex
(
get_block_1d_id
());
const
index_t
k_block_data_on_global
=
block_work_multi_id
[
0
]
*
KPerBlock
;
const
index_t
b_block_data_on_global
=
block_work_multi_id
[
1
]
*
BPerBlock
;
// input tensor
// tensor descriptor in device memory [N0, N1, N2, Ho, Wo]
constexpr
auto
in_n0_n1_n2_h_w_global_desc
=
in_n_c_h_w_global_desc
.
Slice
(
I2
,
Number
<
Ho
>
{})
.
Slice
(
I3
,
Number
<
Wo
>
{})
.
Fold
(
I0
,
Number
<
N1
>
{},
Number
<
N2
>
{})
.
Extract
(
Sequence
<
0
,
1
,
2
,
4
,
5
>
{});
// batch descritpor for device memory
constexpr
auto
in_c_y_x_global_desc
=
in_n_c_h_w_global_desc
.
Slice
(
I2
,
Number
<
Y
>
{})
.
Slice
(
I3
,
Number
<
X
>
{})
.
Extract
(
Sequence
<
1
,
2
,
3
>
{});
// merged tensor descriptor in device memory [E, N1, B, N2], src of blockwise copy
constexpr
auto
in_e_n1_b_n2_global_merged_desc
=
make_ConstantMergedTensorDescriptor
(
in_c_y_x_global_desc
.
Embed
(
in_n0_n1_n2_h_w_global_desc
),
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
4
>
{},
Sequence
<
3
,
6
,
7
>
{},
Sequence
<
5
>
{});
#if 0
if(get_block_1d_id() == 0 && get_thread_local_1d_id() == 0)
{
print_ConstantTensorDescriptor(in_n0_n1_n2_h_w_global_desc,
"in_n0_n1_n2_h_w_global_desc: ");
print_ConstantTensorDescriptor(in_c_y_x_global_desc, "in_c_y_x_global_desc: ");
print_ConstantMergedTensorDescriptor(in_e_n1_b_n2_global_merged_desc,
"in_e_n1_b_n2_global_merged_desc: ");
}
#endif
// memory layout descriptor in LDS [E, N1, B, N2], dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
in_e_n1_b_n2_block_desc
=
make_ConstantTensorDescriptor_aligned
(
Sequence
<
EPerBlock
,
N1
,
BPerBlock
,
N2
>
{},
Number
<
InBlockCopyDstDataPerWrite_N2
>
{});
// this check is ad-hoc
// TODO: need to properly implement tensor descriptor with multiple alignment
// requirements
static_assert
(
in_e_n1_b_n2_block_desc
.
GetStride
(
I1
)
%
GemmDataPerReadB
==
0
,
"GemmDataPerReadB alignment requirement is not satisfied"
);
// input blockwise copy
// slice a merged tensor, reorder and copy to a normal tensor
// this copy operator already has blockwise offset built-in
auto
blockwise_in_copy
=
BlockwiseGenericTensorSliceCopy_v1
<
BlockSize
,
Float
,
decltype
(
in_e_n1_b_n2_global_merged_desc
),
decltype
(
in_e_n1_b_n2_block_desc
),
decltype
(
in_e_n1_b_n2_block_desc
.
GetLengths
()),
InBlockCopySubLengths_E_N1_B_N2
,
InBlockCopyClusterLengths_E_N1_B_N2
,
InBlockCopyThreadClusterArrangeOrder
,
InBlockCopySrcAccessOrder
,
InBlockCopyDstAccessOrder
,
InBlockCopySrcDataPerRead_B
,
InBlockCopyDstDataPerWrite_N2
>
(
{
0
,
0
,
b_block_data_on_global
,
0
},
{
0
,
0
,
0
,
0
});
// weight tensor
// tensor descriptor in device memory, src of blockwise copy
constexpr
auto
wei_e_k_global_desc
=
wei_k_c_y_x_global_desc
.
Unfold
(
I1
,
I3
).
ReorderGivenNew2Old
(
Sequence
<
1
,
0
>
{});
// tensor descriptor in LDS, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
wei_e_k_block_desc
=
make_ConstantTensorDescriptor_aligned
(
Sequence
<
EPerBlock
,
KPerBlock
>
{},
Number
<
math
::
lcm
(
WeiBlockCopyDstDataPerWrite_K
,
GemmDataPerReadA
)
>
{});
// operator for blockwise copy of weight into LDS
// slice a tensor, and copy it into another tensor
// this copy operator already have blockwise offset built-in
auto
blockwise_wei_copy
=
BlockwiseGenericTensorSliceCopy_v1
<
BlockSize
,
Float
,
decltype
(
wei_e_k_global_desc
),
decltype
(
wei_e_k_block_desc
),
decltype
(
wei_e_k_block_desc
.
GetLengths
()),
WeiBlockCopySubLengths_E_K
,
WeiBlockCopyClusterLengths_E_K
,
WeiBlockCopyThreadClusterArrangeOrder
,
WeiBlockCopySrcAccessOrder
,
WeiBlockCopyDstAccessOrder
,
WeiBlockCopySrcDataPerRead_E
,
WeiBlockCopyDstDataPerWrite_K
>
(
{
0
,
k_block_data_on_global
},
{
0
,
0
});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[EPerBlock, KPerBlock] is in LDS
// b_mtx[EPerBlocl, N1 * BPerBlock * N2] is in LDS
// c_mtx[KPerBlock, N1 * BPerBlock * N2] is distributed among threads, and saved in
// register
constexpr
auto
a_e_k_block_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
EPerBlock
>
{},
Number
<
KPerBlock
>
{},
Number
<
wei_e_k_block_desc
.
GetStride
(
I0
)
>
{});
constexpr
auto
b_e_n1bn2_block_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
EPerBlock
>
{},
Number
<
N1
*
BPerBlock
*
N2
>
{},
Number
<
in_e_n1_b_n2_block_desc
.
GetStride
(
I0
)
>
{});
// sanity check
static_assert
(
KPerBlock
%
(
GemmMPerThreadSubC
*
GemmMLevel0Cluster
*
GemmMLevel1Cluster
)
==
0
,
"wrong!"
);
constexpr
index_t
GemmMRepeat
=
KPerBlock
/
(
GemmMPerThreadSubC
*
GemmMLevel0Cluster
*
GemmMLevel1Cluster
);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr
auto
c_k0k2_n1n2_thread_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
GemmMRepeat
*
GemmMPerThreadSubC
>
{},
Number
<
N1
*
N2
>
{});
const
auto
blockwise_gemm
=
BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2
<
BlockSize
,
decltype
(
a_e_k_block_mtx_desc
),
decltype
(
b_e_n1bn2_block_mtx_desc
),
decltype
(
c_k0k2_n1n2_thread_mtx_desc
),
GemmMPerThreadSubC
,
GemmNPerThreadSubC
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmKPerThreadLoop
,
GemmDataPerReadA
,
GemmDataPerReadB
>
{};
// choose GEMM implementation here
const
auto
run_blockwise_gemm
=
[
&
](
auto
...
Xs
)
{
#if 1
return
blockwise_gemm
.
Run
(
Xs
...);
#else
return
blockwise_gemm
.
Run_amd_asm
(
Xs
...);
#endif
};
// LDS allocation for input and weight: be careful of alignment
constexpr
index_t
max_align
=
math
::
lcm
(
InBlockCopyDstDataPerWrite_N2
,
WeiBlockCopyDstDataPerWrite_K
,
GemmDataPerReadA
,
GemmDataPerReadB
);
constexpr
index_t
in_block_space
=
in_e_n1_b_n2_block_desc
.
GetElementSpace
(
Number
<
max_align
>
{});
constexpr
index_t
wei_block_space
=
wei_e_k_block_desc
.
GetElementSpace
(
Number
<
max_align
>
{});
__shared__
Float
p_in_block
[
in_block_space
];
__shared__
Float
p_wei_block
[
wei_block_space
];
// register allocation for output
Float
p_out_thread
[
c_k0k2_n1n2_thread_mtx_desc
.
GetElementSpace
()];
// zero out threadwise output
threadwise_matrix_set_zero
(
c_k0k2_n1n2_thread_mtx_desc
,
p_out_thread
);
// do work
for
(
index_t
e
=
0
;
e
<
E
;
e
+=
EPerBlock
)
{
// marching slicing window
blockwise_in_copy
.
Run
(
p_in_global
,
p_in_block
);
blockwise_wei_copy
.
Run
(
p_wei_global
,
p_wei_block
);
__syncthreads
();
run_blockwise_gemm
(
p_wei_block
,
p_in_block
,
p_out_thread
);
__syncthreads
();
blockwise_in_copy
.
MoveSlicingWindowOnSourceTensor
(
I0
,
Number
<
EPerBlock
>
{},
True
);
blockwise_wei_copy
.
MoveSlicingWindowOnSourceTensor
(
I0
,
Number
<
EPerBlock
>
{},
True
);
}
// copy output: register to global memory
{
constexpr
index_t
K2
=
GemmMPerThreadSubC
;
constexpr
index_t
K1
=
GemmMLevel0Cluster
*
GemmMLevel1Cluster
;
constexpr
index_t
K0
=
K
/
(
K1
*
K2
);
// define tensor descriptor for threadwise copy
// output memory layout descriptor in register
constexpr
auto
out_k0_k1_k2_n1_n0_h_w_n2_thread_mem_desc
=
make_ConstantTensorDescriptor_packed
(
Sequence
<
KPerBlock
/
(
K1
*
K2
),
1
,
K2
,
N1
,
1
,
1
,
1
,
N2
>
{});
// output tensor descriptor in register, src of threadwise copy
constexpr
auto
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
=
out_k0_k1_k2_n1_n0_h_w_n2_thread_mem_desc
.
ReorderGivenNew2Old
(
Sequence
<
4
,
3
,
7
,
0
,
1
,
2
,
5
,
6
>
{});
// output memory layout descriptor in device memory, dst of threadwise copy
constexpr
auto
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
=
out_n_k_h_w_global_desc
.
Fold
(
I1
,
Number
<
K1
>
{},
Number
<
K2
>
{})
.
Fold
(
I0
,
Number
<
N1
>
{},
Number
<
N2
>
{});
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
GetBeginOfThreadMatrixC
(
get_thread_local_1d_id
());
const
index_t
k_thread_data_on_global
=
k_block_data_on_global
+
c_thread_mtx_on_block
.
row
;
const
index_t
b_thread_data_on_global
=
b_block_data_on_global
+
c_thread_mtx_on_block
.
col
/
N2
;
// output merged global tensor descriptor, for calculating origin of thread tensor
// in global memory
constexpr
auto
out_k_n1_b_n2_global_merged_desc
=
make_ConstantMergedTensorDescriptor
(
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
.
Unfold
(
I3
,
I5
),
Sequence
<
3
>
{},
Sequence
<
1
>
{},
Sequence
<
0
,
4
,
5
>
{},
Sequence
<
2
>
{});
// origin of dst in device memory
Float
*
p_out_thread_on_global
=
p_out_global
+
out_k_n1_b_n2_global_merged_desc
.
GetOffsetFromMultiIndex
(
k_thread_data_on_global
,
0
,
b_thread_data_on_global
,
0
);
threadwise_generic_tensor_slice_copy_v1
(
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
,
p_out_thread
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
},
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
,
p_out_thread_on_global
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
},
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
.
GetLengths
(),
arithmetic_sequence_gen
<
0
,
8
,
1
>::
type
{},
Number
<
1
>
{});
}
}
};
}
// namespace ck
#endif
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer.hpp
0 → 100644
View file @
8133713e
#ifndef CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R1_NCHW_KCYX_NKHW_LDS_DOUBLE_BUFFER
#define CK_GRIDWISE_CONVOLUTION_IMPLICIT_GEMM_V4R1_NCHW_KCYX_NKHW_LDS_DOUBLE_BUFFER
#include "common_header.hpp"
#include "ConstantTensorDescriptor.hpp"
#include "ConstantMergedTensorDescriptor.hpp"
#include "ConstantMatrixDescriptor.hpp"
#include "blockwise_generic_tensor_slice_copy.hpp"
#include "blockwise_gemm.hpp"
#include "threadwise_generic_tensor_slice_copy.hpp"
namespace
ck
{
// define B = merge(N0, Ho, Wo)
template
<
index_t
GridSize
,
index_t
BlockSize
,
class
Float
,
class
InGlobalDesc
,
class
WeiGlobalDesc
,
class
OutGlobalDesc
,
class
ConvStrides
,
class
ConvDilations
,
index_t
BPerBlock
,
index_t
KPerBlock
,
index_t
EPerBlock
,
index_t
N1
,
index_t
N2
,
index_t
GemmMPerThreadSubC
,
index_t
GemmNPerThreadSubC
,
index_t
GemmMLevel0Cluster
,
index_t
GemmNLevel0Cluster
,
index_t
GemmMLevel1Cluster
,
index_t
GemmNLevel1Cluster
,
index_t
GemmKPerThreadLoop
,
index_t
GemmDataPerReadA
,
index_t
GemmDataPerReadB
,
class
InBlockCopySubLengths_E_N1_B_N2
,
class
InBlockCopyClusterLengths_E_N1_B_N2
,
class
InBlockCopyThreadClusterArrangeOrder
,
class
InBlockCopySrcAccessOrder
,
class
InBlockCopyDstAccessOrder
,
index_t
InBlockCopySrcDataPerRead_B
,
index_t
InBlockCopyDstDataPerWrite_N2
,
class
WeiBlockCopySubLengths_E_K
,
class
WeiBlockCopyClusterLengths_E_K
,
class
WeiBlockCopyThreadClusterArrangeOrder
,
class
WeiBlockCopySrcAccessOrder
,
class
WeiBlockCopyDstAccessOrder
,
index_t
WeiBlockCopySrcDataPerRead_E
,
index_t
WeiBlockCopyDstDataPerWrite_K
>
struct
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer
{
__device__
void
Run
(
const
Float
*
const
__restrict__
p_in_global
,
const
Float
*
const
__restrict__
p_wei_global
,
Float
*
const
__restrict__
p_out_global
)
const
{
// this is a mess
// TODO: find more elegent way of specifying (or calculating) performance parameters
static_assert
(
N2
==
GemmNPerThreadSubC
,
"wrong!"
);
static_assert
((
N1
*
N2
*
BPerBlock
)
%
(
GemmNPerThreadSubC
*
GemmNLevel0Cluster
*
GemmNLevel1Cluster
)
==
0
,
"wrong!"
);
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
I5
=
Number
<
5
>
{};
constexpr
auto
True
=
integral_constant
<
bool
,
true
>
{};
constexpr
auto
in_n_c_h_w_global_desc
=
InGlobalDesc
{};
constexpr
auto
wei_k_c_y_x_global_desc
=
WeiGlobalDesc
{};
constexpr
auto
out_n_k_h_w_global_desc
=
OutGlobalDesc
{};
constexpr
index_t
N
=
in_n_c_h_w_global_desc
.
GetLength
(
I0
);
constexpr
index_t
C
=
in_n_c_h_w_global_desc
.
GetLength
(
I1
);
constexpr
index_t
K
=
out_n_k_h_w_global_desc
.
GetLength
(
I1
);
constexpr
index_t
Ho
=
out_n_k_h_w_global_desc
.
GetLength
(
I2
);
constexpr
index_t
Wo
=
out_n_k_h_w_global_desc
.
GetLength
(
I3
);
constexpr
index_t
Y
=
wei_k_c_y_x_global_desc
.
GetLength
(
I2
);
constexpr
index_t
X
=
wei_k_c_y_x_global_desc
.
GetLength
(
I3
);
constexpr
index_t
ConvStrideH
=
ConvStrides
{}[
0
];
constexpr
index_t
ConvStrideW
=
ConvStrides
{}[
1
];
constexpr
index_t
ConvDilationH
=
ConvDilations
{}[
0
];
constexpr
index_t
ConvDilationW
=
ConvDilations
{}[
1
];
static_assert
(
N
%
(
N1
*
N2
)
==
0
,
"wrong! cannot divice N evenly among thread"
);
constexpr
index_t
N0
=
N
/
(
N1
*
N2
);
constexpr
index_t
B
=
N0
*
Ho
*
Wo
;
constexpr
index_t
E
=
C
*
Y
*
X
;
// sanity-check for vectorized memory load
static_assert
(
ConvStrideW
==
1
||
InBlockCopySrcDataPerRead_B
==
1
,
"wrong! global vector load of input tensor is wrong"
);
static_assert
((
X
==
1
||
ConvDilationW
%
InBlockCopySrcDataPerRead_B
==
0
),
"wrong! aligment requirement for vectorized global load of input tensor will "
"be violated"
);
// divide block work by [K, B]
static_assert
(
K
%
KPerBlock
==
0
&&
B
%
BPerBlock
==
0
&&
E
%
(
2
*
EPerBlock
)
==
0
,
"wrong! cannot divide work evenly among block"
);
constexpr
index_t
KBlockWork
=
K
/
KPerBlock
;
constexpr
index_t
BBlockWork
=
B
/
BPerBlock
;
constexpr
auto
block_work_desc
=
make_ConstantTensorDescriptor_packed
(
Sequence
<
KBlockWork
,
BBlockWork
>
{});
const
auto
block_work_multi_id
=
block_work_desc
.
GetMultiIndexFrom1dIndex
(
get_block_1d_id
());
const
index_t
k_block_data_on_global
=
block_work_multi_id
[
0
]
*
KPerBlock
;
const
index_t
b_block_data_on_global
=
block_work_multi_id
[
1
]
*
BPerBlock
;
// input tensor
// tensor descriptor in device memory [N0, N1, N2, Ho, Wo]
constexpr
auto
in_n0_n1_n2_h_w_global_desc
=
in_n_c_h_w_global_desc
.
StridedSlice
(
I2
,
Number
<
Ho
>
{},
Number
<
ConvStrideH
>
{})
.
StridedSlice
(
I3
,
Number
<
Wo
>
{},
Number
<
ConvStrideW
>
{})
.
Fold
(
I0
,
Number
<
N1
>
{},
Number
<
N2
>
{})
.
Extract
(
Sequence
<
0
,
1
,
2
,
4
,
5
>
{});
// batch descritpor for device memory
constexpr
auto
in_c_y_x_global_desc
=
in_n_c_h_w_global_desc
.
StridedSlice
(
I2
,
Number
<
Y
>
{},
Number
<
ConvDilationH
>
{})
.
StridedSlice
(
I3
,
Number
<
X
>
{},
Number
<
ConvDilationW
>
{})
.
Extract
(
Sequence
<
1
,
2
,
3
>
{});
// merged tensor descriptor in device memory [E, N1, B, N2], src of blockwise copy
constexpr
auto
in_e_n1_b_n2_global_merged_desc
=
make_ConstantMergedTensorDescriptor
(
in_c_y_x_global_desc
.
Embed
(
in_n0_n1_n2_h_w_global_desc
),
Sequence
<
0
,
1
,
2
>
{},
Sequence
<
4
>
{},
Sequence
<
3
,
6
,
7
>
{},
Sequence
<
5
>
{});
// memory layout descriptor in LDS [E, N1, B, N2], dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
in_e_n1_b_n2_block_desc
=
make_ConstantTensorDescriptor_aligned
(
Sequence
<
EPerBlock
,
N1
,
BPerBlock
,
N2
>
{},
Number
<
InBlockCopyDstDataPerWrite_N2
>
{});
// this check is ad-hoc
// TODO: need to properly implement tensor descriptor with multiple alignment
// requirements
static_assert
(
in_e_n1_b_n2_block_desc
.
GetStride
(
I1
)
%
GemmDataPerReadB
==
0
,
"GemmDataPerReadB alignment requirement is not satisfied"
);
// input blockwise copy
// slice a merged tensor, reorder and copy to a normal tensor
// this copy operator already has blockwise offset built-in
auto
blockwise_in_copy
=
BlockwiseGenericTensorSliceCopy_v1
<
BlockSize
,
Float
,
decltype
(
in_e_n1_b_n2_global_merged_desc
),
decltype
(
in_e_n1_b_n2_block_desc
),
decltype
(
in_e_n1_b_n2_block_desc
.
GetLengths
()),
InBlockCopySubLengths_E_N1_B_N2
,
InBlockCopyClusterLengths_E_N1_B_N2
,
InBlockCopyThreadClusterArrangeOrder
,
InBlockCopySrcAccessOrder
,
InBlockCopyDstAccessOrder
,
InBlockCopySrcDataPerRead_B
,
InBlockCopyDstDataPerWrite_N2
>
(
{
0
,
0
,
b_block_data_on_global
,
0
},
{
0
,
0
,
0
,
0
});
// weight tensor
// tensor descriptor in device memory, src of blockwise copy
constexpr
auto
wei_e_k_global_desc
=
wei_k_c_y_x_global_desc
.
Unfold
(
I1
,
I3
).
ReorderGivenNew2Old
(
Sequence
<
1
,
0
>
{});
// tensor descriptor in LDS, dst of blockwise copy
// be careful of LDS alignment
constexpr
auto
wei_e_k_block_desc
=
make_ConstantTensorDescriptor_aligned
(
Sequence
<
EPerBlock
,
KPerBlock
>
{},
Number
<
math
::
lcm
(
WeiBlockCopyDstDataPerWrite_K
,
GemmDataPerReadA
)
>
{});
// operator for blockwise copy of weight into LDS
// slice a tensor, and copy it into another tensor
// this copy operator already have blockwise offset built-in
auto
blockwise_wei_copy
=
BlockwiseGenericTensorSliceCopy_v1
<
BlockSize
,
Float
,
decltype
(
wei_e_k_global_desc
),
decltype
(
wei_e_k_block_desc
),
decltype
(
wei_e_k_block_desc
.
GetLengths
()),
WeiBlockCopySubLengths_E_K
,
WeiBlockCopyClusterLengths_E_K
,
WeiBlockCopyThreadClusterArrangeOrder
,
WeiBlockCopySrcAccessOrder
,
WeiBlockCopyDstAccessOrder
,
WeiBlockCopySrcDataPerRead_E
,
WeiBlockCopyDstDataPerWrite_K
>
(
{
0
,
k_block_data_on_global
},
{
0
,
0
});
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[EPerBlock, KPerBlock] is in LDS
// b_mtx[EPerBlocl, N1 * BPerBlock * N2] is in LDS
// c_mtx[KPerBlock, N1 * BPerBlock * N2] is distributed among threads, and saved in
// register
constexpr
auto
a_e_k_block_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
EPerBlock
>
{},
Number
<
KPerBlock
>
{},
Number
<
wei_e_k_block_desc
.
GetStride
(
I0
)
>
{});
constexpr
auto
b_e_n1bn2_block_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
EPerBlock
>
{},
Number
<
N1
*
BPerBlock
*
N2
>
{},
Number
<
in_e_n1_b_n2_block_desc
.
GetStride
(
I0
)
>
{});
// sanity check
static_assert
(
KPerBlock
%
(
GemmMPerThreadSubC
*
GemmMLevel0Cluster
*
GemmMLevel1Cluster
)
==
0
,
"wrong!"
);
constexpr
index_t
GemmMRepeat
=
KPerBlock
/
(
GemmMPerThreadSubC
*
GemmMLevel0Cluster
*
GemmMLevel1Cluster
);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr
auto
c_k0k2_n1n2_thread_mtx_desc
=
make_ConstantMatrixDescriptor
(
Number
<
GemmMRepeat
*
GemmMPerThreadSubC
>
{},
Number
<
N1
*
N2
>
{});
const
auto
blockwise_gemm
=
BlockwiseGemmBlockABlockBThreadCTransANormalBNormalC_v2
<
BlockSize
,
decltype
(
a_e_k_block_mtx_desc
),
decltype
(
b_e_n1bn2_block_mtx_desc
),
decltype
(
c_k0k2_n1n2_thread_mtx_desc
),
GemmMPerThreadSubC
,
GemmNPerThreadSubC
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmKPerThreadLoop
,
GemmDataPerReadA
,
GemmDataPerReadB
>
{};
// LDS allocation for input and weight: be careful of alignment
constexpr
index_t
max_align
=
math
::
lcm
(
InBlockCopyDstDataPerWrite_N2
,
WeiBlockCopyDstDataPerWrite_K
,
GemmDataPerReadA
,
GemmDataPerReadB
);
constexpr
index_t
in_block_space
=
math
::
integer_least_multiple
(
in_e_n1_b_n2_block_desc
.
GetElementSpace
(),
max_align
);
constexpr
index_t
wei_block_space
=
math
::
integer_least_multiple
(
wei_e_k_block_desc
.
GetElementSpace
(),
max_align
);
__shared__
Float
p_in_block_double
[
2
*
in_block_space
];
__shared__
Float
p_wei_block_double
[
2
*
wei_block_space
];
// register allocation for output
Float
p_out_thread
[
c_k0k2_n1n2_thread_mtx_desc
.
GetElementSpace
()];
// zero out threadwise output
threadwise_matrix_set_zero
(
c_k0k2_n1n2_thread_mtx_desc
,
p_out_thread
);
const
Float
*
p_wei_block_on_global
=
p_wei_global
;
// LDS double buffer: preload data into LDS
{
blockwise_in_copy
.
Run
(
p_in_global
,
p_in_block_double
);
blockwise_wei_copy
.
Run
(
p_wei_global
,
p_wei_block_double
);
}
// LDS double buffer: main body
for
(
index_t
e_block_data_begin
=
0
;
e_block_data_begin
+
2
*
EPerBlock
<
E
;
e_block_data_begin
+=
2
*
EPerBlock
)
{
#pragma unroll
for
(
index_t
iloop
=
0
;
iloop
<
2
;
++
iloop
)
{
const
bool
even_loop
=
(
iloop
%
2
==
0
);
Float
*
p_in_block_now
=
even_loop
?
p_in_block_double
:
p_in_block_double
+
in_block_space
;
Float
*
p_wei_block_now
=
even_loop
?
p_wei_block_double
:
p_wei_block_double
+
wei_block_space
;
Float
*
p_in_block_next
=
even_loop
?
p_in_block_double
+
in_block_space
:
p_in_block_double
;
Float
*
p_wei_block_next
=
even_loop
?
p_wei_block_double
+
wei_block_space
:
p_wei_block_double
;
Float
p_in_register_clipboard
[
blockwise_in_copy
.
GetRegisterClipboardSize
()];
Float
p_wei_register_clipboard
[
blockwise_wei_copy
.
GetRegisterClipboardSize
()];
blockwise_in_copy
.
MoveSlicingWindowOnSourceTensor
(
I0
,
Number
<
EPerBlock
>
{},
True
);
p_wei_block_on_global
+=
EPerBlock
*
wei_e_k_global_desc
.
GetStride
(
I0
);
__syncthreads
();
// LDS doubel buffer: load next data from device mem
blockwise_in_copy
.
RunLoadRegisterClipboard
(
p_in_global
,
p_in_register_clipboard
);
blockwise_wei_copy
.
RunLoadRegisterClipboard
(
p_wei_block_on_global
,
p_wei_register_clipboard
);
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
p_wei_block_now
,
p_in_block_now
,
p_out_thread
);
// LDS double buffer: store next data to LDS
blockwise_in_copy
.
RunStoreRegisterClipboard
(
p_in_register_clipboard
,
p_in_block_next
);
blockwise_wei_copy
.
RunStoreRegisterClipboard
(
p_wei_register_clipboard
,
p_wei_block_next
);
}
}
// LDS double buffer: tail
{
Float
p_in_register_clipboard
[
blockwise_in_copy
.
GetRegisterClipboardSize
()];
Float
p_wei_register_clipboard
[
blockwise_wei_copy
.
GetRegisterClipboardSize
()];
// even iteration
blockwise_in_copy
.
MoveSlicingWindowOnSourceTensor
(
I0
,
Number
<
EPerBlock
>
{},
True
);
p_wei_block_on_global
+=
EPerBlock
*
wei_e_k_global_desc
.
GetStride
(
I0
);
__syncthreads
();
// LDS doubel buffer: load next data from device mem
blockwise_in_copy
.
RunLoadRegisterClipboard
(
p_in_global
,
p_in_register_clipboard
);
blockwise_wei_copy
.
RunLoadRegisterClipboard
(
p_wei_block_on_global
,
p_wei_register_clipboard
);
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
p_wei_block_double
,
p_in_block_double
,
p_out_thread
);
// LDS double buffer: store next data to LDS
blockwise_in_copy
.
RunStoreRegisterClipboard
(
p_in_register_clipboard
,
p_in_block_double
+
in_block_space
);
blockwise_wei_copy
.
RunStoreRegisterClipboard
(
p_wei_register_clipboard
,
p_wei_block_double
+
wei_block_space
);
// odd iteration
__syncthreads
();
// LDS double buffer: GEMM on current data
blockwise_gemm
.
Run
(
p_wei_block_double
+
wei_block_space
,
p_in_block_double
+
in_block_space
,
p_out_thread
);
}
// copy output: register to global memory
{
constexpr
index_t
K2
=
GemmMPerThreadSubC
;
constexpr
index_t
K1
=
GemmMLevel0Cluster
*
GemmMLevel1Cluster
;
// define tensor descriptor for threadwise copy
// output memory layout descriptor in register
constexpr
auto
out_k0_k1_k2_n1_n0_h_w_n2_thread_mem_desc
=
make_ConstantTensorDescriptor_packed
(
Sequence
<
KPerBlock
/
(
K1
*
K2
),
1
,
K2
,
N1
,
1
,
1
,
1
,
N2
>
{});
// output tensor descriptor in register, src of threadwise copy
constexpr
auto
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
=
out_k0_k1_k2_n1_n0_h_w_n2_thread_mem_desc
.
ReorderGivenNew2Old
(
Sequence
<
4
,
3
,
7
,
0
,
1
,
2
,
5
,
6
>
{});
// output memory layout descriptor in device memory, dst of threadwise copy
constexpr
auto
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
=
out_n_k_h_w_global_desc
.
Fold
(
I1
,
Number
<
K1
>
{},
Number
<
K2
>
{})
.
Fold
(
I0
,
Number
<
N1
>
{},
Number
<
N2
>
{});
// calculate origin of thread output tensor on global memory
// blockwise GEMM c matrix starting index
const
auto
c_thread_mtx_on_block
=
blockwise_gemm
.
GetBeginOfThreadMatrixC
(
get_thread_local_1d_id
());
const
index_t
k_thread_data_on_global
=
k_block_data_on_global
+
c_thread_mtx_on_block
.
row
;
const
index_t
b_thread_data_on_global
=
b_block_data_on_global
+
c_thread_mtx_on_block
.
col
/
N2
;
// output merged global tensor descriptor, for calculating origin of thread tensor
// in global memory
constexpr
auto
out_k_n1_b_n2_global_merged_desc
=
make_ConstantMergedTensorDescriptor
(
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
.
Unfold
(
I3
,
I5
),
Sequence
<
3
>
{},
Sequence
<
1
>
{},
Sequence
<
0
,
4
,
5
>
{},
Sequence
<
2
>
{});
// origin of dst in device memory
Float
*
p_out_thread_on_global
=
p_out_global
+
out_k_n1_b_n2_global_merged_desc
.
GetOffsetFromMultiIndex
(
k_thread_data_on_global
,
0
,
b_thread_data_on_global
,
0
);
threadwise_generic_tensor_slice_copy_v1
(
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
,
p_out_thread
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
},
out_n0_n1_n2_k0_k1_k2_h_w_global_mem_desc
,
p_out_thread_on_global
,
{
0
,
0
,
0
,
0
,
0
,
0
,
0
,
0
},
out_n0_n1_n2_k0_k1_k2_h_w_thread_desc
.
GetLengths
(),
arithmetic_sequence_gen
<
0
,
8
,
1
>::
type
{},
Number
<
1
>
{});
}
}
};
}
// namespace ck
#endif
composable_kernel/include/kernel_algorithm/gridwise_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw_lds_double_buffer.hpp
0 → 100644
View file @
8133713e
This diff is collapsed.
Click to expand it.
driver/include/device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp
0 → 100644
View file @
8133713e
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "tensor.hpp"
#include "gridwise_convolution_kernel_wrapper.hpp"
#include "gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw.hpp"
#include "gridwise_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer.hpp"
using
namespace
ck
;
template
<
class
T
,
class
InDesc
,
class
WeiDesc
,
class
OutDesc
,
class
ConvStrides
,
class
ConvDilations
>
void
device_convolution_implicit_gemm_v4r1_nchw_kcyx_nkhw
(
InDesc
,
const
Tensor
<
T
>&
in_nchw
,
WeiDesc
,
const
Tensor
<
T
>&
wei_kcyx
,
OutDesc
,
Tensor
<
T
>&
out_nkhw
,
ConvStrides
,
ConvDilations
,
index_t
nrepeat
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
in_nchw_desc
=
InDesc
{};
constexpr
auto
wei_kcyx_desc
=
WeiDesc
{};
constexpr
auto
out_nkhw_desc
=
OutDesc
{};
constexpr
index_t
Hi
=
in_nchw_desc
.
GetLength
(
I2
);
constexpr
index_t
Wi
=
in_nchw_desc
.
GetLength
(
I3
);
constexpr
index_t
N
=
out_nkhw_desc
.
GetLength
(
I0
);
constexpr
index_t
Ho
=
out_nkhw_desc
.
GetLength
(
I2
);
constexpr
index_t
Wo
=
out_nkhw_desc
.
GetLength
(
I3
);
constexpr
index_t
K
=
wei_kcyx_desc
.
GetLength
(
I0
);
constexpr
index_t
C
=
wei_kcyx_desc
.
GetLength
(
I1
);
constexpr
index_t
Y
=
wei_kcyx_desc
.
GetLength
(
I2
);
constexpr
index_t
X
=
wei_kcyx_desc
.
GetLength
(
I3
);
std
::
size_t
data_sz
=
sizeof
(
T
);
DeviceMem
in_nchw_device_buf
(
data_sz
*
in_nchw
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_kcyx_device_buf
(
data_sz
*
wei_kcyx
.
mDesc
.
GetElementSpace
());
DeviceMem
out_nkhw_device_buf
(
data_sz
*
out_nkhw
.
mDesc
.
GetElementSpace
());
in_nchw_device_buf
.
ToDevice
(
in_nchw
.
mData
.
data
());
wei_kcyx_device_buf
.
ToDevice
(
wei_kcyx
.
mData
.
data
());
out_nkhw_device_buf
.
ToDevice
(
out_nkhw
.
mData
.
data
());
constexpr
index_t
N1
=
2
;
constexpr
index_t
N2
=
4
;
constexpr
index_t
B
=
(
N
*
Ho
*
Wo
)
/
(
N1
*
N2
);
#if 1
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
BPerBlock
=
16
;
constexpr
index_t
KPerBlock
=
128
;
constexpr
index_t
EPerBlock
=
8
;
constexpr
index_t
GemmMPerThreadSubC
=
4
;
constexpr
index_t
GemmNPerThreadSubC
=
4
;
constexpr
index_t
GemmMLevel0Cluster
=
4
;
constexpr
index_t
GemmNLevel0Cluster
=
4
;
constexpr
index_t
GemmMLevel1Cluster
=
4
;
constexpr
index_t
GemmNLevel1Cluster
=
4
;
constexpr
index_t
GemmKPerThreadLoop
=
1
;
constexpr
index_t
GemmDataPerReadA
=
4
;
constexpr
index_t
GemmDataPerReadB
=
4
;
using
InBlockCopySubLengths_E_N1_B_N2
=
Sequence
<
1
,
1
,
1
,
4
>
;
using
InBlockCopyClusterLengths_E_N1_B_N2
=
Sequence
<
8
,
2
,
16
,
1
>
;
using
InBlockCopyThreadClusterArrangeOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopySrcAccessOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
,
2
,
3
>
;
// [E, N1, B, N2]
constexpr
index_t
InBlockCopySrcDataPerRead_B
=
1
;
constexpr
index_t
InBlockCopyDstDataPerWrite_N2
=
4
;
using
WeiBlockCopySubLengths_E_K
=
Sequence
<
4
,
1
>
;
using
WeiBlockCopyClusterLengths_E_K
=
Sequence
<
2
,
128
>
;
using
WeiBlockCopyThreadClusterArrangeOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopySrcAccessOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, K]
constexpr
index_t
WeiBlockCopySrcDataPerRead_E
=
4
;
constexpr
index_t
WeiBlockCopyDstDataPerWrite_K
=
1
;
#elif 0
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
BPerBlock
=
16
;
constexpr
index_t
KPerBlock
=
128
;
constexpr
index_t
EPerBlock
=
8
;
constexpr
index_t
GemmMPerThreadSubC
=
4
;
constexpr
index_t
GemmNPerThreadSubC
=
4
;
constexpr
index_t
GemmMLevel0Cluster
=
4
;
constexpr
index_t
GemmNLevel0Cluster
=
4
;
constexpr
index_t
GemmMLevel1Cluster
=
4
;
constexpr
index_t
GemmNLevel1Cluster
=
4
;
constexpr
index_t
GemmKPerThreadLoop
=
1
;
constexpr
index_t
GemmDataPerReadA
=
4
;
constexpr
index_t
GemmDataPerReadB
=
4
;
using
InBlockCopySubLengths_E_N1_B_N2
=
Sequence
<
1
,
1
,
4
,
1
>
;
using
InBlockCopyClusterLengths_E_N1_B_N2
=
Sequence
<
8
,
2
,
4
,
4
>
;
using
InBlockCopyThreadClusterArrangeOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopySrcAccessOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
,
2
,
3
>
;
// [E, N1, B, N2]
constexpr
index_t
InBlockCopySrcDataPerRead_B
=
4
;
constexpr
index_t
InBlockCopyDstDataPerWrite_N2
=
1
;
using
WeiBlockCopySubLengths_E_K
=
Sequence
<
4
,
1
>
;
using
WeiBlockCopyClusterLengths_E_K
=
Sequence
<
2
,
128
>
;
using
WeiBlockCopyThreadClusterArrangeOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopySrcAccessOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, K]
constexpr
index_t
WeiBlockCopySrcDataPerRead_E
=
4
;
constexpr
index_t
WeiBlockCopyDstDataPerWrite_K
=
1
;
#elif 1
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
BPerBlock
=
16
;
constexpr
index_t
KPerBlock
=
128
;
constexpr
index_t
EPerBlock
=
8
;
constexpr
index_t
GemmMPerThreadSubC
=
4
;
constexpr
index_t
GemmNPerThreadSubC
=
4
;
constexpr
index_t
GemmMLevel0Cluster
=
4
;
constexpr
index_t
GemmNLevel0Cluster
=
4
;
constexpr
index_t
GemmMLevel1Cluster
=
4
;
constexpr
index_t
GemmNLevel1Cluster
=
4
;
constexpr
index_t
GemmKPerThreadLoop
=
1
;
constexpr
index_t
GemmDataPerReadA
=
4
;
constexpr
index_t
GemmDataPerReadB
=
4
;
using
InBlockCopySubLengths_E_N1_B_N2
=
Sequence
<
1
,
1
,
2
,
2
>
;
using
InBlockCopyClusterLengths_E_N1_B_N2
=
Sequence
<
8
,
2
,
8
,
2
>
;
using
InBlockCopyThreadClusterArrangeOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopySrcAccessOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
,
2
,
3
>
;
// [E, N1, B, N2]
constexpr
index_t
InBlockCopySrcDataPerRead_B
=
2
;
constexpr
index_t
InBlockCopyDstDataPerWrite_N2
=
2
;
using
WeiBlockCopySubLengths_E_K
=
Sequence
<
4
,
1
>
;
using
WeiBlockCopyClusterLengths_E_K
=
Sequence
<
2
,
128
>
;
using
WeiBlockCopyThreadClusterArrangeOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopySrcAccessOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, K]
constexpr
index_t
WeiBlockCopySrcDataPerRead_E
=
4
;
constexpr
index_t
WeiBlockCopyDstDataPerWrite_K
=
1
;
#endif
constexpr
index_t
GridSize
=
((
B
+
BPerBlock
-
1
)
/
BPerBlock
)
*
((
K
+
KPerBlock
-
1
)
/
KPerBlock
);
printf
(
"%s: BlockSize %u, GridSize %u
\n
"
,
__func__
,
BlockSize
,
GridSize
);
for
(
index_t
i
=
0
;
i
<
nrepeat
;
++
i
)
{
constexpr
auto
gridwise_conv
=
#if 0
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw
#else
GridwiseConvolutionImplicitGemm_v4r1_nchw_kcyx_nkhw_lds_double_buffer
#endif
<
GridSize
,
BlockSize
,
T
,
decltype
(
in_nchw_desc
),
decltype
(
wei_kcyx_desc
),
decltype
(
out_nkhw_desc
),
ConvStrides
,
ConvDilations
,
BPerBlock
,
KPerBlock
,
EPerBlock
,
N1
,
N2
,
GemmMPerThreadSubC
,
GemmNPerThreadSubC
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmKPerThreadLoop
,
GemmDataPerReadA
,
GemmDataPerReadB
,
InBlockCopySubLengths_E_N1_B_N2
,
InBlockCopyClusterLengths_E_N1_B_N2
,
InBlockCopyThreadClusterArrangeOrder
,
InBlockCopySrcAccessOrder
,
InBlockCopyDstAccessOrder
,
InBlockCopySrcDataPerRead_B
,
InBlockCopyDstDataPerWrite_N2
,
WeiBlockCopySubLengths_E_K
,
WeiBlockCopyClusterLengths_E_K
,
WeiBlockCopyThreadClusterArrangeOrder
,
WeiBlockCopySrcAccessOrder
,
WeiBlockCopyDstAccessOrder
,
WeiBlockCopySrcDataPerRead_E
,
WeiBlockCopyDstDataPerWrite_K
>
{};
float
time
=
launch_kernel
(
run_gridwise_convolution_kernel
<
decltype
(
gridwise_conv
),
T
>
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
static_cast
<
T
*>
(
in_nchw_device_buf
.
GetDeviceBuffer
()),
static_cast
<
T
*>
(
wei_kcyx_device_buf
.
GetDeviceBuffer
()),
static_cast
<
T
*>
(
out_nkhw_device_buf
.
GetDeviceBuffer
()));
printf
(
"Elapsed time : %f ms, %f TFlop/s
\n
"
,
time
,
(
float
)
calculate_convolution_flops
(
InDesc
{},
WeiDesc
{},
OutDesc
{})
/
(
std
::
size_t
(
1000
)
*
1000
*
1000
)
/
time
);
usleep
(
std
::
min
(
time
*
1000
,
float
(
10000
)));
}
out_nkhw_device_buf
.
FromDevice
(
out_nkhw
.
mData
.
data
());
}
driver/include/device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw.hpp
0 → 100644
View file @
8133713e
#pragma once
#include <unistd.h>
#include "device.hpp"
#include "tensor.hpp"
#include "gridwise_convolution_kernel_wrapper.hpp"
#include "gridwise_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw_lds_double_buffer.hpp"
using
namespace
ck
;
template
<
class
T
,
class
InDesc
,
class
WeiDesc
,
class
OutDesc
,
class
ConvStrides
,
class
ConvDilations
>
void
device_convolution_implicit_gemm_v4r2_nchw_kcyx_nkhw
(
InDesc
,
const
Tensor
<
T
>&
in_nchw
,
WeiDesc
,
const
Tensor
<
T
>&
wei_kcyx
,
OutDesc
,
Tensor
<
T
>&
out_nkhw
,
ConvStrides
,
ConvDilations
,
index_t
nrepeat
)
{
constexpr
auto
I0
=
Number
<
0
>
{};
constexpr
auto
I1
=
Number
<
1
>
{};
constexpr
auto
I2
=
Number
<
2
>
{};
constexpr
auto
I3
=
Number
<
3
>
{};
constexpr
auto
in_nchw_desc
=
InDesc
{};
constexpr
auto
wei_kcyx_desc
=
WeiDesc
{};
constexpr
auto
out_nkhw_desc
=
OutDesc
{};
constexpr
index_t
Hi
=
in_nchw_desc
.
GetLength
(
I2
);
constexpr
index_t
Wi
=
in_nchw_desc
.
GetLength
(
I3
);
constexpr
index_t
N
=
out_nkhw_desc
.
GetLength
(
I0
);
constexpr
index_t
Ho
=
out_nkhw_desc
.
GetLength
(
I2
);
constexpr
index_t
Wo
=
out_nkhw_desc
.
GetLength
(
I3
);
constexpr
index_t
K
=
wei_kcyx_desc
.
GetLength
(
I0
);
constexpr
index_t
C
=
wei_kcyx_desc
.
GetLength
(
I1
);
constexpr
index_t
Y
=
wei_kcyx_desc
.
GetLength
(
I2
);
constexpr
index_t
X
=
wei_kcyx_desc
.
GetLength
(
I3
);
std
::
size_t
data_sz
=
sizeof
(
T
);
DeviceMem
in_nchw_device_buf
(
data_sz
*
in_nchw
.
mDesc
.
GetElementSpace
());
DeviceMem
wei_kcyx_device_buf
(
data_sz
*
wei_kcyx
.
mDesc
.
GetElementSpace
());
DeviceMem
out_nkhw_device_buf
(
data_sz
*
out_nkhw
.
mDesc
.
GetElementSpace
());
in_nchw_device_buf
.
ToDevice
(
in_nchw
.
mData
.
data
());
wei_kcyx_device_buf
.
ToDevice
(
wei_kcyx
.
mData
.
data
());
out_nkhw_device_buf
.
ToDevice
(
out_nkhw
.
mData
.
data
());
constexpr
index_t
N1
=
2
;
constexpr
index_t
N2
=
4
;
constexpr
index_t
B
=
(
N
*
Ho
*
Wo
)
/
(
N1
*
N2
);
#if 1
constexpr
index_t
BlockSize
=
256
;
constexpr
index_t
BPerBlock
=
16
;
constexpr
index_t
KPerBlock
=
128
;
constexpr
index_t
EPerBlock
=
8
;
constexpr
index_t
GemmMPerThreadSubC
=
4
;
constexpr
index_t
GemmNPerThreadSubC
=
4
;
constexpr
index_t
GemmMLevel0Cluster
=
4
;
constexpr
index_t
GemmNLevel0Cluster
=
4
;
constexpr
index_t
GemmMLevel1Cluster
=
4
;
constexpr
index_t
GemmNLevel1Cluster
=
4
;
constexpr
index_t
GemmKPerThreadLoop
=
1
;
constexpr
index_t
GemmDataPerReadA
=
4
;
constexpr
index_t
GemmDataPerReadB
=
4
;
using
InBlockCopySubLengths_E_N1_B_N2
=
Sequence
<
1
,
1
,
1
,
4
>
;
using
InBlockCopyClusterLengths_E_N1_B_N2
=
Sequence
<
8
,
2
,
16
,
1
>
;
using
InBlockCopyThreadClusterArrangeOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopySrcAccessOrder
=
Sequence
<
0
,
1
,
3
,
2
>
;
// [E, N1, N2, B]
using
InBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
,
2
,
3
>
;
// [E, N1, B, N2]
constexpr
index_t
InBlockCopySrcDataPerRead_B
=
1
;
constexpr
index_t
InBlockCopyDstDataPerWrite_N2
=
4
;
using
WeiBlockCopySubLengths_E_K
=
Sequence
<
4
,
1
>
;
using
WeiBlockCopyClusterLengths_E_K
=
Sequence
<
2
,
128
>
;
using
WeiBlockCopyThreadClusterArrangeOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopySrcAccessOrder
=
Sequence
<
1
,
0
>
;
// [K, E]
using
WeiBlockCopyDstAccessOrder
=
Sequence
<
0
,
1
>
;
// [E, K]
constexpr
index_t
WeiBlockCopySrcDataPerRead_E
=
4
;
constexpr
index_t
WeiBlockCopyDstDataPerWrite_K
=
1
;
#endif
constexpr
index_t
GridSize
=
((
B
+
BPerBlock
-
1
)
/
BPerBlock
)
*
((
K
+
KPerBlock
-
1
)
/
KPerBlock
);
printf
(
"%s: BlockSize %u, GridSize %u
\n
"
,
__func__
,
BlockSize
,
GridSize
);
for
(
index_t
i
=
0
;
i
<
nrepeat
;
++
i
)
{
constexpr
auto
gridwise_conv
=
GridwiseConvolutionImplicitGemm_v4r2_nchw_kcyx_nkhw_lds_double_buffer
<
GridSize
,
BlockSize
,
T
,
decltype
(
in_nchw_desc
),
decltype
(
wei_kcyx_desc
),
decltype
(
out_nkhw_desc
),
ConvStrides
,
ConvDilations
,
BPerBlock
,
KPerBlock
,
EPerBlock
,
N1
,
N2
,
GemmMPerThreadSubC
,
GemmNPerThreadSubC
,
GemmMLevel0Cluster
,
GemmNLevel0Cluster
,
GemmMLevel1Cluster
,
GemmNLevel1Cluster
,
GemmKPerThreadLoop
,
GemmDataPerReadA
,
GemmDataPerReadB
,
InBlockCopySubLengths_E_N1_B_N2
,
InBlockCopyClusterLengths_E_N1_B_N2
,
InBlockCopyThreadClusterArrangeOrder
,
InBlockCopySrcAccessOrder
,
InBlockCopyDstAccessOrder
,
InBlockCopySrcDataPerRead_B
,
InBlockCopyDstDataPerWrite_N2
,
WeiBlockCopySubLengths_E_K
,
WeiBlockCopyClusterLengths_E_K
,
WeiBlockCopyThreadClusterArrangeOrder
,
WeiBlockCopySrcAccessOrder
,
WeiBlockCopyDstAccessOrder
,
WeiBlockCopySrcDataPerRead_E
,
WeiBlockCopyDstDataPerWrite_K
>
{};
float
time
=
launch_kernel
(
run_gridwise_convolution_kernel
<
decltype
(
gridwise_conv
),
T
>
,
dim3
(
GridSize
),
dim3
(
BlockSize
),
0
,
static_cast
<
T
*>
(
in_nchw_device_buf
.
GetDeviceBuffer
()),
static_cast
<
T
*>
(
wei_kcyx_device_buf
.
GetDeviceBuffer
()),
static_cast
<
T
*>
(
out_nkhw_device_buf
.
GetDeviceBuffer
()));
printf
(
"Elapsed time : %f ms, %f TFlop/s
\n
"
,
time
,
(
float
)
calculate_convolution_flops
(
InDesc
{},
WeiDesc
{},
OutDesc
{})
/
(
std
::
size_t
(
1000
)
*
1000
*
1000
)
/
time
);
usleep
(
std
::
min
(
time
*
1000
,
float
(
10000
)));
}
out_nkhw_device_buf
.
FromDevice
(
out_nkhw
.
mData
.
data
());
}
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment