Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7e7640ce
Commit
7e7640ce
authored
Mar 31, 2022
by
carlushuang
Browse files
Merge remote-tracking branch 'origin/develop' into cpu_avx2
parents
cc8df39e
f015c776
Changes
54
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1280 additions
and
71 deletions
+1280
-71
example/01_gemm/gemm_xdl_bf16.cpp
example/01_gemm/gemm_xdl_bf16.cpp
+0
-2
example/01_gemm/gemm_xdl_fp16.cpp
example/01_gemm/gemm_xdl_fp16.cpp
+0
-2
example/01_gemm/gemm_xdl_int8.cpp
example/01_gemm/gemm_xdl_int8.cpp
+0
-2
example/12_reduce/reduce_blockwise.cpp
example/12_reduce/reduce_blockwise.cpp
+1
-1
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
+0
-3
example/18_batched_gemm_reduce/CMakeLists.txt
example/18_batched_gemm_reduce/CMakeLists.txt
+2
-0
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
...e/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
+281
-0
example/CMakeLists.txt
example/CMakeLists.txt
+1
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
...on/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
+940
-0
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
...k/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
+33
-41
include/ck/tensor_operation/gpu/device/device_gemm.hpp
include/ck/tensor_operation/gpu/device/device_gemm.hpp
+2
-0
include/ck/tensor_operation/gpu/device/device_gemm_reduce.hpp
...ude/ck/tensor_operation/gpu/device/device_gemm_reduce.hpp
+2
-1
include/ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp
..._operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp
+2
-1
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
+1
-3
library/include/ck/library/host_tensor/host_reduction.hpp
library/include/ck/library/host_tensor/host_reduction.hpp
+2
-2
library/include/ck/library/host_tensor/host_tensor.hpp
library/include/ck/library/host_tensor/host_tensor.hpp
+7
-6
library/include/ck/library/host_tensor/host_tensor_generator.hpp
.../include/ck/library/host_tensor/host_tensor_generator.hpp
+3
-4
library/src/obselete_driver_offline/conv_add_fwd_driver_offline_nchwc.cpp
...lete_driver_offline/conv_add_fwd_driver_offline_nchwc.cpp
+1
-1
library/src/obselete_driver_offline/conv_bwd_driver_offline.cpp
...y/src/obselete_driver_offline/conv_bwd_driver_offline.cpp
+1
-1
library/src/obselete_driver_offline/conv_fwd_driver_offline.cpp
...y/src/obselete_driver_offline/conv_fwd_driver_offline.cpp
+1
-1
No files found.
example/01_gemm/gemm_xdl_bf16.cpp
View file @
7e7640ce
...
@@ -5,11 +5,9 @@
...
@@ -5,11 +5,9 @@
#include <stdlib.h>
#include <stdlib.h>
#include <half.hpp>
#include <half.hpp>
#include "config.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
...
...
example/01_gemm/gemm_xdl_fp16.cpp
View file @
7e7640ce
...
@@ -5,11 +5,9 @@
...
@@ -5,11 +5,9 @@
#include <stdlib.h>
#include <stdlib.h>
#include <half.hpp>
#include <half.hpp>
#include "config.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
...
...
example/01_gemm/gemm_xdl_int8.cpp
View file @
7e7640ce
...
@@ -5,11 +5,9 @@
...
@@ -5,11 +5,9 @@
#include <stdlib.h>
#include <stdlib.h>
#include <half.hpp>
#include <half.hpp>
#include "config.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
#include "device_gemm_xdl_c_shuffle.hpp"
...
...
example/12_reduce/reduce_blockwise.cpp
View file @
7e7640ce
...
@@ -261,7 +261,7 @@ int main(int argc, char* argv[])
...
@@ -261,7 +261,7 @@ int main(int argc, char* argv[])
float
alpha
=
args
.
scales
[
0
];
float
alpha
=
args
.
scales
[
0
];
float
beta
=
args
.
scales
[
1
];
float
beta
=
args
.
scales
[
1
];
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
if
(
args
.
do_verification
)
if
(
args
.
do_verification
)
{
{
...
...
example/16_gemm_reduce/gemm_reduce_xdl_fp16.cpp
View file @
7e7640ce
...
@@ -5,13 +5,10 @@
...
@@ -5,13 +5,10 @@
#include <stdlib.h>
#include <stdlib.h>
#include <half.hpp>
#include <half.hpp>
#include "config.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "device_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "reference_gemm.hpp"
...
...
example/18_batched_gemm_reduce/CMakeLists.txt
0 → 100644
View file @
7e7640ce
add_example_executable
(
example_batched_gemm_reduce_xdl_fp16 batched_gemm_reduce_xdl_fp16.cpp
)
example/18_batched_gemm_reduce/batched_gemm_reduce_xdl_fp16.cpp
0 → 100644
View file @
7e7640ce
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_batched_gemm_reduce_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_batched_gemm.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_reduce_operation.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
CDataType
=
F16
;
using
DDataType
=
F32
;
using
ALayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
BLayout
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
CLayout
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
AElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
BElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
CElementOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
D0ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSum
;
using
D1ReduceOp
=
ck
::
tensor_operation
::
element_wise
::
ReduceSquareSum
;
static
constexpr
auto
GemmSpecialization
=
ck
::
tensor_operation
::
device
::
GemmSpecialization_t
::
Default
;
// clang-format off
using
DeviceBatchedGemmReduceInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchedGemmReduce_Xdl_CShuffle
//######| ALayout| BLayout| CLayout|AData| BData| CData| GemmAcc| CShuffle| ReduceAcc| DData| A| B| C| D0| D1| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| CReduce| CReduceThreadLds2VGprCopy| CReduceThreadVgpr2GlobalCopy|
//######| | | | Type| Type| Type| DataType| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Reduce| Reduce| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| ExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MPerBlock| ScalarPerVector| ThreadClusterLengths| SrcDstScalarPerVector| SrcDstScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NPerBlock| _NPerBlock| _MPerBlock_NPerBlock| _NPerBlock| _MPerBlock|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
Row
,
Col
,
Row
,
F16
,
F16
,
F16
,
F32
,
F32
,
F32
,
F32
,
AElementOp
,
BElementOp
,
CElementOp
,
D0ReduceOp
,
D1ReduceOp
,
GemmSpecialization
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
S
<
64
,
4
>
,
4
,
1
>
;
// clang-format on
using
ReferenceBatchedGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchedGemm
<
ADataType
,
BDataType
,
CDataType
,
AElementOp
,
BElementOp
,
CElementOp
>
;
int
main
(
int
argc
,
char
*
argv
[])
{
bool
do_verification
=
1
;
int
init_method
=
1
;
int
nrepeat
=
5
;
// GEMM shape
ck
::
index_t
M
=
3840
;
ck
::
index_t
N
=
4096
;
ck
::
index_t
K
=
4096
;
ck
::
index_t
StrideA
=
4096
;
ck
::
index_t
StrideB
=
4096
;
ck
::
index_t
StrideC
=
4096
;
ck
::
index_t
BatchCount
=
4
;
if
(
argc
==
1
)
{
// do nothing
}
else
if
(
argc
==
4
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
}
else
if
(
argc
==
11
)
{
do_verification
=
std
::
stoi
(
argv
[
1
]);
init_method
=
std
::
stoi
(
argv
[
2
]);
nrepeat
=
std
::
stoi
(
argv
[
3
]);
M
=
std
::
stoi
(
argv
[
4
]);
N
=
std
::
stoi
(
argv
[
5
]);
K
=
std
::
stoi
(
argv
[
6
]);
StrideA
=
std
::
stoi
(
argv
[
7
]);
StrideB
=
std
::
stoi
(
argv
[
8
]);
StrideC
=
std
::
stoi
(
argv
[
9
]);
BatchCount
=
std
::
stoi
(
argv
[
9
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: run kernel # of times (>1)
\n
"
);
printf
(
"arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, BatchCount
\n
"
);
exit
(
0
);
}
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
batch_count
,
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
row
*
stride
,
stride
,
1
}));
}
else
{
return
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
({
batch_count
,
row
,
col
}),
std
::
vector
<
std
::
size_t
>
({
col
*
stride
,
1
,
stride
}));
}
};
Tensor
<
ADataType
>
a_g_m_k
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
K
,
StrideA
,
ALayout
{}));
Tensor
<
BDataType
>
b_g_k_n
(
f_host_tensor_descriptor
(
BatchCount
,
K
,
N
,
StrideB
,
BLayout
{}));
Tensor
<
CDataType
>
c_g_m_n_host_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_g_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_g_m_host_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
CDataType
>
c_g_m_n_device_result
(
f_host_tensor_descriptor
(
BatchCount
,
M
,
N
,
StrideC
,
CLayout
{}));
Tensor
<
DDataType
>
d0_g_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
Tensor
<
DDataType
>
d1_g_m_device_result
(
HostTensorDescriptor
(
std
::
vector
<
std
::
size_t
>
(
{
static_cast
<
std
::
size_t
>
(
BatchCount
),
static_cast
<
std
::
size_t
>
(
M
)})));
std
::
cout
<<
"a_g_m_k: "
<<
a_g_m_k
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"b_g_k_n: "
<<
b_g_k_n
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"c_g_m_n: "
<<
c_g_m_n_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d0_g_m: "
<<
d0_g_m_host_result
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"d1_g_m: "
<<
d1_g_m_host_result
.
mDesc
<<
std
::
endl
;
switch
(
init_method
)
{
case
0
:
break
;
case
1
:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_2
<
ADataType
>
{
-
5
,
5
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_2
<
BDataType
>
{
-
5
,
5
});
break
;
default:
a_g_m_k
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
b_g_k_n
.
GenerateTensorValue
(
GeneratorTensor_3
<
BDataType
>
{
-
0.5
,
0.5
});
break
;
}
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a_g_m_k
.
mDesc
.
GetElementSpace
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b_g_k_n
.
mDesc
.
GetElementSpace
());
DeviceMem
c_device_buf
(
sizeof
(
CDataType
)
*
c_g_m_n_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d0_device_buf
(
sizeof
(
DDataType
)
*
d0_g_m_device_result
.
mDesc
.
GetElementSpace
());
DeviceMem
d1_device_buf
(
sizeof
(
DDataType
)
*
d1_g_m_device_result
.
mDesc
.
GetElementSpace
());
a_device_buf
.
ToDevice
(
a_g_m_k
.
mData
.
data
());
b_device_buf
.
ToDevice
(
b_g_k_n
.
mData
.
data
());
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
c_element_op
=
CElementOp
{};
auto
d0_reduce_op
=
D0ReduceOp
{};
auto
d1_reduce_op
=
D1ReduceOp
{};
// do GEMM
auto
batched_gemm
=
DeviceBatchedGemmReduceInstance
{};
auto
invoker
=
batched_gemm
.
MakeInvoker
();
auto
argument
=
batched_gemm
.
MakeArgument
(
static_cast
<
ADataType
*>
(
a_device_buf
.
GetDeviceBuffer
()),
static_cast
<
BDataType
*>
(
b_device_buf
.
GetDeviceBuffer
()),
static_cast
<
CDataType
*>
(
c_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d0_device_buf
.
GetDeviceBuffer
()),
static_cast
<
DDataType
*>
(
d1_device_buf
.
GetDeviceBuffer
()),
M
,
N
,
K
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
,
BatchCount
);
if
(
!
batched_gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
// warm up
invoker
.
Run
(
argument
);
// timing
float
total_time
=
0
;
for
(
int
i
=
0
;
i
<
nrepeat
;
++
i
)
{
// init DO, D1 to 0
d0_device_buf
.
SetZero
();
d1_device_buf
.
SetZero
();
KernelTimer
timer
;
timer
.
Start
();
invoker
.
Run
(
argument
);
timer
.
End
();
total_time
+=
timer
.
GetElapsedTime
();
}
float
ave_time
=
total_time
/
nrepeat
;
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
BatchCount
*
M
*
N
*
K
;
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
BatchCount
*
M
*
K
+
sizeof
(
BDataType
)
*
BatchCount
*
K
*
N
+
sizeof
(
CDataType
)
*
BatchCount
*
M
*
N
;
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
batched_gemm
.
GetTypeString
()
<<
std
::
endl
;
if
(
do_verification
)
{
c_device_buf
.
FromDevice
(
c_g_m_n_device_result
.
mData
.
data
());
d0_device_buf
.
FromDevice
(
d0_g_m_device_result
.
mData
.
data
());
d1_device_buf
.
FromDevice
(
d1_g_m_device_result
.
mData
.
data
());
auto
ref_batched_gemm
=
ReferenceBatchedGemmInstance
{};
auto
ref_invoker
=
ref_batched_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_batched_gemm
.
MakeArgument
(
a_g_m_k
,
b_g_k_n
,
c_g_m_n_host_result
,
a_element_op
,
b_element_op
,
c_element_op
);
ref_invoker
.
Run
(
ref_argument
);
for
(
int
batch
=
0
;
batch
<
BatchCount
;
++
batch
)
{
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
float
d0_acc
=
d0_reduce_op
.
GetReduceZeroValue
();
float
d1_acc
=
d1_reduce_op
.
GetReduceZeroValue
();
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
d0_reduce_op
.
Reduce
(
d0_acc
,
c_g_m_n_host_result
(
batch
,
m
,
n
));
d1_reduce_op
.
Reduce
(
d1_acc
,
c_g_m_n_host_result
(
batch
,
m
,
n
));
}
d0_g_m_host_result
(
batch
,
m
)
=
d0_acc
;
d1_g_m_host_result
(
batch
,
m
)
=
d1_acc
;
}
}
check_error
(
c_g_m_n_host_result
,
c_g_m_n_device_result
);
check_error
(
d0_g_m_host_result
,
d0_g_m_device_result
);
check_error
(
d1_g_m_host_result
,
d1_g_m_device_result
);
}
return
0
;
}
example/CMakeLists.txt
View file @
7e7640ce
...
@@ -42,3 +42,4 @@ add_subdirectory(14_gemm_xdl_requant_relu_requant)
...
@@ -42,3 +42,4 @@ add_subdirectory(14_gemm_xdl_requant_relu_requant)
add_subdirectory
(
17_convnd_bwd_data_xdl
)
add_subdirectory
(
17_convnd_bwd_data_xdl
)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
15_grouped_gemm
)
add_subdirectory
(
16_gemm_reduce
)
add_subdirectory
(
16_gemm_reduce
)
add_subdirectory
(
18_batched_gemm_reduce
)
include/ck/tensor_operation/gpu/device/device_batched_gemm_reduce_xdl_cshuffle.hpp
0 → 100644
View file @
7e7640ce
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_reduce.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_reduce_xdl_cshuffle_v1.hpp"
#include "gemm_specialization.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
FloatAB
,
typename
FloatC
,
typename
FloatD
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
D0ReduceOperation
,
typename
D1ReduceOperation
,
typename
AGridDesc_AK0_M_AK1
,
typename
BGridDesc_BK0_N_BK1
,
typename
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
DGridDescriptor_MBlock_MPerBlock
,
typename
ComputeBasePrtOfBatch
,
typename
Block2CTileMap
,
bool
HasMainK0BlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_batched_gemm_reduce_xdl_cshuffle_v1
(
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatD
*
__restrict__
p_d0_grid
,
FloatD
*
__restrict__
p_d1_grid
,
const
index_t
batch_count
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CElementwiseOperation
c_element_op
,
const
D0ReduceOperation
d0_reduce_op
,
const
D1ReduceOperation
d1_reduce_op
,
const
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1
,
const
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1
,
const
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock
,
const
DGridDescriptor_MBlock_MPerBlock
d_grid_desc_mblock_mperblock
,
const
ComputeBasePrtOfBatch
compute_base_ptr_of_batch_
,
const
Block2CTileMap
block_2_ctile_map
)
{
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch_
.
GetABasePtr
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch_
.
GetBBasePtr
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch_
.
GetCBasePtr
(
g_idx
)));
const
long_index_t
d0_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch_
.
GetD0BasePtr
(
g_idx
)));
const
long_index_t
d1_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_base_ptr_of_batch_
.
GetD1BasePtr
(
g_idx
)));
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
GridwiseGemm
::
template
Run
<
HasMainK0BlockLoop
>(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_c_grid
+
c_batch_offset
,
p_d0_grid
+
d0_batch_offset
,
p_d1_grid
+
d1_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
,
a_grid_desc_ak0_m_ak1
,
b_grid_desc_bk0_n_bk1
,
c_grid_desc_mblock_mperblock_nblock_nperblock
,
d_grid_desc_mblock_mperblock
,
block_2_ctile_map
);
}
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
typename
ADataType
,
typename
BDataType
,
typename
CDataType
,
typename
GemmAccDataType
,
typename
CShuffleDataType
,
typename
ReduceAccDataType
,
typename
DDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
,
typename
D0ReduceOperation
,
typename
D1ReduceOperation
,
GemmSpecialization_t
GemmSpecialization
,
index_t
NumGemmKPrefetchStage
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
KPerBlock
,
index_t
AK1
,
index_t
BK1
,
index_t
MPerXDL
,
index_t
NPerXDL
,
index_t
MXdlPerWave
,
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
index_t
ABlockTransferSrcVectorDim
,
index_t
ABlockTransferSrcScalarPerVector
,
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
index_t
BBlockTransferSrcVectorDim
,
index_t
BBlockTransferSrcScalarPerVector
,
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CShuffleBlockTransferScalarPerVector_NPerBlock
,
typename
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
index_t
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
index_t
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
>
struct
DeviceBatchedGemmReduce_Xdl_CShuffle
:
public
DeviceGemmReduce
<
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
D0ReduceOperation
,
D1ReduceOperation
>
{
using
DeviceOp
=
DeviceBatchedGemmReduce_Xdl_CShuffle
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
index_t
MRaw
,
index_t
KRaw
,
index_t
StrideA
)
{
const
auto
a_grid_desc_mraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
RowMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
StrideA
,
I1
));
}
else
if
constexpr
(
is_same_v
<
tensor_layout
::
gemm
::
ColumnMajor
,
ALayout
>
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
KRaw
),
make_tuple
(
I1
,
StrideA
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
MKPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNKPadding
)
{
// pad both M and K
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
MPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNPadding
)
{
// pad M, but not K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
KPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
NKPadding
)
{
// pad K, but not M
assert
(
K
%
AK1
==
0
);
const
auto
AK0
=
K
/
AK1
;
const
auto
a_grid_desc_m_k
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
else
{
// not pad M or K
assert
(
KRaw
%
AK1
==
0
);
const
auto
AK0
=
KRaw
/
AK1
;
const
auto
a_grid_desc_ak0_m_ak1
=
transform_tensor_descriptor
(
a_grid_desc_mraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
AK1
)),
make_pass_through_transform
(
MRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
a_grid_desc_ak0_m_ak1
;
}
}
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
index_t
KRaw
,
index_t
NRaw
,
index_t
StrideB
)
{
const
auto
b_grid_desc_nraw_kraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
I1
,
StrideB
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
BLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
NRaw
,
KRaw
),
make_tuple
(
StrideB
,
I1
));
}
}();
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
K
=
math
::
integer_divide_ceil
(
KRaw
,
KPerBlock
)
*
KPerBlock
;
const
auto
NPad
=
N
-
NRaw
;
const
auto
KPad
=
K
-
KRaw
;
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
NKPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNKPadding
)
{
// pad both N and K
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_right_pad_transform
(
NRaw
,
NPad
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
NPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNPadding
)
{
// pad N, but not K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
KPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MKPadding
)
{
// pad K, but not N
assert
(
K
%
BK1
==
0
);
const
auto
BK0
=
K
/
BK1
;
const
auto
b_grid_desc_n_k
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_pass_through_transform
(
NRaw
),
make_right_pad_transform
(
KRaw
,
KPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_n_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
else
{
// not pad N or K
assert
(
KRaw
%
BK1
==
0
);
const
auto
BK0
=
KRaw
/
BK1
;
const
auto
b_grid_desc_bk0_n_bk1
=
transform_tensor_descriptor
(
b_grid_desc_nraw_kraw
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
BK1
)),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
return
b_grid_desc_bk0_n_bk1
;
}
}
static
auto
MakeCGridDescriptor_M_N
(
index_t
MRaw
,
index_t
NRaw
,
index_t
StrideC
)
{
const
auto
c_grid_desc_mraw_nraw
=
[
&
]()
{
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
RowMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
StrideC
,
I1
));
}
else
if
constexpr
(
is_same
<
tensor_layout
::
gemm
::
ColumnMajor
,
CLayout
>::
value
)
{
return
make_naive_tensor_descriptor
(
make_tuple
(
MRaw
,
NRaw
),
make_tuple
(
I1
,
StrideC
));
}
}();
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
N
=
math
::
integer_divide_ceil
(
NRaw
,
NPerBlock
)
*
NPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
const
auto
NPad
=
N
-
NRaw
;
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
MNPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNKPadding
)
{
// pad M and N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
MPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MKPadding
)
{
// pad M, but not N
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
),
make_pass_through_transform
(
NRaw
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
NPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
NKPadding
)
{
// pad N, but not M
return
transform_tensor_descriptor
(
c_grid_desc_mraw_nraw
,
make_tuple
(
make_pass_through_transform
(
MRaw
),
make_right_pad_transform
(
NRaw
,
NPad
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
}
else
{
// not pad M or N
return
c_grid_desc_mraw_nraw
;
}
}
// assume D is packed tensor
static
auto
MakeDGridDescriptor_M
(
index_t
MRaw
)
{
const
auto
d_grid_desc_mraw
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
MRaw
));
const
auto
M
=
math
::
integer_divide_ceil
(
MRaw
,
MPerBlock
)
*
MPerBlock
;
const
auto
MPad
=
M
-
MRaw
;
if
constexpr
(
GemmSpecialization
==
GemmSpecialization_t
::
MPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MKPadding
||
GemmSpecialization
==
GemmSpecialization_t
::
MNKPadding
)
{
// pad M
return
transform_tensor_descriptor
(
d_grid_desc_mraw
,
make_tuple
(
make_right_pad_transform
(
MRaw
,
MPad
)),
make_tuple
(
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
}
else
{
// not pad M
return
d_grid_desc_mraw
;
}
}
using
AGridDesc_AK0_M_AK1
=
decltype
(
MakeAGridDescriptor_AK0_M_AK1
(
1
,
1
,
1
));
using
BGridDesc_BK0_N_BK1
=
decltype
(
MakeBGridDescriptor_BK0_N_BK1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
using
DGridDesc_M
=
decltype
(
MakeDGridDescriptor_M
(
1
));
static
constexpr
auto
MakeBlock2CTileMap
(
index_t
batch_count
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_insert_transform
(
batch_count
),
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
,
4
>
{}));
const
auto
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
batch_count
,
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
const
auto
globalblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
globalblockid_to_m0_n0_block_cluster_adaptor
;
}
struct
ComputeBasePtrOfStridedBatch
{
ComputeBasePtrOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
index_t
BatchStrideC
,
index_t
BatchStrideD0
,
index_t
BatchStrideD1
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideC_
(
BatchStrideC
),
BatchStrideD0_
(
BatchStrideD0
),
BatchStrideD1_
(
BatchStrideD1
)
{
}
__host__
__device__
constexpr
long_index_t
GetABasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
long_index_t
GetCBasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideC_
);
}
__host__
__device__
constexpr
long_index_t
GetD0BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideD0_
);
}
__host__
__device__
constexpr
long_index_t
GetD1BasePtr
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideD1_
);
}
private:
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
index_t
BatchStrideC_
;
index_t
BatchStrideD0_
;
index_t
BatchStrideD1_
;
};
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1
<
ADataType
,
// TODO: distinguish A/B datatype
GemmAccDataType
,
CShuffleDataType
,
CDataType
,
ReduceAccDataType
,
DDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
D0ReduceOperation
,
D1ReduceOperation
,
InMemoryDataOperationEnum_t
::
Set
,
InMemoryDataOperationEnum_t
::
AtomicAdd
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
CGridDesc_M_N
,
DGridDesc_M
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CShuffleBlockTransferScalarPerVector_NPerBlock
,
CReduceThreadClusterLengths_MPerBlock_NPerBlock
,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock
,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock
>
;
using
Block2CTileMap
=
decltype
(
MakeBlock2CTileMap
(
1
,
CGridDesc_M_N
{},
1
,
1
));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
ADataType
*
p_a_grid
,
const
BDataType
*
p_b_grid
,
CDataType
*
p_c_grid
,
DDataType
*
p_d0_grid
,
DDataType
*
p_d1_grid
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
D0ReduceOperation
d0_reduce_op
,
D1ReduceOperation
d1_reduce_op
,
index_t
BatchCount
)
:
p_a_grid_
{
p_a_grid
},
p_b_grid_
{
p_b_grid
},
p_c_grid_
{
p_c_grid
},
p_d0_grid_
{
p_d0_grid
},
p_d1_grid_
{
p_d1_grid
},
BatchCount_
(
BatchCount
),
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
(
MRaw
,
KRaw
,
StrideA
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
(
KRaw
,
NRaw
,
StrideB
)},
c_grid_desc_m_n_
{
DeviceOp
::
MakeCGridDescriptor_M_N
(
MRaw
,
NRaw
,
StrideC
)},
d_grid_desc_m_
{
DeviceOp
::
MakeDGridDescriptor_M
(
MRaw
)},
c_grid_desc_mblock_mperblock_nblock_nperblock_
{},
d_grid_desc_mblock_mperblock_
{},
compute_base_ptr_of_batch_
{
a_grid_desc_ak0_m_ak1_
.
GetElementSpaceSize
(),
b_grid_desc_bk0_n_bk1_
.
GetElementSpaceSize
(),
c_grid_desc_m_n_
.
GetElementSpaceSize
(),
d_grid_desc_m_
.
GetElementSpaceSize
(),
d_grid_desc_m_
.
GetElementSpaceSize
()},
block_2_ctile_map_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
},
d0_reduce_op_
{
d0_reduce_op
},
d1_reduce_op_
{
d1_reduce_op
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
c_grid_desc_m_n_
))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_
=
GridwiseGemm
::
MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
(
c_grid_desc_m_n_
);
d_grid_desc_mblock_mperblock_
=
GridwiseGemm
::
MakeDGridDescriptor_MBlock_MPerBlock
(
d_grid_desc_m_
);
block_2_ctile_map_
=
MakeBlock2CTileMap
(
BatchCount
,
c_grid_desc_m_n_
,
1
,
1
);
}
}
// private:
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
CDataType
*
p_c_grid_
;
DDataType
*
p_d0_grid_
;
DDataType
*
p_d1_grid_
;
index_t
BatchCount_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
CGridDesc_M_N
c_grid_desc_m_n_
;
DGridDesc_M
d_grid_desc_m_
;
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_
;
typename
GridwiseGemm
::
DGridDescriptor_MBlock_MPerBlock
d_grid_desc_mblock_mperblock_
;
ComputeBasePtrOfStridedBatch
compute_base_ptr_of_batch_
;
Block2CTileMap
block_2_ctile_map_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
D0ReduceOperation
d0_reduce_op_
;
D1ReduceOperation
d1_reduce_op_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
int
/* nrepeat */
=
1
)
{
#if 0
{
std::cout << "arg.BatchCount_ = " << arg.BatchCount_ << std::endl;
std::cout << "arg.a_grid_desc_ak0_m_ak1_{"
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I1) << ", "
<< arg.a_grid_desc_ak0_m_ak1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.b_grid_desc_bk0_n_bk1_{"
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I0) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I1) << ", "
<< arg.b_grid_desc_bk0_n_bk1_.GetLength(I2) << "}" << std::endl;
std::cout << "arg.c_grid_desc_m_n_{ " << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
std::cout << "arg.d_grid_desc_m_{ " << arg.d_grid_desc_m_.GetLength(I0) << "}"
<< std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! GridwiseGemm has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
c_grid_desc_m_n_
)
*
arg
.
BatchCount_
;
const
auto
K0
=
arg
.
a_grid_desc_ak0_m_ak1_
.
GetLength
(
I0
);
const
bool
has_main_k0_block_loop
=
GridwiseGemm
::
CalculateHasMainK0BlockLoop
(
K0
);
if
(
has_main_k0_block_loop
)
{
const
auto
kernel
=
kernel_batched_gemm_reduce_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
DDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
D0ReduceOperation
,
D1ReduceOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DGridDescriptor_MBlock_MPerBlock
,
ComputeBasePtrOfStridedBatch
,
remove_reference_t
<
Block2CTileMap
>
,
true
>
;
launch_kernel
(
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_d0_grid_
,
arg
.
p_d1_grid_
,
arg
.
BatchCount_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
d0_reduce_op_
,
arg
.
d1_reduce_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
d_grid_desc_mblock_mperblock_
,
arg
.
compute_base_ptr_of_batch_
,
arg
.
block_2_ctile_map_
);
}
else
{
const
auto
kernel
=
kernel_batched_gemm_reduce_xdl_cshuffle_v1
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
CDataType
,
DDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
,
D0ReduceOperation
,
D1ReduceOperation
,
DeviceOp
::
AGridDesc_AK0_M_AK1
,
DeviceOp
::
BGridDesc_BK0_N_BK1
,
typename
GridwiseGemm
::
CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
,
typename
GridwiseGemm
::
DGridDescriptor_MBlock_MPerBlock
,
ComputeBasePtrOfStridedBatch
,
remove_reference_t
<
Block2CTileMap
>
,
false
>
;
launch_kernel
(
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_c_grid_
,
arg
.
p_d0_grid_
,
arg
.
p_d1_grid_
,
arg
.
BatchCount_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
,
arg
.
d0_reduce_op_
,
arg
.
d1_reduce_op_
,
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_mblock_mperblock_nblock_nperblock_
,
arg
.
d_grid_desc_mblock_mperblock_
,
arg
.
compute_base_ptr_of_batch_
,
arg
.
block_2_ctile_map_
);
}
return
0
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
int
nrepeat
=
1
)
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
nrepeat
);
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
);
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
auto
casted_p_arg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
casted_p_arg
==
nullptr
)
{
return
false
;
}
else
{
return
IsSupportedArgument
(
*
casted_p_arg
);
}
}
static
auto
MakeArgument
(
const
ADataType
*
p_a
,
const
BDataType
*
p_b
,
CDataType
*
p_c
,
DDataType
*
p_d0
,
DDataType
*
p_d1
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
D0ReduceOperation
d0_reduce_op
,
D1ReduceOperation
d1_reduce_op
,
index_t
BatchCount
)
{
return
Argument
{
p_a
,
p_b
,
p_c
,
p_d0
,
p_d1
,
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
,
BatchCount
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
void
*
p_c
,
void
*
p_d0
,
void
*
p_d1
,
index_t
MRaw
,
index_t
NRaw
,
index_t
KRaw
,
index_t
StrideA
,
index_t
StrideB
,
index_t
StrideC
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
D0ReduceOperation
d0_reduce_op
,
D1ReduceOperation
d1_reduce_op
,
index_t
BatchCount
)
override
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
CDataType
*>
(
p_c
),
static_cast
<
DDataType
*>
(
p_d0
),
static_cast
<
DDataType
*>
(
p_d1
),
MRaw
,
NRaw
,
KRaw
,
StrideA
,
StrideB
,
StrideC
,
a_element_op
,
b_element_op
,
c_element_op
,
d0_reduce_op
,
d1_reduce_op
,
BatchCount
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceBatchedGemmReduce_Xdl_CShuffle"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_batched_gemm_xdl.hpp
View file @
7e7640ce
...
@@ -36,7 +36,7 @@ __global__ void
...
@@ -36,7 +36,7 @@ __global__ void
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_a_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
const
FloatAB
*
__restrict__
p_b_grid
,
FloatC
*
__restrict__
p_c_grid
,
FloatC
*
__restrict__
p_c_grid
,
const
index_t
num_
batch
es
,
const
index_t
batch
_count
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
AGridDesc_K0_M_K1
a_grid_desc_k0_m_k1
,
const
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1
,
const
BGridDesc_K0_N_K1
b_grid_desc_k0_n_k1
,
const
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
const
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2
,
...
@@ -47,7 +47,7 @@ __global__ void
...
@@ -47,7 +47,7 @@ __global__ void
const
Block2CTileMap
block_2_ctile_map
)
const
Block2CTileMap
block_2_ctile_map
)
{
{
const
index_t
num_blocks_per_batch
=
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
num_
batch
es
);
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch
_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
...
@@ -203,49 +203,43 @@ struct DeviceBatchedGemmXdl
...
@@ -203,49 +203,43 @@ struct DeviceBatchedGemmXdl
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
BGridDesc_K0_N_K1
=
decltype
(
MakeBGridDescriptor_K0_N_K1
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
using
CGridDesc_M_N
=
decltype
(
MakeCGridDescriptor_M_N
(
1
,
1
,
1
));
struct
Block2CTileMapMaker
static
constexpr
auto
MakeBlock2CTileMap
(
index_t
batch_count
,
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
{
{
Block2CTileMapMaker
(
index_t
num_batches
)
:
num_batches_
(
num_batches
)
{}
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
__host__
__device__
constexpr
auto
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
MakeBlock2CTileMap
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
M01
,
index_t
N01
)
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
{
const
auto
M
=
c_grid_desc_m_n
.
GetLength
(
I0
);
const
auto
N
=
c_grid_desc_m_n
.
GetLength
(
I1
);
constexpr
auto
M1
=
Number
<
MPerBlock
>
{};
constexpr
auto
N1
=
Number
<
NPerBlock
>
{};
const
auto
M0
=
M
/
M1
;
const
auto
M0
=
M
/
M1
;
const
auto
N0
=
N
/
N1
;
const
auto
N0
=
N
/
N1
;
const
auto
M00
=
M0
/
M01
;
const
auto
M00
=
M0
/
M01
;
const
auto
N00
=
N0
/
N01
;
const
auto
N00
=
N0
/
N01
;
const
auto
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
const
auto
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_single_stage_tensor_adaptor
(
make_tuple
(
make_insert_transform
(
num_
batch
es_
),
make_tuple
(
make_insert_transform
(
batch
_count
),
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
M00
,
M01
)),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_unmerge_transform
(
make_tuple
(
N00
,
N01
))),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<>
{},
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
,
4
>
{}));
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
,
3
>
{},
Sequence
<
2
,
4
>
{}));
const
auto
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
const
auto
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
=
make_single_stage_tensor_adaptor
(
make_single_stage_tensor_adaptor
(
make_tuple
(
make_merge_transform
(
make_tuple
(
num_
batch
es_
,
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
make_merge_transform
(
make_tuple
(
batch
_count
,
M00
,
N00
,
M01
,
N01
))),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
2
,
3
,
4
>
{}),
make_tuple
(
Sequence
<
0
>
{}));
make_tuple
(
Sequence
<
0
>
{}));
const
auto
globalblockid_to_m0_n0_block_cluster_adaptor
=
const
auto
globalblockid_to_m0_n0_block_cluster_adaptor
=
chain_tensor_adaptors
(
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
chain_tensor_adaptors
(
g_m00_m01_n00_n01_to_m0_n0_block_cluster_adaptor
,
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
globalblockid_to_m00_m01_n00_n01_block_cluster_adaptor
);
return
globalblockid_to_m0_n0_block_cluster_adaptor
;
}
private:
return
globalblockid_to_m0_n0_block_cluster_adaptor
;
index_t
num_batches_
;
}
};
struct
ComputeBasePtrOfStridedBatch
struct
ComputeBasePtrOfStridedBatch
{
{
...
@@ -320,8 +314,7 @@ struct DeviceBatchedGemmXdl
...
@@ -320,8 +314,7 @@ struct DeviceBatchedGemmXdl
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
using
CGridDesc_M0_N0_M1_N1_M2_M3_M4_N2
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
CGridDesc_M_N
{}));
using
Block2CTileMap
=
using
Block2CTileMap
=
decltype
(
MakeBlock2CTileMap
(
1
,
CGridDesc_M_N
{},
1
,
1
));
decltype
(
Block2CTileMapMaker
{
1
}.
MakeBlock2CTileMap
(
CGridDesc_M_N
{},
1
,
1
));
// Argument
// Argument
struct
Argument
:
public
BaseArgument
struct
Argument
:
public
BaseArgument
...
@@ -367,8 +360,7 @@ struct DeviceBatchedGemmXdl
...
@@ -367,8 +360,7 @@ struct DeviceBatchedGemmXdl
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m_n_
);
GridwiseGemm
::
MakeCGridDescriptor_M0_N0_M1_N1_M2_M3_M4_N2
(
c_grid_desc_m_n_
);
block_2_ctile_map_
=
block_2_ctile_map_
=
MakeBlock2CTileMap
(
BatchCount
,
c_grid_desc_m_n_
,
M01
,
N01
);
Block2CTileMapMaker
{
BatchCount
}.
MakeBlock2CTileMap
(
c_grid_desc_m_n_
,
M01
,
N01
);
}
}
}
}
...
...
include/ck/tensor_operation/gpu/device/device_gemm.hpp
View file @
7e7640ce
#pragma once
#pragma once
#include <iostream>
#include <iostream>
#include <vector>
#include "device_base.hpp"
#include "device_base.hpp"
namespace
ck
{
namespace
ck
{
...
...
include/ck/tensor_operation/gpu/device/device_gemm_reduce.hpp
View file @
7e7640ce
...
@@ -28,7 +28,8 @@ struct DeviceGemmReduce : public BaseOperator
...
@@ -28,7 +28,8 @@ struct DeviceGemmReduce : public BaseOperator
BElementwiseOperation
b_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
CElementwiseOperation
c_element_op
,
D0ReduceOperation
d0_reduce_op
,
D0ReduceOperation
d0_reduce_op
,
D1ReduceOperation
d1_reduce_op
)
=
0
;
D1ReduceOperation
d1_reduce_op
,
ck
::
index_t
BatchCount
=
1
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
};
...
...
include/ck/tensor_operation/gpu/device/device_gemm_reduce_xdl_cshuffle.hpp
View file @
7e7640ce
...
@@ -694,7 +694,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
...
@@ -694,7 +694,8 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOpera
BElementwiseOperation
b_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
,
CElementwiseOperation
c_element_op
,
D0ReduceOperation
d0_reduce_op
,
D0ReduceOperation
d0_reduce_op
,
D1ReduceOperation
d1_reduce_op
)
override
D1ReduceOperation
d1_reduce_op
,
index_t
/* KBatch */
=
1
)
override
{
{
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
return
std
::
make_unique
<
Argument
>
(
static_cast
<
const
ADataType
*>
(
p_a
),
static_cast
<
const
BDataType
*>
(
p_b
),
static_cast
<
const
BDataType
*>
(
p_b
),
...
...
include/ck/tensor_operation/gpu/device/tensor_layout.hpp
View file @
7e7640ce
#ifndef TENSOR_LAYOUT_HPP
#pragma once
#define TENSOR_LAYOUT_HPP
namespace
ck
{
namespace
ck
{
namespace
tensor_layout
{
namespace
tensor_layout
{
...
@@ -128,4 +127,3 @@ std::ostream& operator<<(std::ostream& os, const Layout&)
...
@@ -128,4 +127,3 @@ std::ostream& operator<<(std::ostream& os, const Layout&)
}
// namespace tensor_layout
}
// namespace tensor_layout
}
// namespace ck
}
// namespace ck
#endif
library/include/ck/library/host_tensor/host_reduction.hpp
View file @
7e7640ce
...
@@ -277,7 +277,7 @@ struct ReductionHost
...
@@ -277,7 +277,7 @@ struct ReductionHost
out_indices
[
dst_offset
]
=
accuIndex
;
out_indices
[
dst_offset
]
=
accuIndex
;
};
};
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
std
::
size_t
work_per_thread
=
std
::
size_t
work_per_thread
=
(
invariant_dim_indexes
.
size
()
+
num_thread
-
1
)
/
num_thread
;
(
invariant_dim_indexes
.
size
()
+
num_thread
-
1
)
/
num_thread
;
...
@@ -374,7 +374,7 @@ struct ReductionHost
...
@@ -374,7 +374,7 @@ struct ReductionHost
out_data
[
dst_offset
]
=
type_convert
<
OutDataType
>
(
accuVal
);
out_data
[
dst_offset
]
=
type_convert
<
OutDataType
>
(
accuVal
);
};
};
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
std
::
size_t
work_per_thread
=
std
::
size_t
work_per_thread
=
(
invariant_dim_indexes
.
size
()
+
num_thread
-
1
)
/
num_thread
;
(
invariant_dim_indexes
.
size
()
+
num_thread
-
1
)
/
num_thread
;
...
...
library/include/ck/library/host_tensor/host_tensor.hpp
View file @
7e7640ce
...
@@ -73,10 +73,10 @@ struct HostTensorDescriptor
...
@@ -73,10 +73,10 @@ struct HostTensorDescriptor
HostTensorDescriptor
()
=
delete
;
HostTensorDescriptor
()
=
delete
;
template
<
typename
X
>
template
<
typename
X
>
HostTensorDescriptor
(
std
::
vector
<
X
>
lens
);
HostTensorDescriptor
(
const
std
::
vector
<
X
>
&
lens
);
template
<
typename
X
,
typename
Y
>
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
(
std
::
vector
<
X
>
lens
,
std
::
vector
<
Y
>
strides
);
HostTensorDescriptor
(
const
std
::
vector
<
X
>
&
lens
,
const
std
::
vector
<
Y
>
&
strides
);
void
CalculateStrides
();
void
CalculateStrides
();
...
@@ -163,7 +163,7 @@ struct ParallelTensorFunctor
...
@@ -163,7 +163,7 @@ struct ParallelTensorFunctor
return
indices
;
return
indices
;
}
}
void
operator
()(
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
)
const
void
operator
()(
std
::
size_t
num_thread
=
1
)
const
{
{
std
::
size_t
work_per_thread
=
(
mN1d
+
num_thread
-
1
)
/
num_thread
;
std
::
size_t
work_per_thread
=
(
mN1d
+
num_thread
-
1
)
/
num_thread
;
...
@@ -213,7 +213,7 @@ struct Tensor
...
@@ -213,7 +213,7 @@ struct Tensor
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
Tensor
(
const
HostTensorDescriptor
&
desc
)
:
mDesc
(
desc
),
mData
(
mDesc
.
GetElementSpace
())
{}
template
<
typename
G
>
template
<
typename
G
>
void
GenerateTensorValue
(
G
g
,
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
)
void
GenerateTensorValue
(
G
g
,
std
::
size_t
num_thread
=
1
)
{
{
switch
(
mDesc
.
GetNumOfDimension
())
switch
(
mDesc
.
GetNumOfDimension
())
{
{
...
@@ -285,13 +285,14 @@ struct Tensor
...
@@ -285,13 +285,14 @@ struct Tensor
};
};
template
<
typename
X
>
template
<
typename
X
>
HostTensorDescriptor
::
HostTensorDescriptor
(
std
::
vector
<
X
>
lens
)
:
mLens
(
lens
)
HostTensorDescriptor
::
HostTensorDescriptor
(
const
std
::
vector
<
X
>
&
lens
)
:
mLens
(
lens
)
{
{
this
->
CalculateStrides
();
this
->
CalculateStrides
();
}
}
template
<
typename
X
,
typename
Y
>
template
<
typename
X
,
typename
Y
>
HostTensorDescriptor
::
HostTensorDescriptor
(
std
::
vector
<
X
>
lens
,
std
::
vector
<
Y
>
strides
)
HostTensorDescriptor
::
HostTensorDescriptor
(
const
std
::
vector
<
X
>&
lens
,
const
std
::
vector
<
Y
>&
strides
)
:
mLens
(
lens
),
mStrides
(
strides
)
:
mLens
(
lens
),
mStrides
(
strides
)
{
{
}
}
...
...
library/include/ck/library/host_tensor/host_tensor_generator.hpp
View file @
7e7640ce
#ifndef HOST_TENSOR_GENERATOR_HPP
#pragma once
#define HOST_TENSOR_GENERATOR_HPP
#include <cmath>
#include <cmath>
#include <numeric>
#include "config.hpp"
#include "config.hpp"
template
<
typename
T
>
template
<
typename
T
>
...
@@ -147,5 +148,3 @@ struct GeneratorTensor_Sequential
...
@@ -147,5 +148,3 @@ struct GeneratorTensor_Sequential
return
dims
[
Dim
];
return
dims
[
Dim
];
}
}
};
};
#endif
library/src/obselete_driver_offline/conv_add_fwd_driver_offline_nchwc.cpp
View file @
7e7640ce
...
@@ -302,7 +302,7 @@ int main(int argc, char* argv[])
...
@@ -302,7 +302,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/obselete_driver_offline/conv_bwd_driver_offline.cpp
View file @
7e7640ce
...
@@ -317,7 +317,7 @@ int main(int argc, char* argv[])
...
@@ -317,7 +317,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
library/src/obselete_driver_offline/conv_fwd_driver_offline.cpp
View file @
7e7640ce
...
@@ -319,7 +319,7 @@ int main(int argc, char* argv[])
...
@@ -319,7 +319,7 @@ int main(int argc, char* argv[])
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvStrides"
,
make_tuple
(
conv_stride_h
,
conv_stride_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
print_array
(
"ConvDilations"
,
make_tuple
(
conv_dilation_h
,
conv_dilation_w
));
std
::
size_t
num_thread
=
std
::
thread
::
hardware_concurrency
()
;
std
::
size_t
num_thread
=
1
;
switch
(
init_method
)
switch
(
init_method
)
{
{
...
...
Prev
1
2
3
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment