Commit 7d0a5412 authored by root's avatar root
Browse files

threadwise transfer

parent b3a012bc
......@@ -9,27 +9,27 @@ namespace ck {
// blockwise GEMM: C[M, N] += transpose(A[K, M]) * B[K, N]
// A and B are visable to the whole block, C is distributed among each thread
// If following number are power of 2, index calculation shall be greatly reduced:
// MPerThreadSubC, NPerThreadSubC, MLevel0ThreadCluster, NLevel0ThreadCluster,
// KPerThread, HPerThread, MLevel0ThreadCluster, NLevel0ThreadCluster,
// MLevel1ThreadCluster, NLevel1ThreadCluster
template <index_t BlockSize,
typename BlockMatrixA,
typename BlockMatrixB,
typename ThreadMatrixC,
index_t MPerThreadSubC,
index_t NPerThreadSubC,
index_t KPerThreadLoop,
index_t MLevel0ThreadCluster,
index_t NLevel0ThreadCluster,
index_t MLevel1ThreadCluster,
index_t NLevel1ThreadCluster,
index_t ThreadGemmADataPerRead_M,
index_t ThreadGemmBDataPerRead_N>
index_t KPerThread,
index_t HPerThread,
index_t WPerThread,
index_t CYXPerThreadLoop,
index_t HThreadCluster,
index_t WThreadCluster,
index_t ThreadGemmADataPerRead_K,
index_t ThreadGemmBDataPerRead_W>
struct BlockwiseGemm_km_kn_m0m1n0n1_v3
{
struct MatrixIndex
{
index_t row;
index_t col;
index_t k;
index_t h;
index_t w;
};
index_t mMyThreadOffsetA;
......@@ -44,325 +44,153 @@ struct BlockwiseGemm_km_kn_m0m1n0n1_v3
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr index_t ThreadPerLevel1Cluster = MLevel0ThreadCluster * NLevel0ThreadCluster *
MLevel1ThreadCluster * NLevel1ThreadCluster;
// constexpr index_t ThreadPerLevel1Cluster = MLevel0ThreadCluster * NLevel0ThreadCluster *
// MLevel1ThreadCluster * NLevel1ThreadCluster;
static_assert(BlockSize == ThreadPerLevel1Cluster, "wrong! wrong blocksize\n");
static_assert(BlockSize == HThreadCluster * WThreadCluster, "wrong! wrong blocksize\n");
static_assert(BlockMatrixA{}.GetLength(I0) == BlockMatrixB{}.GetLength(I0),
"wrong! K dimension not consistent\n");
constexpr index_t M = BlockMatrixA{}.GetLength(I1); // A is transposed
constexpr index_t K = BlockMatrixA{}.GetLength(I1); // A is transposed
constexpr index_t N = BlockMatrixB{}.GetLength(I1);
constexpr index_t H = BlockMatrixB{}.GetLength(I2);
constexpr index_t W = BlockMatrixB{}.GetLength(I3);
static_assert(M % (MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster) == 0 &&
N % (NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster) == 0,
"wrong! Cannot evenly divide work among\n");
static_assert(ThreadMatrixC{}.GetLength(I0) == GetThreadMatrixCLengths()[I0] &&
ThreadMatrixC{}.GetLength(I1) == GetThreadMatrixCLengths()[I1],
"wrong! ThreadMatrixC lengths is wrong");
static_assert(
K % (KPerThread) == 0 &&
(N * H * W) % (HPerThread * WPerThread * HThreadCluster * WThreadCluster) == 0,
"wrong! Cannot evenly divide work among\n");
auto c_thread_mtx_index = GetBeginOfThreadMatrixC(get_thread_local_1d_id());
mMyThreadOffsetA = BlockMatrixA{}.CalculateOffset(make_tuple(0, c_thread_mtx_index.row));
mMyThreadOffsetB = BlockMatrixB{}.CalculateOffset(make_tuple(0, c_thread_mtx_index.col));
mMyThreadOffsetA = BlockMatrixA{}.CalculateOffset(make_tuple(0, c_thread_mtx_index.k));
mMyThreadOffsetB = BlockMatrixB{}.CalculateOffset(
make_tuple(0, 0, c_thread_mtx_index.h, c_thread_mtx_index.w));
}
__device__ static constexpr auto GetThreadMatrixCLengths()
{
constexpr auto I1 = Number<1>{};
constexpr index_t M = BlockMatrixA{}.GetLength(I1); // A is transposed
constexpr index_t N = BlockMatrixB{}.GetLength(I1);
constexpr index_t MRepeat =
M / (MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster);
constexpr index_t NRepeat =
N / (NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster);
return Sequence<MRepeat * MPerThreadSubC, NRepeat * NPerThreadSubC>{};
return Sequence<KPerThread, 1, HPerThread, WPerThread>{};
}
__device__ static MatrixIndex GetBeginOfThreadMatrixC(index_t thread_id)
{
constexpr index_t ThreadPerLevel0Cluster = MLevel0ThreadCluster * NLevel0ThreadCluster;
index_t level1_id = thread_id / ThreadPerLevel0Cluster;
index_t level1_m_id = level1_id / NLevel1ThreadCluster;
index_t level1_n_id = level1_id % NLevel1ThreadCluster;
index_t level0_id = thread_id % ThreadPerLevel0Cluster;
index_t level0_m_id = level0_id / NLevel0ThreadCluster;
index_t level0_n_id = level0_id % NLevel0ThreadCluster;
constexpr index_t MPerLevel0Cluster = MPerThreadSubC * MLevel0ThreadCluster;
constexpr index_t NPerLevel0Cluster = NPerThreadSubC * NLevel0ThreadCluster;
return MatrixIndex{level1_m_id * MPerLevel0Cluster + level0_m_id * MPerThreadSubC,
level1_n_id * NPerLevel0Cluster + level0_n_id * NPerThreadSubC};
return MatrixIndex{1, 8, 8};
}
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void
Run_naive(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
template <typename SrcDesc,
typename DstDesc,
index_t NSliceRow,
index_t NSliceCol,
index_t DataPerAccess>
struct ThreadwiseSliceCopy_a
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto a_block_mtx = BlockMatrixA{};
constexpr auto b_block_mtx = BlockMatrixB{};
constexpr auto c_thread_mtx = ThreadMatrixC{};
constexpr auto K = a_block_mtx.GetLength(I0);
constexpr auto MPerThread = c_thread_mtx.GetLength(I0);
constexpr auto NPerThread = c_thread_mtx.GetLength(I1);
constexpr index_t MPerLevel1Cluster =
MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster;
constexpr index_t NPerLevel1Cluster =
NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster;
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
// thread A, B for GEMM
constexpr auto a_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<MPerThread>{}));
constexpr auto b_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<NPerThread>{}));
template <typename Data>
__device__ static void Run(const Data* p_src, Data* p_dst)
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
FloatA p_a_thread[a_thread_mtx.GetElementSpaceSize()];
FloatB p_b_thread[b_thread_mtx.GetElementSpaceSize()];
using vector_t = typename vector_type<Data, DataPerAccess>::type;
constexpr auto a_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixA,
decltype(a_thread_mtx),
KPerThreadLoop,
MPerThreadSubC,
ThreadGemmADataPerRead_M>{};
static_for<0, NSliceRow, 1>{}([&](auto i) {
static_for<0, NSliceCol, DataPerAccess>{}([&](auto j) {
constexpr auto src_offset = SrcDesc{}.CalculateOffset(make_tuple(i, j));
constexpr auto dst_offset = DstDesc{}.CalculateOffset(make_tuple(i, j));
constexpr auto b_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixB,
decltype(b_thread_mtx),
KPerThreadLoop,
NPerThreadSubC,
ThreadGemmBDataPerRead_N>{};
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
});
});
}
};
constexpr auto threadwise_gemm = ThreadwiseGemm_km_kn_mn_v1<decltype(a_thread_mtx),
decltype(b_thread_mtx),
decltype(c_thread_mtx)>{};
#pragma unroll
// loop over k
for(index_t k_begin = 0; k_begin < K; k_begin += KPerThreadLoop)
template <typename SrcDesc,
typename DstDesc,
index_t NSliceCYX,
index_t NSliceH,
index_t NSliceW,
index_t DataPerAccess>
struct ThreadwiseSliceCopy_b
{
template <typename Data>
__device__ static void Run(const Data* p_src, Data* p_dst)
{
#pragma unroll
// read A
for(index_t m_repeat = 0; m_repeat < MRepeat; ++m_repeat)
{
a_thread_copy.Run(p_a_block +
a_block_mtx.CalculateOffset(
make_tuple(k_begin, m_repeat * MPerLevel1Cluster)) +
mMyThreadOffsetA,
p_a_thread + a_thread_mtx.CalculateOffset(
make_tuple(0, m_repeat * MPerThreadSubC)));
}
#pragma unroll
// read B
for(index_t n_repeat = 0; n_repeat < NRepeat; ++n_repeat)
{
b_thread_copy.Run(p_b_block +
b_block_mtx.CalculateOffset(
make_tuple(k_begin, n_repeat * NPerLevel1Cluster)) +
mMyThreadOffsetB,
p_b_thread + b_thread_mtx.CalculateOffset(
make_tuple(0, n_repeat * NPerThreadSubC)));
}
// C += A * B
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
using vector_t = typename vector_type<Data, DataPerAccess>::type;
static_for<0, NSliceCYX, 1>{}([&](auto i) {
static_for<0, NSliceH, 1>{}([&](auto j) {
static_for<0, NSliceW, 1>{}([&](auto k) {
constexpr auto src_offset =
SrcDesc{}.CalculateOffset(make_tuple(i, 0, j, k));
constexpr auto dst_offset =
DstDesc{}.CalculateOffset(make_tuple(i, 0, j, k));
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
});
});
});
}
}
};
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void
Run_pipelined_2x2(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
Run_naive(const FloatA* p_a_block, const FloatB* p_b_thread, FloatC* p_c_thread) const
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
constexpr auto a_block_mtx = BlockMatrixA{};
constexpr auto b_block_mtx = BlockMatrixB{};
constexpr auto c_thread_mtx = ThreadMatrixC{};
constexpr auto K = a_block_mtx.GetLength(I0);
constexpr auto MPerThread = c_thread_mtx.GetLength(I0);
constexpr auto NPerThread = c_thread_mtx.GetLength(I1);
constexpr index_t MPerLevel1Cluster =
MPerThreadSubC * MLevel0ThreadCluster * MLevel1ThreadCluster;
constexpr auto a_block_mtx = BlockMatrixA{};
constexpr auto b_block_mtx = BlockMatrixB{};
constexpr index_t NPerLevel1Cluster =
NPerThreadSubC * NLevel0ThreadCluster * NLevel1ThreadCluster;
constexpr auto CYXPerBlock = a_block_mtx.GetLength(I0);
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
static_assert(MRepeat == 2 && NRepeat == 2,
"wrong! inline asm cannot deal with this GEMM config yet");
// thread A, B
// thread A, B for GEMM
constexpr auto a_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<MPerThread>{}));
make_tuple(Number<CYXPerThreadLoop>{}, Number<KPerThread>{}));
constexpr auto b_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<NPerThread>{}));
// thread A-sub, B-sub
constexpr auto a_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<MPerThreadSubC>{}),
make_tuple(Number<MPerThread>{}, Number<1>{}));
make_tuple(Number<CYXPerThreadLoop>{}, Number<1>{}, Number<1>{}, Number<1>{}));
constexpr auto b_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<KPerThreadLoop>{}, Number<NPerThreadSubC>{}),
make_tuple(Number<NPerThread>{}, Number<1>{}));
constexpr auto c_thread_sub_mtx = make_dynamic_naive_tensor_descriptor_v2(
make_tuple(Number<MPerThreadSubC>{}, Number<NPerThreadSubC>{}),
make_tuple(Number<NPerThread>{}, Number<1>{}));
constexpr auto c_thread_mtx = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThread>{}, Number<1>{}));
FloatA p_a_thread[a_thread_mtx.GetElementSpaceSize()];
FloatB p_b_thread[b_thread_mtx.GetElementSpaceSize()];
constexpr auto a_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixA,
decltype(a_thread_mtx),
KPerThreadLoop,
MPerThreadSubC,
ThreadGemmADataPerRead_M>{};
constexpr auto a_thread_copy = ThreadwiseSliceCopy_a<BlockMatrixA,
decltype(a_thread_mtx),
CYXPerThreadLoop,
KPerThread,
ThreadGemmADataPerRead_K>{};
constexpr auto b_thread_copy = ThreadwiseMatrixSliceCopy_v3<BlockMatrixB,
constexpr auto threadwise_gemm = ThreadwiseGemm_km_kn_mn_v3<decltype(a_thread_mtx),
decltype(b_thread_mtx),
KPerThreadLoop,
NPerThreadSubC,
ThreadGemmBDataPerRead_N>{};
constexpr auto threadwise_gemm = ThreadwiseGemm_km_kn_mn_v1<decltype(a_thread_sub_mtx),
decltype(b_thread_sub_mtx),
decltype(c_thread_sub_mtx)>{};
const FloatA* p_a_block_off = p_a_block + mMyThreadOffsetA;
const FloatB* p_b_block_off = p_b_block + mMyThreadOffsetB;
// read A_sub_0
a_thread_copy.Run(p_a_block_off, p_a_thread);
// read B_sub_0
b_thread_copy.Run(p_b_block_off, p_b_thread);
// read B_sub_1
b_thread_copy.Run(p_b_block_off +
b_block_mtx.CalculateOffset(make_tuple(0, NPerLevel1Cluster)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
// read A_sub_1
a_thread_copy.Run(p_a_block_off +
a_block_mtx.CalculateOffset(make_tuple(0, MPerLevel1Cluster)),
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm.Run(
p_a_thread,
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
#pragma unroll
// loop over rest of k
for(index_t k = KPerThreadLoop; k < K; k += KPerThreadLoop)
decltype(c_thread_mtx)>{};
// loop over k
for(index_t cyx_begin = 0; cyx_begin < CYXPerBlock; cyx_begin += CYXPerThreadLoop)
{
// read A_sub_0
a_thread_copy.Run(p_a_block_off + a_block_mtx.CalculateOffset(make_tuple(k, 0)),
p_a_thread);
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread,
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, 0)));
// read B_sub_0
b_thread_copy.Run(p_b_block_off + b_block_mtx.CalculateOffset(make_tuple(k, 0)),
p_b_thread);
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread +
c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, NPerThreadSubC)));
// read B_sub_1
b_thread_copy.Run(
p_b_block_off + b_block_mtx.CalculateOffset(make_tuple(k, NPerLevel1Cluster)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
// read A_sub_1
a_thread_copy.Run(
p_a_block_off + a_block_mtx.CalculateOffset(make_tuple(k, MPerLevel1Cluster)),
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)));
// C_sub_00 += transpose(A_sub_0) * B_sub_0
threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
// C_sub_01 += transpose(A_sub_0) * B_sub_1
threadwise_gemm.Run(
p_a_thread,
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)));
}
a_thread_copy.Run(p_a_block + a_block_mtx.CalculateOffset(make_tuple(cyx_begin, 0)) +
mMyThreadOffsetA,
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, 0)));
// C_sub_10 += transpose(A_sub_1) * B_sub_0
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread,
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, 0)));
// C_sub_11 += transpose(A_sub_1) * B_sub_1
threadwise_gemm.Run(
p_a_thread + a_thread_mtx.CalculateOffset(make_tuple(0, MPerThreadSubC)),
p_b_thread + b_thread_mtx.CalculateOffset(make_tuple(0, NPerThreadSubC)),
p_c_thread + c_thread_mtx.CalculateOffset(make_tuple(MPerThreadSubC, NPerThreadSubC)));
// threadwise_gemm.Run(p_a_thread, p_b_thread, p_c_thread);
}
}
template <typename FloatA, typename FloatB, typename FloatC>
__device__ void Run(const FloatA* p_a_block, const FloatB* p_b_block, FloatC* p_c_thread) const
{
#if 0
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr index_t MPerThread = ThreadMatrixC{}.GetLength(I0);
constexpr index_t NPerThread = ThreadMatrixC{}.GetLength(I1);
constexpr index_t MRepeat = MPerThread / MPerThreadSubC;
constexpr index_t NRepeat = NPerThread / NPerThreadSubC;
if constexpr(MRepeat == 2 && NRepeat == 2)
{
Run_pipelined_2x2(p_a_block, p_b_block, p_c_thread);
}
else
{
Run_naive(p_a_block, p_b_block, p_c_thread);
}
#else
Run_naive(p_a_block, p_b_block, p_c_thread);
#endif
}
};
......
......@@ -18,12 +18,12 @@ template <index_t BlockSize,
typename AGlobalDesc,
typename BGlobalDesc,
typename CGlobalDesc,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t MPerThread,
index_t NPerThread,
index_t HWPerBlock,
index_t CYXPerBlock,
index_t KPerThread,
index_t HWPerThread,
index_t CYXPerThread,
index_t MLevel0Cluster,
index_t NLevel0Cluster,
index_t MLevel1Cluster,
......@@ -58,31 +58,34 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
{
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
Number<KPerThread>{},
Number<HWPerThread>{});
static_assert(CYXPerBlock == 4 && HWPerBlock == 64 && KPerBlock == 16, "");
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
constexpr auto a_cyx_k_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<CYXPerBlock>{}, Number<KPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_cyx_n_h_w_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<1>{}, Number<8>{}, Number<8>{}), max_lds_align);
make_tuple(Number<CYXPerBlock>{}, Number<1>{}, Number<8>{}, Number<8>{}),
max_lds_align);
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
math::integer_least_multiple(a_cyx_k_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_cyx_n_h_w_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size = math::integer_least_multiple(
b_cyx_n_h_w_block_desc.GetElementSpaceSize(), max_lds_align);
return 2 * (a_block_space_size + b_block_space_size) * sizeof(Float);
}
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
__device__ void Run(const AGlobalDesc& a_cyx_k_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc& b_cyx_n_h_w_global_desc,
const Float* __restrict__ p_b_global,
......@@ -94,62 +97,70 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
{
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto I2 = Number<2>{};
constexpr auto I3 = Number<3>{};
const auto CYX = a_cyx_k_global_desc.GetLength(I0);
const auto K = a_cyx_k_global_desc.GetLength(I1);
static_assert(CYX == 4 * 3 * 3 && K == 16, "");
const auto K = a_k_m_global_desc.GetLength(I0);
const auto M = a_k_m_global_desc.GetLength(I1);
const auto N = b_cyx_n_h_w_global_desc.GetLength(I1);
const auto H = b_cyx_n_h_w_global_desc.GetLength(I2);
const auto W = b_cyx_n_h_w_global_desc.GetLength(I3);
// divide block work by [M, N]
#if 0
const auto m_block_work_num = M / Number<MPerBlock>{};
const auto n_block_work_num = N / Number<NPerBlock>{};
#if 1
const auto m_block_work_num = K / Number<KPerBlock>{};
const auto nhw_block_work_num = (N * H * W) / Number<HWPerBlock>{};
const index_t m_block_work_id = get_block_1d_id() / n_block_work_num;
const index_t n_block_work_id = get_block_1d_id() - m_block_work_id * n_block_work_num;
const index_t k_block_work_id = get_block_1d_id() / nhw_block_work_num;
const index_t nhw_block_work_id = get_block_1d_id() - k_block_work_id * nhw_block_work_num;
#else
// Hack: this force result into SGPR
const index_t m_block_work_num = __builtin_amdgcn_readfirstlane(M / MPerBlock);
const index_t n_block_work_num = __builtin_amdgcn_readfirstlane(N / NPerBlock);
const index_t m_block_work_num = __builtin_amdgcn_readfirstlane(K / KPerBlock);
const index_t nhw_block_work_num = __builtin_amdgcn_readfirstlane(N / HWPerBlock);
const index_t m_block_work_id =
__builtin_amdgcn_readfirstlane(get_block_1d_id() / n_block_work_num);
const index_t n_block_work_id = get_block_1d_id() - m_block_work_id * n_block_work_num;
const index_t k_block_work_id =
__builtin_amdgcn_readfirstlane(get_block_1d_id() / nhw_block_work_num);
const index_t nhw_block_work_id = get_block_1d_id() - k_block_work_id * nhw_block_work_num;
#endif
const index_t m_block_data_on_global = m_block_work_id * MPerBlock;
const index_t m_block_data_on_global = k_block_work_id * KPerBlock;
const index_t h_block_data_on_global = n_block_work_id * 8;
const index_t w_block_data_on_global = n_block_work_id * 8;
const index_t h_block_data_on_global = nhw_block_work_id * 8;
const index_t w_block_data_on_global = nhw_block_work_id * 8;
// lds max alignment
constexpr auto max_lds_align = math::lcm(Number<ABlockTransferDstScalarPerVector_M>{},
Number<BBlockTransferDstScalarPerVector_N>{},
Number<MPerThread>{},
Number<NPerThread>{});
Number<KPerThread>{},
Number<HWPerThread>{});
// A matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto a_k_m_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<MPerBlock>{}), max_lds_align);
constexpr auto a_cyx_k_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<CYXPerBlock>{}, Number<KPerBlock>{}), max_lds_align);
// B matrix in LDS memory, dst of blockwise copy
// be careful of LDS alignment
constexpr auto b_cyx_n_h_w_block_desc = make_dynamic_naive_tensor_descriptor_aligned_v2(
make_tuple(Number<KPerBlock>{}, Number<1>{}, Number<8>{}, Number<8>{}), max_lds_align);
make_tuple(Number<CYXPerBlock>{}, Number<1>{}, Number<8>{}, Number<8>{}),
max_lds_align);
// A matrix blockwise copy
auto a_blockwise_copy =
BlockwiseDynamicTensorSliceTransfer_v4<BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, MPerBlock>,
Sequence<CYXPerBlock, KPerBlock>,
ABlockTransferThreadSliceLengths_K_M,
ABlockTransferThreadClusterLengths_K_M,
ABlockTransferThreadClusterArrangeOrder,
Float,
Float,
decltype(a_k_m_global_desc),
decltype(a_k_m_block_desc),
decltype(a_cyx_k_global_desc),
decltype(a_cyx_k_block_desc),
ABlockTransferSrcAccessOrder,
Sequence<0, 1>,
ABlockTransferSrcVectorDim,
......@@ -162,101 +173,65 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
1,
AThreadTransferSrcResetCoordinateAfterRun,
true>(
a_k_m_global_desc,
a_cyx_k_global_desc,
make_multi_index(0, m_block_data_on_global),
a_k_m_block_desc,
a_cyx_k_block_desc,
make_multi_index(0, 0));
// B matrix blockwise copy
auto b_blockwise_copy = BlockwiseDynamicTensorSliceTransfer_v4<
BlockSize,
InMemoryDataOperation::Set,
Sequence<KPerBlock, 1, 8, 8>, // BlockSliceLengths
Sequence<KPerBlock, 1, 1, 1>, // ThreadSliceLengths_K_N
Sequence<1, 1, 8, 8>, // ThreadClusterLengths_K_N
Sequence<3, 2, 0, 1>, // ThreadClusterArrangeOrder
#if 1
constexpr auto b_cyx_n_h_w_thread_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<CYXPerThread>{}, Number<1>{}, Number<1>{}, Number<1>{}));
const index_t h_thread_id = get_thread_local_1d_id() / 8;
const index_t w_thread_id = get_thread_local_1d_id() % 8;
auto b_threadwise_transfer = ThreadwiseDynamicTensorSliceTransfer_v2<
Float,
Float,
decltype(b_cyx_n_h_w_global_desc), // SrcDesc
decltype(b_cyx_n_h_w_block_desc), // DstDesc
Sequence<3, 2, 0, 1>, // SrcDimAccessOrder
Sequence<3, 2, 0, 1>, // DstDimAccessOrder
3, // SrcVectorDim
3, // DstVectorDim
1, // SrcScalarPerVector
1, // DstScalarPerVector
decltype(b_cyx_n_h_w_global_desc),
decltype(b_cyx_n_h_w_thread_desc),
Sequence<CYXPerThread, 1, 1, 1>,
Sequence<3, 2, 0, 1>, // BBlockTransferSrcAccessOrder,
3, // BBlockTransferSrcVectorDim,
1, // BBlockTransferSrcScalarPerVector,
AddressSpace::Global,
AddressSpace::Lds,
1,
AddressSpace::Vgpr,
InMemoryDataOperation::Set,
1,
BThreadTransferSrcResetCoordinateAfterRun,
true>(b_cyx_n_h_w_global_desc,
make_multi_index(0, 0, h_block_data_on_global, w_block_data_on_global),
b_cyx_n_h_w_block_desc,
make_multi_index(0, 0, 0, 0));
true>(
b_cyx_n_h_w_global_desc,
make_multi_index(
0, 0, h_block_data_on_global + h_thread_id, w_block_data_on_global + w_thread_id));
#if 0
constexpr auto b_cyx_n_h_w_thread_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<KPerThread>{}, Number<NPerThread>{}));
using BThreadwiseTransfer =
ThreadwiseDynamicTensorSliceTransfer_v2<Float,
Float,
decltype(b_cyx_n_h_w_global_desc),
decltype(b_cyx_n_h_w_thread_desc),
Sequence<KPerThread, NPerThread>,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
AddressSpace::Global,
AddressSpace::Vgpr,
InMemoryDataOperation::Set,
1,
true>;
#endif
// GEMM definition
// c_mtx += transpose(a_mtx) * b_mtx
// a_mtx[KPerBlock, MPerBlock] is in LDS
// b_mtx[KPerBlocl, NPerBlock] is in LDS
// c_mtx[MPerBlock, NPerBlock] is distributed among threads, and saved in
// register
// sanity check
//static_assert(MPerBlock % (MPerThread * MLevel0Cluster * MLevel1Cluster) == 0 &&
//NPerBlock % (NPerThread * NLevel0Cluster * NLevel1Cluster) == 0,
//"wrong!");
// constexpr index_t MRepeat = MPerBlock / (MPerThread * MLevel0Cluster * MLevel1Cluster);
// constexpr index_t NRepeat = NPerBlock / (NPerThread * NLevel0Cluster * NLevel1Cluster);
// c_thread_mtx definition: this is a mess
// TODO:: more elegent way of defining c_thread_mtx
constexpr auto c_k_n_h_w_thread_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<MPerThread>{}, Number<1>{}, Number<1>{}, Number<1>{}));
make_tuple(Number<KPerThread>{}, Number<1>{}, Number<1>{}, Number<1>{}));
#if 0
#if 1
const auto blockwise_gemm =
BlockwiseGemm_km_kn_m0m1n0n1_v3<BlockSize,
decltype(a_k_m_block_desc),
decltype(b_cyx_n_h_w_block_desc),
decltype(c_k_n_h_w_thread_desc),
MPerThread,
NPerThread,
KPerThread,
MLevel0Cluster,
NLevel0Cluster,
MLevel1Cluster,
NLevel1Cluster,
1,
1>{};
decltype(a_cyx_k_block_desc),
decltype(b_cyx_n_h_w_block_desc),
decltype(c_k_n_h_w_thread_desc),
16, // KPerThreadSubC
1, // HPerThreadSubC
1, // WPerThreadSubC
1, // CYXPerThreadLoop
8, // HThreadCluster
8, // WThreadCluster
1, // ThreadGemmADataPerRead_K
1 // ThreadGemmBDataPerRead_W
>{};
#endif
// LDS allocation for A and B: be careful of alignment
constexpr auto a_block_space_size =
math::integer_least_multiple(a_k_m_block_desc.GetElementSpaceSize(), max_lds_align);
math::integer_least_multiple(a_cyx_k_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size =
math::integer_least_multiple(b_cyx_n_h_w_block_desc.GetElementSpaceSize(), max_lds_align);
constexpr auto b_block_space_size = math::integer_least_multiple(
b_cyx_n_h_w_block_desc.GetElementSpaceSize(), max_lds_align);
Float* p_a_block_double = p_shared_block;
Float* p_b_block_double = p_shared_block + 2 * a_block_space_size;
......@@ -272,11 +247,11 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// zero out threadwise output
// threadwise_matrix_set_zero_v2(c_k_n_h_w_thread_desc, p_c_thread);
constexpr auto a_block_slice_copy_step = make_multi_index(KPerBlock, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(KPerBlock, 0, 0, 0);
constexpr auto a_block_slice_copy_step = make_multi_index(CYXPerBlock, 0);
constexpr auto b_block_slice_copy_step = make_multi_index(CYXPerBlock, 0, 0, 0);
// hack to control index calculation when iterating over A and B matrix for threadwise copy
constexpr auto a_k_m_global_iterator_hacks = AGlobalIteratorHacks{};
constexpr auto a_k_m_global_iterator_hacks = AGlobalIteratorHacks{};
constexpr auto b_cyx_n_h_w_global_iterator_hacks = BGlobalIteratorHacks{};
// hack to control index calculation when move slice window for A and B matrix for
......@@ -288,13 +263,25 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// LDS double buffer: preload data into LDS
{
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_cyx_n_h_w_global_desc, p_b_global, b_cyx_n_h_w_global_iterator_hacks);
a_blockwise_copy.RunRead(a_cyx_k_global_desc, p_a_global, a_k_m_global_iterator_hacks);
constexpr auto b_thread_mtx = b_cyx_n_h_w_thread_desc;
Float p_b_thread[b_thread_mtx.GetElementSpaceSize()];
b_threadwise_transfer.Run(b_cyx_n_h_w_global_desc,
p_b_global,
b_cyx_n_h_w_thread_desc,
make_tuple(I0, I0, I0, I0),
p_b_thread,
b_cyx_n_h_w_global_iterator_hacks);
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double);
b_blockwise_copy.RunWrite(b_cyx_n_h_w_block_desc, p_b_block_double);
a_blockwise_copy.RunWrite(a_cyx_k_block_desc, p_a_block_double);
__syncthreads();
}
#if 0
if constexpr(HasMainKBlockLoop)
{
Float* p_a_block_even = p_a_block_double;
......@@ -303,104 +290,82 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
Float* p_a_block_odd = p_a_block_double + a_block_space_size;
Float* p_b_block_odd = p_b_block_double + b_block_space_size;
index_t k_block_data_begin = 0;
index_t b_block_data_begin = 0;
// LDS double buffer: main body
// use Do-While loop instead of For loop to simplify control flow
do
{
// even iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_blockwise_copy.MoveSrcSliceWindow(a_cyx_k_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
// b_blockwise_copy.MoveSrcSliceWindow(b_cyx_n_h_w_global_desc,
// b_block_slice_copy_step,
// b_cyx_n_h_w_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_cyx_n_h_w_global_desc,
b_block_slice_copy_step,
b_cyx_n_h_w_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_cyx_n_h_w_global_desc, p_b_global, b_cyx_n_h_w_global_iterator_hacks);
a_cyx_k_global_desc, p_a_global, a_k_m_global_iterator_hacks);
// LDS double buffer: GEMM on current data
// blockwise_gemm.Run(p_a_block_even, p_b_block_even, p_c_thread);
blockwise_gemm.Run(p_a_block_even, p_b_block_even, p_c_thread);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_odd);
b_blockwise_copy.RunWrite(b_cyx_n_h_w_block_desc, p_b_block_odd);
a_blockwise_copy.RunWrite(a_cyx_k_block_desc, p_a_block_odd);
// odd iteration
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_blockwise_copy.MoveSrcSliceWindow(a_cyx_k_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_cyx_n_h_w_global_desc,
b_block_slice_copy_step,
b_cyx_n_h_w_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS doubel buffer: load next data from device mem
a_blockwise_copy.RunRead(
a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(
b_cyx_n_h_w_global_desc, p_b_global, b_cyx_n_h_w_global_iterator_hacks);
a_cyx_k_global_desc, p_a_global, a_k_m_global_iterator_hacks);
// LDS double buffer: GEMM on current data
// blockwise_gemm.Run(p_a_block_odd, p_b_block_odd, p_c_thread);
blockwise_gemm.Run(p_a_block_odd, p_b_block_odd, p_c_thread);
// LDS double buffer: store next data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_even);
b_blockwise_copy.RunWrite(b_cyx_n_h_w_block_desc, p_b_block_even);
a_blockwise_copy.RunWrite(a_cyx_k_block_desc, p_a_block_even);
k_block_data_begin += 2 * KPerBlock;
} while(k_block_data_begin < K - 2 * KPerBlock);
b_block_data_begin += 2 * CYXPerBlock;
} while(b_block_data_begin < CYX - 2 * CYXPerBlock);
}
// LDS double buffer: tail
if constexpr(HasDoubleTailKBlockLoop) // if has 2 iteration left
{
a_blockwise_copy.MoveSrcSliceWindow(a_k_m_global_desc,
a_blockwise_copy.MoveSrcSliceWindow(a_cyx_k_global_desc,
a_block_slice_copy_step,
a_k_m_global_move_slice_window_iterator_hack);
b_blockwise_copy.MoveSrcSliceWindow(b_cyx_n_h_w_global_desc,
b_block_slice_copy_step,
b_cyx_n_h_w_global_move_slice_window_iterator_hack);
__syncthreads();
// LDS double buffer: load last data from device mem
a_blockwise_copy.RunRead(a_k_m_global_desc, p_a_global, a_k_m_global_iterator_hacks);
b_blockwise_copy.RunRead(b_cyx_n_h_w_global_desc, p_b_global, b_cyx_n_h_w_global_iterator_hacks);
a_blockwise_copy.RunRead(a_cyx_k_global_desc, p_a_global, a_k_m_global_iterator_hacks);
// LDS double buffer: GEMM on 2nd-last data
// blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
// LDS double buffer: store last data to LDS
a_blockwise_copy.RunWrite(a_k_m_block_desc, p_a_block_double + a_block_space_size);
b_blockwise_copy.RunWrite(b_cyx_n_h_w_block_desc, p_b_block_double + b_block_space_size);
a_blockwise_copy.RunWrite(a_cyx_k_block_desc, p_a_block_double + a_block_space_size);
__syncthreads();
// LDS double buffer: GEMM on last data
// blockwise_gemm.Run(p_a_block_double + a_block_space_size,
// p_b_block_double + b_block_space_size,
// p_c_thread);
blockwise_gemm.Run(p_a_block_double + a_block_space_size,
p_b_block_double + b_block_space_size,
p_c_thread);
}
else // if has 1 iteration left
{
__syncthreads();
// LDS double buffer: GEMM on last data
// blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
blockwise_gemm.Run(p_a_block_double, p_b_block_double, p_c_thread);
}
#endif
#if 1
// output: register to global memory
......@@ -408,7 +373,7 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// define input tensor descriptor for threadwise copy
// thread input tensor, src of threadwise copy
constexpr auto c_k_n_h_w_thread_desc = make_dynamic_naive_tensor_descriptor_packed_v2(
make_tuple(Number<MPerThread>{}, Number<1>{}, Number<1>{}, Number<1>{}));
make_tuple(Number<KPerThread>{}, Number<1>{}, Number<1>{}, Number<1>{}));
// calculate origin of thread input tensor on global memory
// blockwise GEMM c matrix starting index
......@@ -432,15 +397,12 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// hack to control index calculation when iterating over c_k_n_h_w_global tensor
constexpr auto c_k_n_h_w_global_tensor_iterator_hacks = CGlobalIteratorHacks{};
// constexpr auto tmp = make_unmerge_transform(make_tuple(
// Number<MRepeat>{}, Number<MPerThread>{}, Number<NRepeat>{}, Number<NPerThread>{}));
ThreadwiseDynamicTensorSliceTransfer_v1r3<
AccFloat,
Float,
decltype(c_k_n_h_w_thread_desc),
decltype(c_k_n_h_w_global_desc),
Sequence<MPerThread, 1, 1, 1>,
Sequence<KPerThread, 1, 1, 1>,
Sequence<3, 2, 0, 1>, // CThreadTransferSrcDstAccessOrder
3, // CThreadTransferSrcDstVectorDim
1, // CThreadTransferDstScalarPerVector,
......@@ -464,7 +426,7 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// pass tensor descriptor by reference
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc& a_k_m_global_desc,
__device__ void Run(const AGlobalDesc& a_cyx_k_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc& b_cyx_n_h_w_global_desc,
const Float* __restrict__ p_b_global,
......@@ -477,7 +439,7 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
__shared__ Float p_shared_block[shared_block_size];
Run(a_k_m_global_desc,
Run(a_cyx_k_global_desc,
p_a_global,
b_cyx_n_h_w_global_desc,
p_b_global,
......@@ -490,7 +452,7 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// pass tensor descriptors by their pointers
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const AGlobalDesc* p_a_k_m_global_desc,
__device__ void Run(const AGlobalDesc* p_a_cyx_k_global_desc,
const Float* __restrict__ p_a_global,
const BGlobalDesc* p_b_cyx_n_h_w_global_desc,
const Float* __restrict__ p_b_global,
......@@ -499,11 +461,11 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
const auto a_k_m_global_desc = *p_a_k_m_global_desc;
const auto b_cyx_n_h_w_global_desc = *p_b_cyx_n_h_w_global_desc;
const auto c_k_n_h_w_global_desc = *p_c_k_n_h_w_global_desc;
const auto a_cyx_k_global_desc = *p_a_cyx_k_global_desc;
const auto b_cyx_n_h_w_global_desc = *p_b_cyx_n_h_w_global_desc;
const auto c_k_n_h_w_global_desc = *p_c_k_n_h_w_global_desc;
Run(a_k_m_global_desc,
Run(a_cyx_k_global_desc,
p_a_global,
b_cyx_n_h_w_global_desc,
p_b_global,
......@@ -515,7 +477,7 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
// pass tensor descriptors by void*
template <bool HasMainKBlockLoop, bool HasDoubleTailKBlockLoop>
__device__ void Run(const void* p_a_k_m_global_desc,
__device__ void Run(const void* p_a_cyx_k_global_desc,
const Float* __restrict__ p_a_global,
const void* p_b_cyx_n_h_w_global_desc,
const Float* __restrict__ p_b_global,
......@@ -524,12 +486,14 @@ struct GridwiseDynamicGemm_km_kn_mn_v2
integral_constant<bool, HasMainKBlockLoop>,
integral_constant<bool, HasDoubleTailKBlockLoop>) const
{
const auto a_k_m_global_desc = *reinterpret_cast<const AGlobalDesc*>(p_a_k_m_global_desc);
const auto b_cyx_n_h_w_global_desc = *reinterpret_cast<const BGlobalDesc*>(p_b_cyx_n_h_w_global_desc);
const auto a_cyx_k_global_desc =
*reinterpret_cast<const AGlobalDesc*>(p_a_cyx_k_global_desc);
const auto b_cyx_n_h_w_global_desc =
*reinterpret_cast<const BGlobalDesc*>(p_b_cyx_n_h_w_global_desc);
const auto c_k_n_h_w_global_desc =
*reinterpret_cast<const CGlobalDesc*>(p_c_k_n_h_w_global_desc);
Run(a_k_m_global_desc,
Run(a_cyx_k_global_desc,
p_a_global,
b_cyx_n_h_w_global_desc,
p_b_global,
......
......@@ -535,7 +535,8 @@ struct ThreadwiseDynamicTensorSliceTransfer_v2
dst_desc.CalculateOffset(to_multi_index(dst_slice_origin_idx) + src_data_idx +
i * src_scalar_step_in_vector);
p_dst[Number<dst_offset>{}] = src_vector[i];
// p_dst[Number<dst_offset>{}] = src_vector[i];
p_dst[Number<dst_offset>{}] = src_vector.Scalars()(i);
});
constexpr auto move_on_dim = [&]() constexpr
......
......@@ -28,33 +28,6 @@ __device__ void threadwise_matrix_set_zero_v3(Desc, Float* __restrict__ p_thread
});
}
template <typename SrcDesc,
typename DstDesc,
index_t NSliceRow,
index_t NSliceCol,
index_t DataPerAccess>
struct ThreadwiseMatrixSliceCopy_v3
{
template <typename Data>
__device__ static void Run(const Data* p_src, Data* p_dst)
{
static_assert(SrcDesc::IsKnownAtCompileTime() && DstDesc::IsKnownAtCompileTime(),
"wrong! Desc should be known at compile-time");
using vector_t = typename vector_type<Data, DataPerAccess>::type;
static_for<0, NSliceRow, 1>{}([&](auto i) {
static_for<0, NSliceCol, DataPerAccess>{}([&](auto j) {
constexpr auto src_offset = SrcDesc{}.CalculateOffset(make_tuple(i, j));
constexpr auto dst_offset = DstDesc{}.CalculateOffset(make_tuple(i, j));
*reinterpret_cast<vector_t*>(&p_dst[dst_offset]) =
*reinterpret_cast<const vector_t*>(&p_src[src_offset]);
});
});
}
};
// C[M, N] += transpose(A[K, M]) * B[K, N]
// Element of matrix can be vectorized data
template <typename ADesc,
......@@ -75,9 +48,9 @@ struct ThreadwiseGemm_km_kn_mn_v3
constexpr auto I0 = Number<0>{};
constexpr auto I1 = Number<1>{};
constexpr auto M = CDesc{}[I0];
constexpr auto N = CDesc{}[I1];
constexpr auto K = ADesc{}[I0];
constexpr auto M = CDesc{}.GetLength(I0);
constexpr auto N = CDesc{}.GetLength(I1);
constexpr auto K = ADesc{}.GetLength(I0);
static_for<0, K, 1>{}([&](auto k) {
static_for<0, M, 1>{}([&](auto m) {
......
......@@ -76,7 +76,7 @@ void device_dynamic_convolution_forward_implicit_gemm_v5r1_nchw_kcyx_nkhw(InDesc
constexpr index_t GemmMPerThread = 16;
constexpr index_t GemmNPerThread = 1;
constexpr index_t GemmKPerThread = 1;
constexpr index_t GemmKPerThread = 4;
constexpr index_t GemmMLevel0Cluster = 1;
constexpr index_t GemmNLevel0Cluster = 1;
......
......@@ -779,7 +779,7 @@ int main(int argc, char* argv[])
#if 1
// LogRange(std::cout << "in_nchw : ", in_nchw.mData, ",") << std::endl;
// LogRange(std::cout << "wei_kcyx: ", wei_kcyx.mData, ",") << std::endl;
LogRange(std::cout << "out_nkhw_host : ", out_nkhw_host.mData, ",") << std::endl;
// LogRange(std::cout << "out_nkhw_host : ", out_nkhw_host.mData, ",") << std::endl;
LogRange(std::cout << "out_nkhw_device: ", out_nkhw_device.mData, ",") << std::endl;
#endif
}
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment