Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7c284291
Commit
7c284291
authored
Nov 13, 2023
by
Artur Wojcik
Browse files
Merge branch 'develop' into uif2-initial
parents
751432ca
600fc000
Changes
162
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
1950 additions
and
421 deletions
+1950
-421
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
...tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
+91
-46
include/ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_bwd_gamma_beta.hpp
...d/normalization/gridwise_normalization_bwd_gamma_beta.hpp
+343
-0
include/ck/utility/type_convert.hpp
include/ck/utility/type_convert.hpp
+30
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
...ary/reference_tensor_operation/cpu/reference_conv_fwd.hpp
+195
-129
library/include/ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
...eference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
+207
-0
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp
...ry/reference_tensor_operation/cpu/reference_layernorm.hpp
+76
-11
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp
...eference_tensor_operation/cpu/reference_layernorm_bwd.hpp
+177
-0
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
...include/ck/library/tensor_operation_instance/gpu/gemm.hpp
+25
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
..._fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
+124
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
...ration_instance/gpu/grouped_convolution_backward_data.hpp
+34
-15
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp
...tion_instance/gpu/grouped_convolution_backward_weight.hpp
+46
-19
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
...or_operation_instance/gpu/grouped_convolution_forward.hpp
+28
-23
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
..._instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
+179
-0
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
...ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
+44
-0
library/include/ck/library/tensor_operation_instance/gpu/normalization_fwd.hpp
...brary/tensor_operation_instance/gpu/normalization_fwd.hpp
+34
-28
library/include/ck/library/tensor_operation_instance/gpu/normalization_fwd_swish.hpp
...tensor_operation_instance/gpu/normalization_fwd_swish.hpp
+26
-26
library/include/ck/library/tensor_operation_instance/gpu/transpose/device_transpose_instance.hpp
...tion_instance/gpu/transpose/device_transpose_instance.hpp
+44
-0
library/include/ck/library/tensor_operation_instance/gpu/transpose_3d.hpp
...ck/library/tensor_operation_instance/gpu/transpose_3d.hpp
+62
-0
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
...ary/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
+109
-102
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
...e_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
+76
-22
No files found.
include/ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4r2.hpp
View file @
7c284291
...
...
@@ -136,7 +136,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
MPadded
;
index_t
NPadded
;
index_t
KPadded
;
index_t
K0
;
index_t
K0
Padded
;
index_t
k_batch
;
Argument
(
const
FloatA
*
p_a_grid_
,
...
...
@@ -151,7 +151,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
MPadded_
,
index_t
NPadded_
,
index_t
KPadded_
,
index_t
K0_
,
index_t
K0
Padded
_
,
index_t
k_batch_
)
:
p_a_grid
(
p_a_grid_
),
p_b_grid
(
p_b_grid_
),
...
...
@@ -165,7 +165,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
MPadded
(
MPadded_
),
NPadded
(
NPadded_
),
KPadded
(
KPadded_
),
K0
(
K0
_
),
K0
Padded
(
K0Padded
_
),
k_batch
(
k_batch_
)
{
}
...
...
@@ -182,7 +182,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<<
"MP:"
<<
MPadded
<<
", "
<<
"NP:"
<<
NPadded
<<
", "
<<
"KP:"
<<
KPadded
<<
", "
<<
"K0:"
<<
K0
<<
", "
<<
"K0
Padded
:"
<<
K0
Padded
<<
", "
<<
"KB:"
<<
k_batch
<<
"}"
<<
std
::
endl
;
}
};
...
...
@@ -205,7 +205,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return
math
::
integer_least_multiple
(
N
,
NPerBlock
);
}
__host__
__device__
static
auto
CalculateK0
(
index_t
K
,
index_t
K_Batch
=
1
)
__host__
__device__
static
auto
CalculateK0
Padded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
// k_batch * k0 * k0_per_block * k1
auto
K_t
=
K_Batch
*
K0PerBlock
*
K1
;
...
...
@@ -214,8 +214,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__
__device__
static
auto
CalculateKPadded
(
index_t
K
,
index_t
K_Batch
=
1
)
{
auto
K0
=
CalculateK0
(
K
,
K_Batch
);
return
K_Batch
*
K0
*
K1
;
auto
K0
Padded
=
CalculateK0
Padded
(
K
,
K_Batch
);
return
K_Batch
*
K0
Padded
*
K1
;
}
__host__
__device__
static
auto
MakeAGridDescriptor_KBatch_K0_M_K1
(
index_t
M
,
...
...
@@ -223,7 +223,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
K
,
index_t
StrideA
,
index_t
KBatch
,
index_t
K0
,
index_t
K0
Padded
,
index_t
KPad
)
{
const
auto
a_grid_desc_m_k
=
[
&
]()
{
...
...
@@ -237,21 +237,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}();
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
const
auto
a_grid_desc_m_kpad
=
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_pass_through_transform
(
M
),
make_right_pad_transform
(
K
,
KPad
-
K
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
a_grid_desc_m_kpad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
)
{
// const auto PadM = (MPerBlock - M % MPerBlock) % MPerBlock;
return
transform_tensor_descriptor
(
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
M
,
MPad
-
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
...
@@ -259,8 +271,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
{
return
transform_tensor_descriptor
(
a_grid_desc_m_k
pad
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
a_grid_desc_m_k
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
Padded
,
K1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
...
@@ -272,7 +284,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
index_t
N
,
index_t
StrideB
,
index_t
KBatch
,
index_t
K0
,
index_t
K0
Padded
,
index_t
KPad
)
{
const
auto
b_grid_desc_k_n
=
[
&
]()
{
...
...
@@ -286,21 +298,33 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
}
}();
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
)
{
const
auto
b_grid_desc_kpad_n
=
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_right_pad_transform
(
K
,
KPad
-
K
),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
b_grid_desc_kpad_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
}
else
if
constexpr
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
)
{
// const auto PadN = (NPerBlock - N % NPerBlock) % NPerBlock;
return
transform_tensor_descriptor
(
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0Padded
,
K1
)),
make_right_pad_transform
(
N
,
NPad
-
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
...
@@ -308,8 +332,8 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
else
{
return
transform_tensor_descriptor
(
b_grid_desc_k
pad
_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
,
K1
)),
b_grid_desc_k_n
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
KBatch
,
K0
Padded
,
K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
,
1
,
3
>
{},
Sequence
<
2
>
{}));
...
...
@@ -398,6 +422,7 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
...
...
@@ -410,6 +435,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
if
constexpr
(
!
(
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
KPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
NKPadding
||
GemmSpec
==
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
))
{
auto
K_t
=
karg
.
k_batch
*
K0PerBlock
*
K1
;
if
(
!
(
karg
.
K
%
K_t
==
0
))
{
#if DEBUG_LOG
std
::
cout
<<
"Arg K value is not a multiple of K_Batch * K0PerBlock * K1! K: "
<<
karg
.
K
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
...
...
@@ -478,11 +522,11 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if
(
karg
.
N
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
std
::
cout
<<
"Arg N ("
<<
karg
.
N
<<
") value is not a multiple of "
"
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
...
...
@@ -493,25 +537,25 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
if
(
karg
.
M
%
CBlockTransferScalarPerVector_NWaveNPerXDL
!=
0
)
{
#if DEBUG_LOG
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
std
::
cout
<<
"Arg M ("
<<
karg
.
M
<<
") value is not a multiple of "
"
CBlockTransferScalarPerVector_NWaveNPerXDL ("
<<
CBlockTransferScalarPerVector_NWaveNPerXDL
<<
" )! "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
}
const
auto
num_k_loop
=
karg
.
K0
/
K0PerBlock
;
const
auto
num_k_loop
=
karg
.
K0
Padded
/
K0PerBlock
;
if
(
!
GridwiseGemmPipe
::
IsSupported
(
num_k_loop
))
{
#if DEBUG_LOG
std
::
cout
<<
"The number of k loops ("
<<
num_k_loop
<<
") value is not supported by GridwiseGemm Pipeline."
<<
" K0: "
<<
karg
.
K0
<<
", K0PerBlock: "
<<
K0PerBlock
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
<<
" K0
Padded
: "
<<
karg
.
K0
Padded
<<
", K0PerBlock: "
<<
K0PerBlock
<<
" "
<<
__FILE__
<<
":"
<<
__LINE__
<<
", in function: "
<<
__func__
<<
std
::
endl
;
#endif // DEBUG_LOG
return
false
;
}
...
...
@@ -521,14 +565,15 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
__host__
__device__
static
auto
GetKPad
(
index_t
K
,
index_t
KBatch
)
{
const
index_t
K0
=
math
::
integer_divide_ceil
(
K
,
K1
*
K0PerBlock
*
KBatch
)
*
K0PerBlock
;
const
index_t
KPad
=
KBatch
*
K0
*
K1
;
const
index_t
K0Padded
=
math
::
integer_divide_ceil
(
K
,
K1
*
K0PerBlock
*
KBatch
)
*
K0PerBlock
;
const
index_t
KPad
=
KBatch
*
K0Padded
*
K1
;
return
KPad
;
}
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
)
__host__
__device__
static
constexpr
bool
CalculateHasMainK0BlockLoop
(
index_t
K0
Padded
)
{
const
index_t
num_loop
=
K0
/
K0PerBlock
;
const
index_t
num_loop
=
K0
Padded
/
K0PerBlock
;
return
GridwiseGemmPipe
::
CalculateHasMainLoop
(
num_loop
);
}
...
...
@@ -595,9 +640,9 @@ struct GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_v2r4r2
const
FloatB
*
p_b_grid
=
karg
.
p_b_grid
;
FloatC
*
p_c_grid
=
karg
.
p_c_grid
;
const
auto
a_b_k0_m_k1_grid_desc
=
MakeAGridDescriptor_KBatch_K0_M_K1
(
karg
.
M
,
karg
.
MPadded
,
karg
.
K
,
karg
.
StrideA
,
karg
.
k_batch
,
karg
.
K0
,
karg
.
KPadded
);
karg
.
M
,
karg
.
MPadded
,
karg
.
K
,
karg
.
StrideA
,
karg
.
k_batch
,
karg
.
K0
Padded
,
karg
.
KPadded
);
const
auto
b_b_k0_n_k1_grid_desc
=
MakeBGridDescriptor_KBatch_K0_N_K1
(
karg
.
K
,
karg
.
NPadded
,
karg
.
N
,
karg
.
StrideB
,
karg
.
k_batch
,
karg
.
K0
,
karg
.
KPadded
);
karg
.
K
,
karg
.
NPadded
,
karg
.
N
,
karg
.
StrideB
,
karg
.
k_batch
,
karg
.
K0
Padded
,
karg
.
KPadded
);
const
auto
c_grid_desc_m_n
=
MakeCGridDescriptor_M_N
(
karg
.
M
,
karg
.
N
,
karg
.
StrideC
);
const
auto
c_grid_desc_mblock_mperblock_nblock_nperblock
=
...
...
include/ck/tensor_operation/gpu/grid/normalization/gridwise_normalization_bwd_gamma_beta.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include "ck/utility/data_type.hpp"
#include "ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/block/reduction_functions_blockwise.hpp"
namespace
ck
{
// dgamma = reduce_sum(dy * (x - mean) * inv_std)
// dbeta = reduce_sum(dy)
template
<
typename
DYDataType
,
typename
XDataType
,
typename
MeanInvStdDataType
,
typename
ComputeDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
typename
GridDesc_M_K
,
typename
GridDesc_M
,
index_t
BlockSize
,
index_t
MThreadClusterSize
,
index_t
KThreadClusterSize
,
index_t
MThreadSliceSize
,
index_t
KThreadSliceSize
,
index_t
DYSrcVectorDim
,
index_t
DYSrcVectorSize
,
index_t
XSrcVectorDim
,
index_t
XSrcVectorSize
,
index_t
MeanInvStdSrcVectorDim
,
index_t
MeanInvStdSrcVectorSize
,
index_t
DGammaDstVectorSize
,
index_t
DBetaDstVectorSize
>
struct
GridwiseNormalizationBwdGammaBeta_mk_to_k
{
// if we just check ThreadSliceSize & VectorSize == 0, the performance may be poor
static_assert
(((
DYSrcVectorDim
==
0
&&
MThreadSliceSize
==
DYSrcVectorSize
)
||
(
DYSrcVectorDim
==
1
&&
KThreadSliceSize
==
DYSrcVectorSize
)),
"Invalid thread slice sizes and/or dy vector sizes configuration, please check!"
);
static_assert
(((
XSrcVectorDim
==
0
&&
MThreadSliceSize
==
XSrcVectorSize
)
||
(
XSrcVectorDim
==
1
&&
KThreadSliceSize
==
XSrcVectorSize
)),
"Invalid thread slice sizes and/or x vector sizes configuration, please check!"
);
using
ThreadClusterLengths_M_K
=
Sequence
<
MThreadClusterSize
,
KThreadClusterSize
>
;
using
DYThreadBufferDimAccessOrder
=
typename
conditional
<
DYSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
XThreadBufferDimAccessOrder
=
typename
conditional
<
XSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
MeanInvStdThreadBufferDimAccessOrder
=
typename
conditional
<
MeanInvStdSrcVectorDim
==
0
,
Sequence
<
1
,
0
>
,
Sequence
<
0
,
1
>>::
type
;
using
ThreadClusterArrangeOrder
=
DYThreadBufferDimAccessOrder
;
static
constexpr
auto
thread_cluster_desc
=
make_cluster_descriptor
(
ThreadClusterLengths_M_K
{},
ThreadClusterArrangeOrder
{});
using
ThreadBufferLengths_M_K
=
Sequence
<
MThreadSliceSize
,
KThreadSliceSize
>
;
using
ThreadBufferLengths_M
=
Sequence
<
MThreadSliceSize
>
;
static
constexpr
auto
thread_buffer_desc_m_k
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{},
Number
<
KThreadSliceSize
>
{}));
static
constexpr
auto
thread_buffer_desc_m
=
make_naive_tensor_descriptor_packed
(
make_tuple
(
Number
<
MThreadSliceSize
>
{}));
using
PassThroughOp
=
tensor_operation
::
element_wise
::
PassThrough
;
using
BlockwiseSumReduce
=
PartitionedBlockwiseReduction
<
ComputeDataType
,
BlockSize
,
ThreadClusterLengths_M_K
,
ThreadClusterArrangeOrder
,
reduce
::
Add
,
true
>
;
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
index_t
M_BlockTileSize
=
MThreadClusterSize
*
MThreadSliceSize
;
static
constexpr
index_t
K_BlockTileSize
=
KThreadClusterSize
*
KThreadSliceSize
;
__device__
static
void
Run
(
const
GridDesc_M_K
&
dy_grid_desc_m_k
,
const
GridDesc_M_K
&
x_grid_desc_m_k
,
const
GridDesc_M_K
&
mean_grid_desc_m_k
,
const
GridDesc_M_K
&
inv_std_grid_desc_m_k
,
const
GridDesc_M
&
dgamma_grid_desc_m
,
const
GridDesc_M
&
dbeta_grid_desc_m
,
index_t
num_k_block_tile_iteration
,
const
DYDataType
*
const
__restrict__
p_dy_global
,
const
XDataType
*
const
__restrict__
p_x_global
,
const
MeanInvStdDataType
*
const
__restrict__
p_mean_global
,
const
MeanInvStdDataType
*
const
__restrict__
p_inv_std_global
,
DGammaDataType
*
const
__restrict__
p_dgamma_global
,
DBetaDataType
*
const
__restrict__
p_dbeta_global
)
{
// LDS
__shared__
ComputeDataType
p_reduce_work_buffer
[
BlockSize
];
auto
reduce_work_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Lds
>
(
p_reduce_work_buffer
,
BlockSize
);
// Global
const
auto
dy_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dy_global
,
dy_grid_desc_m_k
.
GetElementSpaceSize
());
const
auto
x_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_x_global
,
x_grid_desc_m_k
.
GetElementSpaceSize
());
const
auto
mean_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_mean_global
,
mean_grid_desc_m_k
.
GetElementSpaceSize
());
const
auto
inv_std_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_inv_std_global
,
inv_std_grid_desc_m_k
.
GetElementSpaceSize
());
auto
dgamma_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dgamma_global
,
dgamma_grid_desc_m
.
GetElementSpaceSize
());
auto
dbeta_global_val_buf
=
make_dynamic_buffer
<
AddressSpaceEnum
::
Global
>
(
p_dbeta_global
,
dbeta_grid_desc_m
.
GetElementSpaceSize
());
// VGPR
auto
dy_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
{};
auto
x_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
{};
auto
mean_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
{};
auto
inv_std_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
*
KThreadSliceSize
,
true
>
{};
auto
dgamma_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
{};
auto
dbeta_thread_buf
=
StaticBuffer
<
AddressSpaceEnum
::
Vgpr
,
ComputeDataType
,
MThreadSliceSize
,
true
>
{};
const
index_t
thread_local_id
=
get_thread_local_1d_id
();
const
index_t
block_global_id
=
get_block_1d_id
();
const
auto
thread_cluster_idx
=
thread_cluster_desc
.
CalculateBottomIndex
(
make_multi_index
(
thread_local_id
));
const
auto
thread_m_cluster_id
=
thread_cluster_idx
[
I0
];
const
auto
thread_k_cluster_id
=
thread_cluster_idx
[
I1
];
// IO
auto
threadwise_dy_load
=
ThreadwiseTensorSliceTransfer_v2
<
DYDataType
,
ComputeDataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
DYThreadBufferDimAccessOrder
,
DYSrcVectorDim
,
DYSrcVectorSize
,
1
,
true
>
(
dy_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_x_load
=
ThreadwiseTensorSliceTransfer_v2
<
XDataType
,
ComputeDataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
XThreadBufferDimAccessOrder
,
XSrcVectorDim
,
XSrcVectorSize
,
1
,
true
>
(
x_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_mean_load
=
ThreadwiseTensorSliceTransfer_v2
<
MeanInvStdDataType
,
ComputeDataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
MeanInvStdThreadBufferDimAccessOrder
,
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
,
1
,
true
>
(
mean_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_inv_std_load
=
ThreadwiseTensorSliceTransfer_v2
<
MeanInvStdDataType
,
ComputeDataType
,
GridDesc_M_K
,
decltype
(
thread_buffer_desc_m_k
),
ThreadBufferLengths_M_K
,
MeanInvStdThreadBufferDimAccessOrder
,
MeanInvStdSrcVectorDim
,
MeanInvStdSrcVectorSize
,
1
,
true
>
(
inv_std_grid_desc_m_k
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
,
thread_k_cluster_id
*
KThreadSliceSize
));
auto
threadwise_dgamma_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
ComputeDataType
,
DGammaDataType
,
decltype
(
thread_buffer_desc_m
),
GridDesc_M
,
PassThroughOp
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
DGammaDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
dgamma_grid_desc_m
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
auto
threadwise_dbeta_store
=
ThreadwiseTensorSliceTransfer_v1r3
<
ComputeDataType
,
DBetaDataType
,
decltype
(
thread_buffer_desc_m
),
GridDesc_M
,
PassThroughOp
,
ThreadBufferLengths_M
,
Sequence
<
0
>
,
0
,
DBetaDstVectorSize
,
InMemoryDataOperationEnum
::
Set
,
1
,
true
>
(
dbeta_grid_desc_m
,
make_multi_index
(
block_global_id
*
M_BlockTileSize
+
thread_m_cluster_id
*
MThreadSliceSize
),
PassThroughOp
{});
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
dgamma_thread_buf
(
I
)
=
type_convert
<
ComputeDataType
>
(
0.0
f
);
dbeta_thread_buf
(
I
)
=
type_convert
<
ComputeDataType
>
(
0.0
f
);
});
constexpr
auto
thread_copy_fwd_step_m_k
=
make_multi_index
(
0
,
K_BlockTileSize
);
for
(
index_t
reducedTiles
=
0
;
reducedTiles
<
num_k_block_tile_iteration
;
++
reducedTiles
)
{
threadwise_dy_load
.
Run
(
dy_grid_desc_m_k
,
dy_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
dy_thread_buf
);
threadwise_x_load
.
Run
(
x_grid_desc_m_k
,
x_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
x_thread_buf
);
threadwise_mean_load
.
Run
(
mean_grid_desc_m_k
,
mean_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
mean_thread_buf
);
threadwise_inv_std_load
.
Run
(
inv_std_grid_desc_m_k
,
inv_std_global_val_buf
,
thread_buffer_desc_m_k
,
make_tuple
(
I0
,
I0
),
inv_std_thread_buf
);
threadwise_dy_load
.
MoveSrcSliceWindow
(
dy_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_x_load
.
MoveSrcSliceWindow
(
x_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_mean_load
.
MoveSrcSliceWindow
(
mean_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
threadwise_inv_std_load
.
MoveSrcSliceWindow
(
inv_std_grid_desc_m_k
,
thread_copy_fwd_step_m_k
);
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
iM
)
{
constexpr
auto
offset_m
=
Number
<
thread_buffer_desc_m
.
CalculateOffset
(
make_tuple
(
iM
))
>
{};
static_for
<
0
,
KThreadSliceSize
,
1
>
{}([
&
](
auto
iK
)
{
constexpr
auto
offset_m_k
=
Number
<
thread_buffer_desc_m_k
.
CalculateOffset
(
make_tuple
(
iM
,
iK
))
>
{};
dgamma_thread_buf
(
offset_m
)
+=
dy_thread_buf
[
offset_m_k
]
*
inv_std_thread_buf
[
offset_m_k
]
*
(
x_thread_buf
[
offset_m_k
]
-
mean_thread_buf
[
offset_m_k
]);
dbeta_thread_buf
(
offset_m
)
+=
dy_thread_buf
[
offset_m_k
];
});
});
}
static_for
<
0
,
MThreadSliceSize
,
1
>
{}([
&
](
auto
I
)
{
if
constexpr
(
I
>
0
)
block_sync_lds
();
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
dbeta_thread_buf
(
I
));
block_sync_lds
();
BlockwiseSumReduce
::
Reduce
(
reduce_work_buf
,
dgamma_thread_buf
(
I
));
});
if
(
thread_k_cluster_id
==
0
)
{
threadwise_dgamma_store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dgamma_thread_buf
,
dgamma_grid_desc_m
,
dgamma_global_val_buf
);
threadwise_dbeta_store
.
Run
(
thread_buffer_desc_m
,
make_tuple
(
I0
),
dbeta_thread_buf
,
dbeta_grid_desc_m
,
dbeta_global_val_buf
);
}
}
};
}
// namespace ck
include/ck/utility/type_convert.hpp
View file @
7c284291
...
...
@@ -140,6 +140,36 @@ inline __host__ __device__ float type_convert<float, f8_t>(f8_t x)
#endif
}
template
<
>
inline
__host__
__device__
float2_t
type_convert
<
float2_t
,
f8x2_t
>
(
f8x2_t
x
)
{
#if defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__)
const
auto
i16val
=
bit_cast
<
uint16_t
>
(
x
);
return
__builtin_amdgcn_cvt_pk_f32_fp8
(
i16val
,
0
);
#else
constexpr
bool
negative_zero_nan
=
true
;
const
auto
f8x2_v
=
vector_type
<
f8_t
,
2
>
(
x
);
vector_type
<
float
,
2
>
f32x2_v
;
f32x2_v
.
template
AsType
<
float
>()(
Number
<
0
>
{})
=
utils
::
cast_from_f8
<
f8_t
,
float
,
negative_zero_nan
>
(
f8x2_v
.
template
AsType
<
f8_t
>()[
Number
<
0
>
{}]);
f32x2_v
.
template
AsType
<
float
>()(
Number
<
1
>
{})
=
utils
::
cast_from_f8
<
f8_t
,
float
,
negative_zero_nan
>
(
f8x2_v
.
template
AsType
<
f8_t
>()[
Number
<
1
>
{}]);
return
f32x2_v
.
template
AsType
<
float2_t
>()[
Number
<
0
>
{}];
#endif
}
template
<
>
inline
__host__
__device__
half2_t
type_convert
<
half2_t
,
float2_t
>
(
float2_t
x
)
{
const
vector_type
<
float
,
2
>
f32x2_v
(
x
);
const
auto
y
=
__builtin_amdgcn_cvt_pkrtz
(
f32x2_v
.
template
AsType
<
float
>()[
Number
<
0
>
{}],
f32x2_v
.
template
AsType
<
float
>()[
Number
<
1
>
{}]);
return
bit_cast
<
half2_t
>
(
y
);
}
// convert fp16 to fp8
template
<
>
inline
__host__
__device__
f8_t
type_convert
<
f8_t
,
half_t
>
(
half_t
x
)
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp
View file @
7c284291
...
...
@@ -3,12 +3,23 @@
#pragma once
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <numeric>
#include <type_traits>
#include <
sstream
>
#include <
vector
>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/fill.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
namespace
ck
{
namespace
tensor_operation
{
...
...
@@ -22,6 +33,7 @@ namespace host {
// Supports both GNCHW/NGCHW as well as GNHWC/NHWGC physical layout
// as long as dimensions in tensor descriptor is in GNCHW order
//
// @tparam NDimSpatial Number of spatial dimensions.
// @tparam InDataType Input tensor data type.
// @tparam WeiDataType Weights tensor data type.
// @tparam OutDataType Output tensor data type.
...
...
@@ -29,7 +41,9 @@ namespace host {
// operation.
// @tparam WeiElementwiseOperation Functor for weights tensor elementwise
// operation.
// @tparam NDimSpatial Number of spatial dimensions.
// @tparam NumAElementwiseTensor Number of A elementwise tensors.
// @tparam NumBElementwiseTensor Number of B elementwise tensors.
// @tparam NumDElementwiseTensor Number of D elementwise tensors.
//
// input descriptor in [G, N, C, Do, Ho, Wo] order
// weight descriptor in [G, K, C, Z, Y, X] order
...
...
@@ -42,28 +56,35 @@ template <ck::index_t NDimSpatial,
typename
InElementwiseOperation
,
typename
WeiElementwiseOperation
,
typename
OutElementwiseOperation
,
ck
::
index_t
NumDTensor
=
0
,
ck
::
index_t
NumAElementwiseTensor
=
0
,
ck
::
index_t
NumBElementwiseTensor
=
0
,
ck
::
index_t
NumDElementwiseTensor
=
0
,
typename
std
::
enable_if
<
NDimSpatial
>
=
1
&&
NDimSpatial
<=
3
,
bool
>::
type
=
false
>
struct
ReferenceConvFwd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDTensor
>&
d_tensors
)
Argument
(
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors
,
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors
,
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors
)
:
input_
{
input
},
weight_
{
weight
},
output_
{
output
},
d_tensors_
{
d_tensors
},
elementwise_a_tensors_
{
elementwise_a_tensors
},
elementwise_b_tensors_
{
elementwise_b_tensors
},
elementwise_d_tensors_
{
elementwise_d_tensors
},
conv_strides_
{
conv_filter_strides
},
conv_dilations_
{
conv_filter_dilations
},
in_left_pads_
{
input_left_pads
},
...
...
@@ -78,7 +99,9 @@ struct ReferenceConvFwd : public device::BaseOperator
const
Tensor
<
WeiDataType
>&
weight_
;
Tensor
<
OutDataType
>&
output_
;
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDTensor
>&
d_tensors_
;
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors_
;
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors_
;
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors_
;
std
::
vector
<
index_t
>
conv_strides_
;
std
::
vector
<
index_t
>
conv_dilations_
;
...
...
@@ -119,42 +142,43 @@ struct ReferenceConvFwd : public device::BaseOperator
if
(
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
3
])
{
float
v_in
;
float
v_wei
;
arg
.
in_element_op_
(
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
wi
)));
arg
.
wei_element_op_
(
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
x
)));
v_acc
+=
v_in
*
v_wei
;
InDataType
v_in
;
WeiDataType
v_wei
;
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_in
,
arg
.
input_
(
g
,
n
,
c
,
wi
),
g
,
n
,
c
,
wi
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
arg
.
weight_
(
g
,
k
,
c
,
x
),
g
,
k
,
c
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_in
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
OutDataType
v_out
;
OutDataType
v_acc_converted
=
ck
::
type_convert
<
OutDataType
>
(
v_acc
);
if
constexpr
(
NumDTensor
==
0
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
);
}
else
if
constexpr
(
NumDTensor
==
1
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
wo
));
}
else
if
constexpr
(
NumDTensor
==
2
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
wo
),
arg
.
d_tensors_
[
1
](
g
,
n
,
k
,
wo
));
}
else
{
throw
std
::
runtime_error
(
"Output ElementOp not supported in reference."
);
}
arg
.
output_
(
g
,
n
,
k
,
wo
)
=
v_out
;
OutDataType
&
v_out
=
arg
.
output_
(
g
,
n
,
k
,
wo
);
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_out
,
v_acc_converted
,
g
,
n
,
k
,
wo
);
};
make_ParallelTensorFunctor
(
func
,
...
...
@@ -191,44 +215,47 @@ struct ReferenceConvFwd : public device::BaseOperator
wi
>=
0
&&
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
4
])
{
float
v_in
;
float
v_wei
;
arg
.
in_element_op_
(
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
)));
arg
.
wei_element_op_
(
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
y
,
x
)));
v_acc
+=
v_in
*
v_wei
;
InDataType
v_in
;
WeiDataType
v_wei
;
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_in
,
arg
.
input_
(
g
,
n
,
c
,
hi
,
wi
),
g
,
n
,
c
,
hi
,
wi
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
arg
.
weight_
(
g
,
k
,
c
,
y
,
x
),
g
,
k
,
c
,
y
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_in
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
}
OutDataType
v_out
;
OutDataType
v_acc_converted
=
ck
::
type_convert
<
OutDataType
>
(
v_acc
);
if
constexpr
(
NumDTensor
==
0
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
);
}
else
if
constexpr
(
NumDTensor
==
1
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
ho
,
wo
));
}
else
if
constexpr
(
NumDTensor
==
2
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
ho
,
wo
),
arg
.
d_tensors_
[
1
](
g
,
n
,
k
,
ho
,
wo
));
}
else
{
throw
std
::
runtime_error
(
"Output ElementOp not supported in reference."
);
}
arg
.
output_
(
g
,
n
,
k
,
ho
,
wo
)
=
v_out
;
OutDataType
&
v_out
=
arg
.
output_
(
g
,
n
,
k
,
ho
,
wo
);
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_out
,
v_acc_converted
,
g
,
n
,
k
,
ho
,
wo
);
};
make_ParallelTensorFunctor
(
func
,
...
...
@@ -275,47 +302,51 @@ struct ReferenceConvFwd : public device::BaseOperator
ck
::
type_convert
<
std
::
size_t
>
(
wi
)
<
arg
.
input_
.
GetLengths
()[
5
])
{
float
v_in
;
float
v_wei
;
arg
.
in_element_op_
(
v_in
,
ck
::
type_convert
<
float
>
(
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
)));
arg
.
wei_element_op_
(
v_wei
,
ck
::
type_convert
<
float
>
(
arg
.
weight_
(
g
,
k
,
c
,
z
,
y
,
x
)));
v_acc
+=
v_in
*
v_wei
;
InDataType
v_in
;
WeiDataType
v_wei
;
ExecuteElementwiseOp
(
arg
.
in_element_op_
,
arg
.
elementwise_a_tensors_
,
Number
<
NumAElementwiseTensor
>
{},
v_in
,
arg
.
input_
(
g
,
n
,
c
,
di
,
hi
,
wi
),
g
,
n
,
c
,
di
,
hi
,
wi
);
ExecuteElementwiseOp
(
arg
.
wei_element_op_
,
arg
.
elementwise_b_tensors_
,
Number
<
NumBElementwiseTensor
>
{},
v_wei
,
arg
.
weight_
(
g
,
k
,
c
,
z
,
y
,
x
),
g
,
k
,
c
,
z
,
y
,
x
);
v_acc
+=
ck
::
type_convert
<
float
>
(
v_in
)
*
ck
::
type_convert
<
float
>
(
v_wei
);
}
}
}
}
}
OutDataType
v_out
;
OutDataType
v_acc_converted
=
ck
::
type_convert
<
OutDataType
>
(
v_acc
);
if
constexpr
(
NumDTensor
==
0
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
);
}
else
if
constexpr
(
NumDTensor
==
1
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
d_o
,
ho
,
wo
));
}
else
if
constexpr
(
NumDTensor
==
2
)
{
arg
.
out_element_op_
(
v_out
,
v_acc_converted
,
arg
.
d_tensors_
[
0
](
g
,
n
,
k
,
d_o
,
ho
,
wo
),
arg
.
d_tensors_
[
1
](
g
,
n
,
k
,
d_o
,
ho
,
wo
));
}
else
{
throw
std
::
runtime_error
(
"Output ElementOp not supported in reference."
);
}
arg
.
output_
(
g
,
n
,
k
,
d_o
,
ho
,
wo
)
=
v_out
;
OutDataType
&
v_out
=
arg
.
output_
(
g
,
n
,
k
,
d_o
,
ho
,
wo
);
ExecuteElementwiseOp
(
arg
.
out_element_op_
,
arg
.
elementwise_d_tensors_
,
Number
<
NumDElementwiseTensor
>
{},
v_out
,
v_acc_converted
,
g
,
n
,
k
,
d_o
,
ho
,
wo
);
};
make_ParallelTensorFunctor
(
func
,
...
...
@@ -338,6 +369,36 @@ struct ReferenceConvFwd : public device::BaseOperator
}
};
template
<
typename
...
Args
,
typename
ElementwiseOp
,
typename
ElementwiseTensor
,
typename
NumTensor
,
typename
T
>
static
void
ExecuteElementwiseOp
(
ElementwiseOp
&
elementwise_op
,
ElementwiseTensor
&
elementwise_tensors
,
NumTensor
,
T
&
y
,
const
T
&
x
,
Args
...
dims
)
{
if
constexpr
(
NumTensor
::
value
==
0
)
{
elementwise_op
(
y
,
x
);
}
else
if
constexpr
(
NumTensor
::
value
==
1
)
{
elementwise_op
(
y
,
x
,
elementwise_tensors
[
0
](
dims
...));
}
else
if
constexpr
(
NumTensor
::
value
==
2
)
{
elementwise_op
(
y
,
x
,
elementwise_tensors
[
0
](
dims
...),
elementwise_tensors
[
1
](
dims
...));
}
else
{
throw
std
::
runtime_error
(
"ElementOp not supported in reference."
);
}
}
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
...
...
@@ -349,17 +410,20 @@ struct ReferenceConvFwd : public device::BaseOperator
return
NDimSpatial
>=
1
&&
NDimSpatial
<=
3
;
}
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDTensor
>&
d_tensors
=
{})
static
auto
MakeArgument
(
const
Tensor
<
InDataType
>&
input
,
const
Tensor
<
WeiDataType
>&
weight
,
Tensor
<
OutDataType
>&
output
,
std
::
vector
<
ck
::
index_t
>
conv_filter_strides
,
std
::
vector
<
ck
::
index_t
>
conv_filter_dilations
,
std
::
vector
<
ck
::
index_t
>
input_left_pads
,
std
::
vector
<
ck
::
index_t
>
input_right_pads
,
InElementwiseOperation
in_element_op
,
WeiElementwiseOperation
wei_element_op
,
OutElementwiseOperation
out_element_op
,
const
std
::
array
<
Tensor
<
InDataType
>
,
NumAElementwiseTensor
>&
elementwise_a_tensors
=
{},
const
std
::
array
<
Tensor
<
WeiDataType
>
,
NumBElementwiseTensor
>&
elementwise_b_tensors
=
{},
const
std
::
array
<
Tensor
<
OutDataType
>
,
NumDElementwiseTensor
>&
elementwise_d_tensors
=
{})
{
return
Argument
{
input
,
weight
,
...
...
@@ -371,7 +435,9 @@ struct ReferenceConvFwd : public device::BaseOperator
in_element_op
,
wei_element_op
,
out_element_op
,
d_tensors
};
elementwise_a_tensors
,
elementwise_b_tensors
,
elementwise_d_tensors
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_groupnorm_bwd.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
typename
DXDataType
,
typename
ComputeDataType
>
struct
ReferenceGroupnormBwd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
DYDataType
>&
dy_nhwgc
,
const
Tensor
<
XDataType
>&
x_nhwgc
,
const
Tensor
<
GammaDataType
>&
gamma_gc
,
const
Tensor
<
MeanInvStdDataType
>&
mean_ng
,
const
Tensor
<
MeanInvStdDataType
>&
inv_std_ng
,
Tensor
<
DGammaDataType
>&
dgamma_gc
,
Tensor
<
DBetaDataType
>&
dbeta_gc
,
Tensor
<
DXDataType
>&
dx_nhwgc
,
const
std
::
vector
<
index_t
>
lengths
)
:
dy_nhwgc_
(
dy_nhwgc
),
x_nhwgc_
(
x_nhwgc
),
gamma_gc_
(
gamma_gc
),
mean_ng_
(
mean_ng
),
inv_std_ng_
(
inv_std_ng
),
dgamma_gc_
(
dgamma_gc
),
dbeta_gc_
(
dbeta_gc
),
dx_nhwgc_
(
dx_nhwgc
),
lengths_
(
lengths
)
{
}
const
Tensor
<
DYDataType
>&
dy_nhwgc_
;
const
Tensor
<
XDataType
>&
x_nhwgc_
;
const
Tensor
<
GammaDataType
>&
gamma_gc_
;
const
Tensor
<
MeanInvStdDataType
>&
mean_ng_
;
const
Tensor
<
MeanInvStdDataType
>&
inv_std_ng_
;
Tensor
<
DGammaDataType
>&
dgamma_gc_
;
Tensor
<
DBetaDataType
>&
dbeta_gc_
;
Tensor
<
DXDataType
>&
dx_nhwgc_
;
std
::
vector
<
index_t
>
lengths_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
float
Run
(
const
Argument
&
arg
)
{
int
N
=
arg
.
lengths_
[
0
];
int
H
=
arg
.
lengths_
[
1
];
int
W
=
arg
.
lengths_
[
2
];
int
G
=
arg
.
lengths_
[
3
];
int
C
=
arg
.
lengths_
[
4
];
// Calculate dgamma and dbeta
for
(
int
g
=
0
;
g
<
G
;
++
g
)
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
ComputeDataType
dgamma
=
0
;
ComputeDataType
dbeta
=
0
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
for
(
int
h
=
0
;
h
<
H
;
++
h
)
for
(
int
w
=
0
;
w
<
W
;
++
w
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
mean
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
mean_ng_
(
n
,
g
));
ComputeDataType
rstd
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
inv_std_ng_
(
n
,
g
));
dgamma
+=
dy
*
rstd
*
(
x
-
mean
);
dbeta
+=
dy
;
}
arg
.
dgamma_gc_
(
g
,
c
)
=
ck
::
type_convert
<
DGammaDataType
>
(
dgamma
);
arg
.
dbeta_gc_
(
g
,
c
)
=
ck
::
type_convert
<
DBetaDataType
>
(
dbeta
);
}
// Calculate dx
int
reduce_size
=
H
*
W
*
C
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
for
(
int
g
=
0
;
g
<
G
;
++
g
)
{
ComputeDataType
ds
=
0
;
ComputeDataType
db
=
0
;
ComputeDataType
mean
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
mean_ng_
(
n
,
g
));
ComputeDataType
rstd
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
inv_std_ng_
(
n
,
g
));
for
(
int
h
=
0
;
h
<
H
;
++
h
)
for
(
int
w
=
0
;
w
<
W
;
++
w
)
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
gamma
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
gamma_gc_
(
g
,
c
));
ds
+=
dy
*
gamma
*
x
;
db
+=
dy
*
gamma
;
}
for
(
int
h
=
0
;
h
<
H
;
++
h
)
for
(
int
w
=
0
;
w
<
W
;
++
w
)
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_nhwgc_
(
n
,
h
,
w
,
g
,
c
));
ComputeDataType
gamma
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
gamma_gc_
(
g
,
c
));
ComputeDataType
b
=
(
db
*
mean
-
ds
)
*
rstd
*
rstd
*
rstd
/
reduce_size
;
ComputeDataType
c1
=
-
b
*
mean
-
db
*
rstd
/
reduce_size
;
arg
.
dx_nhwgc_
(
n
,
h
,
w
,
g
,
c
)
=
ck
::
type_convert
<
DXDataType
>
(
dy
*
gamma
*
rstd
+
b
*
x
+
c1
);
}
}
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
DYDataType
>&
dy_nhwgc
,
const
Tensor
<
XDataType
>&
x_nhwgc
,
const
Tensor
<
GammaDataType
>&
gamma_gc
,
const
Tensor
<
MeanInvStdDataType
>&
mean_ng
,
const
Tensor
<
MeanInvStdDataType
>&
inv_std_ng
,
Tensor
<
DGammaDataType
>&
dgamma_gc
,
Tensor
<
DBetaDataType
>&
dbeta_gc
,
Tensor
<
DXDataType
>&
dx_nhwgc
,
const
std
::
vector
<
index_t
>
lengths
)
{
return
Argument
{
dy_nhwgc
,
x_nhwgc
,
gamma_gc
,
mean_ng
,
inv_std_ng
,
dgamma_gc
,
dbeta_gc
,
dx_nhwgc
,
lengths
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceGroupnormBwd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm.hpp
View file @
7c284291
...
...
@@ -28,7 +28,8 @@ template <typename XDataType,
struct
ReferenceLayernorm
:
public
device
::
BaseOperator
{
// TODO - support generic layernorm
static_assert
((
Rank
==
2
&&
NumReduceDim
==
1
),
"Only support 2D version so far"
);
static_assert
((
Rank
==
2
&&
NumReduceDim
==
1
)
||
(
Rank
==
4
&&
NumReduceDim
==
3
),
"Only support 2D & 4D version so far"
);
// Argument
struct
Argument
:
public
device
::
BaseArgument
...
...
@@ -71,7 +72,7 @@ struct ReferenceLayernorm : public device::BaseOperator
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
float
Run
(
const
Argument
&
arg
)
float
Run
2D
(
const
Argument
&
arg
)
{
int
M
=
arg
.
lengths_
[
0
];
int
N
=
arg
.
lengths_
[
1
];
...
...
@@ -117,6 +118,71 @@ struct ReferenceLayernorm : public device::BaseOperator
return
0
;
}
float
Run4D
(
const
Argument
&
arg
)
{
int
N
=
arg
.
lengths_
[
0
];
int
H
=
arg
.
lengths_
[
1
];
int
W
=
arg
.
lengths_
[
2
];
int
C
=
arg
.
lengths_
[
3
];
Tensor
<
ComputeDataType
>
mean
({
N
});
Tensor
<
ComputeDataType
>
var
({
N
});
int
reduce_length
=
H
*
W
*
C
;
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
mean
(
n
)
=
0
;
var
(
n
)
=
0
;
for
(
int
h
=
0
;
h
<
H
;
++
h
)
for
(
int
w
=
0
;
w
<
W
;
++
w
)
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
auto
x_val
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_m_n_
(
n
,
h
,
w
,
c
));
mean
(
n
)
+=
x_val
;
var
(
n
)
+=
x_val
*
x_val
;
}
mean
(
n
)
=
mean
(
n
)
/
reduce_length
;
var
(
n
)
=
(
var
(
n
)
/
reduce_length
)
-
(
mean
(
n
)
*
mean
(
n
));
}
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
divisor
=
static_cast
<
ComputeDataType
>
(
1
)
/
ck
::
math
::
sqrt
(
var
(
n
)
+
arg
.
epsilon_
);
for
(
int
h
=
0
;
h
<
H
;
++
h
)
for
(
int
w
=
0
;
w
<
W
;
++
w
)
for
(
int
c
=
0
;
c
<
C
;
++
c
)
{
auto
x_val
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_m_n_
(
n
,
h
,
w
,
c
));
auto
gamma_val
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
gamma_n_
(
h
,
w
,
c
));
auto
beta_val
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
beta_n_
(
h
,
w
,
c
));
auto
y_val
=
(
x_val
-
mean
(
n
))
*
divisor
;
y_val
=
(
y_val
*
gamma_val
)
+
beta_val
;
arg
.
y_elementwise_op_
(
y_val
,
y_val
);
arg
.
y_m_n_
(
n
,
h
,
w
,
c
)
=
ck
::
type_convert
<
YDataType
>
(
y_val
);
}
arg
.
save_mean_m_
(
n
)
=
ck
::
type_convert
<
SaveMeanInvStdDataType
>
(
mean
(
n
));
arg
.
save_inv_std_m_
(
n
)
=
ck
::
type_convert
<
SaveMeanInvStdDataType
>
(
divisor
);
}
return
0
;
}
float
Run
(
const
Argument
&
arg
)
{
if
(
arg
.
lengths_
.
size
()
==
2
)
return
Run2D
(
arg
);
else
if
(
arg
.
lengths_
.
size
()
==
4
)
return
Run4D
(
arg
);
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
...
...
@@ -134,17 +200,16 @@ struct ReferenceLayernorm : public device::BaseOperator
{
const
Argument
*
p_arg_
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
// TODO - support generic layernorm
if
(
p_arg_
->
lengths_
.
size
()
!=
2
)
return
false
;
if
(
p_arg_
->
reduceDims_
.
size
()
!=
1
)
return
false
;
if
(
p_arg_
->
lengths_
.
size
()
==
2
&&
p_arg_
->
reduceDims_
.
size
()
==
1
&&
p_arg_
->
reduceDims_
[
0
]
==
1
)
return
true
;
if
(
p_arg_
->
reduceDims_
[
0
]
!=
1
)
return
false
;
else
if
(
p_arg_
->
lengths_
.
size
()
==
4
&&
p_arg_
->
reduceDims_
.
size
()
==
3
&&
p_arg_
->
reduceDims_
[
0
]
==
1
&&
p_arg_
->
reduceDims_
[
1
]
==
2
&&
p_arg_
->
reduceDims_
[
2
]
==
3
)
return
true
;
return
tru
e
;
return
fals
e
;
}
static
auto
MakeArgument
(
const
Tensor
<
XDataType
>&
x_m_n
,
...
...
library/include/ck/library/reference_tensor_operation/cpu/reference_layernorm_bwd.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include <vector>
#include <algorithm>
#include "ck/tensor_operation/gpu/device/device_base.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
host
{
template
<
typename
DYDataType
,
typename
XDataType
,
typename
GammaDataType
,
typename
MeanInvStdDataType
,
typename
DGammaDataType
,
typename
DBetaDataType
,
typename
DXDataType
,
typename
ComputeDataType
>
struct
ReferenceLayernormBwd
:
public
device
::
BaseOperator
{
// Argument
struct
Argument
:
public
device
::
BaseArgument
{
Argument
(
const
Tensor
<
DYDataType
>&
dy_m_n
,
const
Tensor
<
XDataType
>&
x_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
MeanInvStdDataType
>&
mean_m
,
const
Tensor
<
MeanInvStdDataType
>&
inv_std_m
,
Tensor
<
DGammaDataType
>&
dgamma_n
,
Tensor
<
DBetaDataType
>&
dbeta_n
,
Tensor
<
DXDataType
>&
dx_m_n
,
const
std
::
vector
<
index_t
>
lengths
)
:
dy_m_n_
(
dy_m_n
),
x_m_n_
(
x_m_n
),
gamma_n_
(
gamma_n
),
mean_m_
(
mean_m
),
inv_std_m_
(
inv_std_m
),
dgamma_n_
(
dgamma_n
),
dbeta_n_
(
dbeta_n
),
dx_m_n_
(
dx_m_n
),
lengths_
(
lengths
)
{
}
const
Tensor
<
DYDataType
>&
dy_m_n_
;
const
Tensor
<
XDataType
>&
x_m_n_
;
const
Tensor
<
GammaDataType
>&
gamma_n_
;
const
Tensor
<
MeanInvStdDataType
>&
mean_m_
;
const
Tensor
<
MeanInvStdDataType
>&
inv_std_m_
;
Tensor
<
DGammaDataType
>&
dgamma_n_
;
Tensor
<
DBetaDataType
>&
dbeta_n_
;
Tensor
<
DXDataType
>&
dx_m_n_
;
std
::
vector
<
index_t
>
lengths_
;
};
// Invoker
struct
Invoker
:
public
device
::
BaseInvoker
{
float
Run
(
const
Argument
&
arg
)
{
int
M
=
arg
.
lengths_
[
0
];
int
N
=
arg
.
lengths_
[
1
];
// Calculate dgamma and dbeta
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
dgamma
=
0
;
ComputeDataType
dbeta
=
0
;
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_m_n_
(
m
,
n
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_m_n_
(
m
,
n
));
ComputeDataType
mean
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
mean_m_
(
m
));
ComputeDataType
rstd
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
inv_std_m_
(
m
));
dgamma
+=
dy
*
rstd
*
(
x
-
mean
);
dbeta
+=
dy
;
}
arg
.
dgamma_n_
(
n
)
=
ck
::
type_convert
<
DGammaDataType
>
(
dgamma
);
arg
.
dbeta_n_
(
n
)
=
ck
::
type_convert
<
DBetaDataType
>
(
dbeta
);
}
// Calculate dx
for
(
int
m
=
0
;
m
<
M
;
++
m
)
{
ComputeDataType
ds
=
0
;
ComputeDataType
db
=
0
;
ComputeDataType
mean
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
mean_m_
(
m
));
ComputeDataType
rstd
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
inv_std_m_
(
m
));
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_m_n_
(
m
,
n
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_m_n_
(
m
,
n
));
ComputeDataType
gamma
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
gamma_n_
(
n
));
ds
+=
dy
*
gamma
*
x
;
db
+=
dy
*
gamma
;
}
for
(
int
n
=
0
;
n
<
N
;
++
n
)
{
ComputeDataType
dy
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
dy_m_n_
(
m
,
n
));
ComputeDataType
x
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
x_m_n_
(
m
,
n
));
ComputeDataType
gamma
=
ck
::
type_convert
<
ComputeDataType
>
(
arg
.
gamma_n_
(
n
));
ComputeDataType
b
=
(
db
*
mean
-
ds
)
*
rstd
*
rstd
*
rstd
/
N
;
ComputeDataType
c
=
-
b
*
mean
-
db
*
rstd
/
N
;
arg
.
dx_m_n_
(
m
,
n
)
=
ck
::
type_convert
<
DXDataType
>
(
dy
*
gamma
*
rstd
+
b
*
x
+
c
);
}
}
return
0
;
}
float
Run
(
const
device
::
BaseArgument
*
p_arg
,
const
StreamConfig
&
/* stream_config */
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
};
static
constexpr
bool
IsValidCompilationParameter
()
{
// TODO: properly implement this check
return
true
;
}
bool
IsSupportedArgument
(
const
device
::
BaseArgument
*
)
override
{
return
true
;
}
static
auto
MakeArgument
(
const
Tensor
<
DYDataType
>&
dy_m_n
,
const
Tensor
<
XDataType
>&
x_m_n
,
const
Tensor
<
GammaDataType
>&
gamma_n
,
const
Tensor
<
MeanInvStdDataType
>&
mean_m
,
const
Tensor
<
MeanInvStdDataType
>&
inv_std_m
,
Tensor
<
DGammaDataType
>&
dgamma_n
,
Tensor
<
DBetaDataType
>&
dbeta_n
,
Tensor
<
DXDataType
>&
dx_m_n
,
const
std
::
vector
<
index_t
>
lengths
)
{
return
Argument
{
dy_m_n
,
x_m_n
,
gamma_n
,
mean_m
,
inv_std_m
,
dgamma_n
,
dbeta_n
,
dx_m_n
,
lengths
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
virtual
std
::
unique_ptr
<
device
::
BaseInvoker
>
MakeInvokerPointer
()
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"ReferenceLayernormBwd"
<<
std
::
endl
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace host
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/gemm.hpp
View file @
7c284291
...
...
@@ -328,7 +328,18 @@ void add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_kn_mn_instances(
void
add_device_gemm_xdl_c_shuffle_f8_f8_f8_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F8
,
F8
,
F8
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Row
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGemm
<
Row
,
Col
,
Row
,
F16
,
F8
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
#endif
template
<
typename
ALayout
,
typename
BLayout
,
typename
CLayout
,
...
...
@@ -548,6 +559,20 @@ struct DeviceOperationInstanceFactory<
add_device_gemm_xdl_c_shuffle_f8_f8_f8_km_nk_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
ck
::
half_t
>
&&
is_same_v
<
BDataType
,
ck
::
f8_t
>
&&
is_same_v
<
CDataType
,
ck
::
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_kn_mn_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Col
>
&&
is_same_v
<
CLayout
,
Row
>
)
{
add_device_gemm_xdl_c_shuffle_f16_f8_f16_mk_nk_mn_instances
(
op_ptrs
);
}
}
#endif
return
op_ptrs
;
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_conv_fwd/device_grouped_conv_fwd_xdl_scaleadd_ab_instance.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
BF16
=
ck
::
bhalf_t
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
namespace
ck
::
tensor_layout
::
convolution
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
static
constexpr
auto
ConvFwdDefault
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
ConvFwd1x1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Pad0
;
static
constexpr
auto
ConvFwd1x1S1P0
=
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
;
static
constexpr
auto
ConvFwdOddC
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
OddC
;
static
constexpr
auto
GemmMNKPadding
=
GemmSpecialization
::
MNKPadding
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_bf16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
F32
,
BF16
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_f16_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
F32
,
F16
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_f32_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
16
,
4
,
4
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
8
,
1
,
8
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
16
,
4
,
4
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
F32
,
F32
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
16
,
4
,
4
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
4
,
4
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
16
>
,
4
>
// clang-format on
>
;
template
<
index_t
NDimSpatial
,
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
ConvolutionForwardSpecialization
ConvSpec
>
using
device_grouped_conv_fwd_xdl_scaleadd_ab_int8_instances
=
std
::
tuple
<
// clang-format off
//########################################| NumDim| A| B| Ds| E| AData| BData| AccData| CShuffle| Ds| EData| A| B| CDE| ConvForward| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//########################################| Spatial| Layout| Layout| Layout| Layout| Type| Type| Type| DataType| DataType| Type| Elementwise| Elementwise| Elementwise| Specialization| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//########################################| | | | | | | | | | | | Operation| Operation| Operation| | | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//########################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// generic instance
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
// instances for small conv.K and conv.C
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
64
,
64
,
32
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
4
>
,
1
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
ALayout
,
BLayout
,
ck
::
Tuple
<>
,
ELayout
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
int32_t
,
int8_t
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
,
ConvSpec
,
GemmMNKPadding
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_data.hpp
View file @
7c284291
...
...
@@ -496,7 +496,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
ComputeTypeA
,
F16
>
&&
is_same_v
<
ComputeTypeB
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_f16_instances
(
...
...
@@ -507,14 +508,16 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_gnhwk_gkyxc_gnhwc_bf16_instances
(
op_ptrs
);
...
...
@@ -522,7 +525,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_i8_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_wmma_gnhwk_gkyxc_gnhwc_i8_1x1s1p0_instances
(
...
...
@@ -535,7 +540,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
ComputeTypeA
,
F16
>
&&
is_same_v
<
ComputeTypeB
,
F16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_f16_instances
(
...
...
@@ -546,14 +552,16 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv2d_bwd_data_xdl_nhwgk_gkyxc_nhwgc_bf16_instances
(
op_ptrs
);
...
...
@@ -561,7 +569,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_i8_instances
(
op_ptrs
);
add_device_grouped_conv2d_bwd_data_wmma_nhwgk_gkyxc_nhwgc_i8_1x1s1p0_instances
(
...
...
@@ -578,7 +588,8 @@ struct DeviceOperationInstanceFactory<
{
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
F16
>
&&
is_same_v
<
WeiDataType
,
F16
>
&&
is_same_v
<
OutDataType
,
F16
>
)
is_same_v
<
OutDataType
,
F16
>
&&
is_same_v
<
ComputeTypeA
,
F16
>
&&
is_same_v
<
ComputeTypeB
,
F16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f16_instances
(
op_ptrs
);
...
...
@@ -590,7 +601,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_f32_instances
(
op_ptrs
);
...
...
@@ -598,7 +610,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_gndhwk_gkzyxc_gndhwc_bf16_instances
(
op_ptrs
);
...
...
@@ -606,7 +619,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv3d_bwd_data_wmma_gndhwk_gkzyxc_gndhwc_i8_instances
(
op_ptrs
);
...
...
@@ -642,7 +657,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_FP32
else
if
constexpr
(
is_same_v
<
InDataType
,
F32
>
&&
is_same_v
<
WeiDataType
,
F32
>
&&
is_same_v
<
OutDataType
,
F32
>
)
is_same_v
<
OutDataType
,
F32
>
&&
is_same_v
<
ComputeTypeA
,
F32
>
&&
is_same_v
<
ComputeTypeB
,
F32
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_f32_instances
(
op_ptrs
);
...
...
@@ -650,7 +666,8 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_BF16
else
if
constexpr
(
is_same_v
<
InDataType
,
BF16
>
&&
is_same_v
<
WeiDataType
,
BF16
>
&&
is_same_v
<
OutDataType
,
BF16
>
)
is_same_v
<
OutDataType
,
BF16
>
&&
is_same_v
<
ComputeTypeA
,
BF16
>
&&
is_same_v
<
ComputeTypeB
,
BF16
>
)
{
add_device_grouped_conv3d_bwd_data_xdl_ndhwgk_gkzyxc_ndhwgc_bf16_instances
(
op_ptrs
);
...
...
@@ -658,7 +675,9 @@ struct DeviceOperationInstanceFactory<
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv3d_bwd_data_wmma_ndhwgk_gkzyxc_ndhwgc_i8_instances
(
op_ptrs
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_backward_weight.hpp
View file @
7c284291
...
...
@@ -618,7 +618,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f32_instances
(
op_ptrs
);
...
...
@@ -628,7 +629,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeTypeA
,
half_t
>
&&
is_same_v
<
ComputeTypeB
,
half_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_f16_instances
(
op_ptrs
);
...
...
@@ -638,7 +640,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv1d_bwd_weight_dl_gnwc_gkxc_gnwk_bf16_f32_bf16_instances
(
...
...
@@ -655,21 +659,25 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef DL_KERNELS
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeTypeA
,
half_t
>
&&
is_same_v
<
ComputeTypeB
,
half_t
>
)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv1d_bwd_weight_dl_nwgc_gkxc_nwgk_bf16_f32_bf16_instances
(
op_ptrs
);
...
...
@@ -685,7 +693,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f32_instances
(
...
...
@@ -697,7 +706,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeTypeA
,
half_t
>
&&
is_same_v
<
ComputeTypeB
,
half_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_f16_instances
(
...
...
@@ -709,7 +719,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_gnhwc_gkyxc_gnhwk_bf16_f32_bf16_instances
(
...
...
@@ -725,7 +737,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f32_instances
(
...
...
@@ -737,7 +750,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeTypeA
,
half_t
>
&&
is_same_v
<
ComputeTypeB
,
half_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_f16_instances
(
...
...
@@ -749,7 +763,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv2d_bwd_weight_dl_nhwgc_gkyxc_nhwgk_bf16_f32_bf16_instances
(
...
...
@@ -768,7 +784,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f32_instances
(
...
...
@@ -780,7 +797,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeTypeA
,
half_t
>
&&
is_same_v
<
ComputeTypeB
,
half_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_f16_instances
(
...
...
@@ -796,7 +814,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_gndhwc_gkzyxc_gndhwk_bf16_f32_bf16_instances
(
...
...
@@ -808,7 +828,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv3d_bwd_weight_wmma_gndhwc_gkzyxc_gndhwk_i8_instances
(
op_ptrs
);
...
...
@@ -822,7 +844,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeTypeA
,
float
>
&&
is_same_v
<
ComputeTypeB
,
float
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
...
...
@@ -851,7 +874,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeA
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeTypeB
,
ck
::
bhalf_t
>
)
{
#ifdef DL_KERNELS
add_device_grouped_conv3d_bwd_weight_dl_ndhwgc_gkzyxc_ndhwgk_bf16_f32_bf16_instances
(
...
...
@@ -863,7 +888,9 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeTypeA
,
int8_t
>
&&
is_same_v
<
ComputeTypeB
,
int8_t
>
)
{
add_device_grouped_conv3d_bwd_weight_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances
(
op_ptrs
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward.hpp
View file @
7c284291
...
...
@@ -928,28 +928,29 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
bhalf_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnwc_gkxc_gnwk_int8_instances
(
op_ptrs
);
}
...
...
@@ -961,7 +962,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
...
...
@@ -969,7 +970,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f32_instances
(
op_ptrs
);
}
...
...
@@ -977,7 +978,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
...
...
@@ -989,7 +990,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_dl_gnhwc_gkyxc_gnhwk_f16_instances
(
op_ptrs
);
}
...
...
@@ -997,7 +998,8 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
bhalf_t
>
)
{
add_device_grouped_conv1d_fwd_xdl_gnhwc_gkyxc_gnhwk_bf16_instances
(
op_ptrs
);
}
...
...
@@ -1005,7 +1007,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_gnhwc_gkyxc_gnhwk_i8_1x1p0_instances
(
op_ptrs
);
...
...
@@ -1021,7 +1023,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
}
...
...
@@ -1029,7 +1031,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP32) && defined(DL_KERNELS))
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f32_instances
(
op_ptrs
);
}
...
...
@@ -1037,7 +1039,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
}
...
...
@@ -1045,7 +1047,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#if(defined(CK_ENABLE_FP16) && defined(DL_KERNELS))
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv2d_fwd_dl_nhwgc_gkyxc_nhwgk_f16_instances
(
op_ptrs
);
}
...
...
@@ -1053,14 +1055,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
bhalf_t
>
)
{
add_device_grouped_conv2d_fwd_xdl_nhwgc_gkyxc_nhwgk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
else
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_instances
(
op_ptrs
);
add_device_grouped_conv2d_fwd_wmma_nhwgc_gkyxc_nhwgk_i8_1x1p0_instances
(
op_ptrs
);
...
...
@@ -1075,14 +1078,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
half_t
>
&&
is_same_v
<
WeiDataType
,
half_t
>
&&
is_same_v
<
OutDataType
,
half_t
>
)
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_f16_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_f16_instances
(
op_ptrs
);
...
...
@@ -1095,14 +1098,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_gndhwc_gkzyxc_gndhwk_int8_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_wmma_gndhwc_gkzyxc_gndhwk_i8_instances
(
op_ptrs
);
...
...
@@ -1119,7 +1123,7 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
float
>
&&
is_same_v
<
WeiDataType
,
float
>
&&
is_same_v
<
OutDataType
,
float
>
)
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
}
...
...
@@ -1148,14 +1152,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
)
is_same_v
<
WeiDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
int8_t
>
&&
is_same_v
<
WeiDataType
,
int8_t
>
&&
is_same_v
<
OutDataType
,
int8_t
>
)
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
op_ptrs
);
add_device_grouped_conv3d_fwd_wmma_ndhwgc_gkzyxc_ndhwgk_i8_instances
(
op_ptrs
);
...
...
library/include/ck/library/tensor_operation_instance/gpu/grouped_convolution_forward_scaleadd_ab.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
ScaleAdd
=
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
;
#ifdef CK_ENABLE_BF16
// grouped conv3d forward multi AB scaleadd, NDHWGC/GKZYXC/NDHWGK
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<
BF16
,
BF16
>
,
ck
::
Tuple
<>
,
BF16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP16
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<
F16
,
F16
>
,
ck
::
Tuple
<>
,
F16
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_FP32
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<
F32
,
F32
>
,
ck
::
Tuple
<>
,
F32
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
#ifdef CK_ENABLE_INT8
void
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedConvFwdMultipleD
<
3
,
NDHWGC
,
GKZYXC
,
ck
::
Tuple
<>
,
NDHWGK
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<
int8_t
,
int8_t
>
,
ck
::
Tuple
<>
,
int8_t
,
ScaleAdd
,
ScaleAdd
,
PassThrough
>>>&
instances
);
#endif
template
<
ck
::
index_t
NumDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
DLayouts
,
typename
OutLayout
,
typename
InDataType
,
typename
WeiDataType
,
typename
DDataTypes
,
typename
OutDataType
,
typename
ComputeType
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ComputeType
>>
{
using
DeviceOp
=
DeviceGroupedConvFwdMultipleD
<
NumDimSpatial
,
InLayout
,
WeiLayout
,
DLayouts
,
OutLayout
,
InDataType
,
WeiDataType
,
DDataTypes
,
OutDataType
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
ScaleAdd
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
ComputeType
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
NumDimSpatial
==
3
&&
is_same_v
<
InLayout
,
NDHWGC
>
&&
is_same_v
<
WeiLayout
,
GKZYXC
>
&&
is_same_v
<
OutLayout
,
NDHWGK
>
)
{
#ifdef CK_ENABLE_FP32
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
float
,
float
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
float
,
float
>>
&&
is_same_v
<
OutDataType
,
float
>
&&
is_same_v
<
ComputeType
,
float
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f32_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_FP16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
half_t
,
half_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
half_t
,
half_t
>>
&&
is_same_v
<
OutDataType
,
half_t
>
&&
is_same_v
<
ComputeType
,
half_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_f16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_BF16
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
ck
::
bhalf_t
,
ck
::
bhalf_t
>>
&&
is_same_v
<
OutDataType
,
ck
::
bhalf_t
>
&&
is_same_v
<
ComputeType
,
ck
::
bhalf_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_bf16_instances
(
op_ptrs
);
}
#endif
#ifdef CK_ENABLE_INT8
if
constexpr
(
is_same_v
<
InDataType
,
ck
::
Tuple
<
int8_t
,
int8_t
>>
&&
is_same_v
<
WeiDataType
,
ck
::
Tuple
<
int8_t
,
int8_t
>>
&&
is_same_v
<
OutDataType
,
int8_t
>
&&
is_same_v
<
ComputeType
,
int8_t
>
)
{
add_device_grouped_conv3d_fwd_xdl_scaleadd_ab_ndhwgc_gkzyxc_ndhwgk_int8_instances
(
op_ptrs
);
}
#endif
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/grouped_gemm.hpp
View file @
7c284291
...
...
@@ -120,6 +120,32 @@ void add_device_grouped_gemm_xdl_splitk_f16_f16_f16_mk_kn_mn_irregular_instances
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F16
,
F8
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
void
add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceGroupedGemm
<
Row
,
Row
,
Empty_Tuple
,
Row
,
F8
,
F16
,
Empty_Tuple
,
F16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
);
template
<
typename
ALayout
,
typename
BLayout
,
typename
ELayout
,
...
...
@@ -184,6 +210,24 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceGroupe
add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
half_t
>
&&
is_same_v
<
BDataType
,
f8_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_splitk_f16_f8_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
ADataType
,
f8_t
>
&&
is_same_v
<
BDataType
,
half_t
>
&&
is_same_v
<
EDataType
,
half_t
>
)
{
if
constexpr
(
is_same_v
<
ALayout
,
Row
>
&&
is_same_v
<
BLayout
,
Row
>
&&
is_same_v
<
ELayout
,
Row
>
)
{
add_device_grouped_gemm_xdl_splitk_f8_f16_f16_mk_kn_mn_irregular_instances
(
op_ptrs
);
}
}
return
op_ptrs
;
}
};
...
...
library/include/ck/library/tensor_operation_instance/gpu/normalization.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/normalization
_fwd
.hpp
View file @
7c284291
...
...
@@ -7,7 +7,7 @@
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
...
...
@@ -18,25 +18,31 @@ namespace device {
namespace
instance
{
#ifdef CK_ENABLE_FP16
// FP16
void
add_device_normalization_rank_2_1_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
2
,
1
>>>&
);
void
add_device_normalization_fwd_rank_2_1_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
2
,
1
>>>&
);
void
add_device_normalization_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
void
add_device_normalization_fwd_rank_4_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
4
,
3
>>>&
);
void
add_device_normalization_rank_5_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
5
,
3
>>>&
);
void
add_device_normalization_fwd_rank_5_3_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F16
,
F16
,
F16
,
F16
,
F32
,
PassThrough
,
5
,
3
>>>&
);
#endif
#ifdef CK_ENABLE_FP32
// FP32
void
add_device_normalization_rank_2_1_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
2
,
1
>>>&
);
void
add_device_normalization_fwd_rank_2_1_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
2
,
1
>>>&
);
void
add_device_normalization_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
void
add_device_normalization_fwd_rank_4_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
4
,
3
>>>&
);
void
add_device_normalization_rank_5_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
5
,
3
>>>&
);
void
add_device_normalization_fwd_rank_5_3_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalizationFwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
PassThrough
,
5
,
3
>>>&
);
#endif
template
<
typename
XDataType
,
typename
GammaDataType
,
...
...
@@ -45,7 +51,7 @@ template <typename XDataType,
typename
SaveMeanInvStdDataType
,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
...
...
@@ -55,14 +61,14 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
Rank
,
NumReduceDim
>>
{
using
DeviceOp
=
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
PassThrough
,
Rank
,
NumReduceDim
>
;
static
auto
GetInstances
()
{
...
...
@@ -74,15 +80,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
{
if
constexpr
(
Rank
==
2
&&
NumReduceDim
==
1
)
{
add_device_normalization_rank_2_1_f16_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_2_1_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_4_3_f16_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_4_3_f16_instances
(
op_ptrs
);
}
else
if
constexpr
(
Rank
==
5
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_5_3_f16_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_5_3_f16_instances
(
op_ptrs
);
}
}
#endif
...
...
@@ -93,15 +99,15 @@ struct DeviceOperationInstanceFactory<ck::tensor_operation::device::DeviceNormal
{
if
constexpr
(
Rank
==
2
&&
NumReduceDim
==
1
)
{
add_device_normalization_rank_2_1_f32_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_2_1_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
Rank
==
4
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_4_3_f32_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_4_3_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
Rank
==
5
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_5_3_f32_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_5_3_f32_instances
(
op_ptrs
);
}
}
#endif
...
...
library/include/ck/library/tensor_operation_instance/gpu/normalization_swish.hpp
→
library/include/ck/library/tensor_operation_instance/gpu/normalization_
fwd_
swish.hpp
View file @
7c284291
...
...
@@ -7,7 +7,7 @@
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization.hpp"
#include "ck/tensor_operation/gpu/device/device_normalization
_fwd
.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
...
...
@@ -18,16 +18,16 @@ namespace device {
namespace
instance
{
// FP16
void
add_device_normalization_rank_5_3_swish_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F16
,
F16
,
F16
,
F32
,
Swish
,
5
,
3
>>>&
);
void
add_device_normalization_
fwd_
rank_5_3_swish_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
Fwd
<
F16
,
F16
,
F16
,
F16
,
F32
,
Swish
,
5
,
3
>>>&
);
// FP32
void
add_device_normalization_rank_5_3_swish_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F32
,
F32
,
F32
,
F32
,
F32
,
Swish
,
5
,
3
>>>&
);
void
add_device_normalization_
fwd_
rank_5_3_swish_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
Fwd
<
F32
,
F32
,
F32
,
F32
,
F32
,
Swish
,
5
,
3
>>>&
);
// [x, gamma, beta, y] = [f16, f32, f32, f16]
void
add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
<
F16
,
F32
,
F32
,
F16
,
F32
,
Swish
,
5
,
3
>>>&
);
void
add_device_normalization_
fwd_
rank_5_3_swish_f16_f32_f32_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceNormalization
Fwd
<
F16
,
F32
,
F32
,
F16
,
F32
,
Swish
,
5
,
3
>>>&
);
template
<
typename
XDataType
,
typename
GammaDataType
,
...
...
@@ -37,23 +37,23 @@ template <typename XDataType,
index_t
Rank
,
index_t
NumReduceDim
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
Swish
,
Rank
,
NumReduceDim
>>
ck
::
tensor_operation
::
device
::
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
Swish
,
Rank
,
NumReduceDim
>>
{
using
DeviceOp
=
DeviceNormalization
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
Swish
,
Rank
,
NumReduceDim
>
;
using
DeviceOp
=
DeviceNormalization
Fwd
<
XDataType
,
GammaDataType
,
BetaDataType
,
YDataType
,
SaveMeanInvStdDataType
,
ck
::
tensor_operation
::
element_wise
::
Swish
,
Rank
,
NumReduceDim
>
;
static
auto
GetInstances
()
{
...
...
@@ -65,7 +65,7 @@ struct DeviceOperationInstanceFactory<
{
if
constexpr
(
Rank
==
5
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_5_3_swish_f16_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_5_3_swish_f16_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F32
>
&&
is_same_v
<
GammaDataType
,
F32
>
&&
...
...
@@ -74,7 +74,7 @@ struct DeviceOperationInstanceFactory<
{
if
constexpr
(
Rank
==
5
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_5_3_swish_f32_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_5_3_swish_f32_instances
(
op_ptrs
);
}
}
else
if
constexpr
(
is_same_v
<
XDataType
,
F16
>
&&
is_same_v
<
GammaDataType
,
F32
>
&&
...
...
@@ -83,7 +83,7 @@ struct DeviceOperationInstanceFactory<
{
if
constexpr
(
Rank
==
5
&&
NumReduceDim
==
3
)
{
add_device_normalization_rank_5_3_swish_f16_f32_f32_f16_instances
(
op_ptrs
);
add_device_normalization_
fwd_
rank_5_3_swish_f16_f32_f32_f16_instances
(
op_ptrs
);
}
}
...
...
library/include/ck/library/tensor_operation_instance/gpu/transpose/device_transpose_instance.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_elementwise_3d_impl.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
device_transpose_f16_instances
=
std
::
tuple
<
// FOR 16, 32, 16, 32, 16
// clang-format off
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
2
,
2
,
1
,
8
,
8
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
2
,
2
,
1
,
8
,
1
,
1
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
2
,
2
,
1
,
8
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
// clang-format on
>
;
using
device_transpose_f32_instances
=
std
::
tuple
<
// for 16, 8, 16, 32, 8 -> test with instances for fp16
// clang-format off
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
2
,
2
,
1
,
4
,
4
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
2
,
2
,
1
,
4
,
8
,
4
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
,
DeviceElementwise3dImpl
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
2
,
2
,
1
,
4
,
8
,
8
,
ck
::
Sequence
<
1
>
,
ck
::
Sequence
<
1
>>
// clang-format on
>
;
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/include/ck/library/tensor_operation_instance/gpu/transpose_3d.hpp
0 → 100644
View file @
7c284291
// SPDX-License-Identifier: MIT
// Copyright (c) 2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <memory>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/library/tensor_operation_instance/device_operation_instance_factory.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
instance
{
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
void
add_device_transpose_f16_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F16
>
,
ck
::
Tuple
<
F16
>
,
PassThrough
,
5
>>>&
instances
);
void
add_device_transpose_f32_instances
(
std
::
vector
<
std
::
unique_ptr
<
DeviceElementwise
<
ck
::
Tuple
<
F32
>
,
ck
::
Tuple
<
F32
>
,
PassThrough
,
5
>>>&
instances
);
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim
>
struct
DeviceOperationInstanceFactory
<
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim
>>
{
using
DeviceOp
=
DeviceElementwise
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim
>
;
static
auto
GetInstances
()
{
std
::
vector
<
std
::
unique_ptr
<
DeviceOp
>>
op_ptrs
;
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F32
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F32
>>
)
{
add_device_transpose_f32_instances
(
op_ptrs
);
}
else
if
constexpr
(
is_same_v
<
InDataTypeTuple
,
ck
::
Tuple
<
F16
>>
&&
is_same_v
<
OutDataTypeTuple
,
ck
::
Tuple
<
F16
>>
)
{
add_device_transpose_f16_instances
(
op_ptrs
);
}
return
op_ptrs
;
}
};
}
// namespace instance
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
library/src/tensor_operation_instance/gpu/gemm/CMakeLists.txt
View file @
7c284291
set
(
GEMM_INSTANCES
)
list
(
APPEND GEMM_INSTANCES device_gemm_xdl_f64_f64_f64_mk_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
)
device_gemm_xdl_f64_f64_f64_mk_nk_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_kn_mn_instance.cpp
device_gemm_xdl_f64_f64_f64_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f32_f32_f32_km_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_mk_nk_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_kn_mn_instance.cpp
device_gemm_dl_f32_f32_f32_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_dl_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dl_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_dpp_f16_f16_f16_km_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_km_nk_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_kn_mn_irregular_instance.cpp
device_gemm_dpp_f16_f16_f16_mk_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/km_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_kn_mn_irregular_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_add_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_opt_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_interwave_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v1_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_default_pipeline_v2_instance.cpp
device_gemm_xdl_f16_f16_f16/mk_nk_mn_irregular_interwave_pipeline_v1_instance.cpp
)
list
(
APPEND GEMM_INSTANCES device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_dl_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_mk_nk_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_kn_mn_irregular_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_instance.cpp
device_gemm_dl_i8_i8_i8_km_nk_mn_irregular_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_i8_i8_i8_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
)
list
(
APPEND GEMM_INSTANCES
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_mk_nk_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_kn_mn_instance.cpp
device_gemm_xdl_c_shuffle_fp8_fp8_fp8_km_nk_mn_instance.cpp
)
add_instance_library
(
device_gemm_instance
${
GEMM_INSTANCES
}
)
...
...
@@ -100,31 +107,31 @@ set(ENABLE_PIPELINE_V2_OPT)
if
(
ENABLE_PIPELINE_V2_OPT
)
set
(
WAVES_PER_EU_DEFS
CK_USE_WAVES_PER_EU=1
CK_MIN_WAVES_PER_EU=1
CK_MAX_WAVES_PER_EU=1
)
CK_USE_WAVES_PER_EU=1
CK_MIN_WAVES_PER_EU=1
CK_MAX_WAVES_PER_EU=1
)
set
(
IGLP_OPT_DEFS
CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT=1
)
CK_EXPERIMENTAL_PIPELINE_V2_IGLP_OPT=1
)
# TODO: The "-vectorize-slp=false" LLVM option is a workaround to prevent inefficient instruction scheduling
# caused by the SLP Vectorizer. Remove this option after fix the SLP Vectorizer issue.
# layout=NT
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/km_kn_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=NN
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/km_nk_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
COMPILE_OPTIONS
";-mllvm;-vectorize-slp=false"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=TT
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/mk_kn_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
# layout=TN
set_source_files_properties
(
device_gemm_xdl_f16_f16_f16/mk_nk_mn_default_pipeline_v2_opt_instance.cpp PROPERTIES
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
COMPILE_OPTIONS
";;"
COMPILE_DEFINITIONS
"
${
WAVES_PER_EU_DEFS
}
;
${
IGLP_OPT_DEFS
}
"
)
endif
(
ENABLE_PIPELINE_V2_OPT
)
library/src/tensor_operation_instance/gpu/gemm/device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instance.cpp
View file @
7c284291
...
...
@@ -7,6 +7,8 @@
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/tensor_operation_instance/add_device_operation_instance.hpp"
namespace
ck
{
...
...
@@ -27,29 +29,75 @@ using PassThrough = ck::tensor_operation::element_wise::PassThrough;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
Default
;
static
constexpr
auto
MNPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNPadding
;
static
constexpr
auto
MNKPadding
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
// Compilation parameters for a[m, k] * b[k, n] = c[m, n]
template
<
ck
::
tensor_operation
::
device
::
GemmSpecialization
GemmSpec
>
using
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances
=
std
::
tuple
<
// clang-format off
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmDefault
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
>
//#####################| ALayout| BLayout| CLayout| AData| BData| CData| AccData| CShuffle| A| B| C| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer| LoopScheduler| Pipeline|
//#####################| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Specialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector| | |
//#####################| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl| | |
//#####################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
// pipeline v1, 1 wave
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v1
>
#if CK_EXPERIMENTAL_INTER_WAVE_INSTANCES
// pipeline v1, 2 waves
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Interwave
,
PipelineVersion
::
v1
>
#endif
#if CK_EXPERIMENTAL_PIPELINE_V2_INSTANCES
// pipeline v2, 1 wave
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
256
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
2
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
256
,
32
,
8
,
8
,
32
,
32
,
2
,
4
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
4
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
4
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
128
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
2
,
2
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
8
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
2
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
16
,
16
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
128
,
64
,
32
,
8
,
8
,
32
,
32
,
2
,
1
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
1
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
2
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
8
,
32
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
4
,
2
,
0
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
,
DeviceGemm_Xdl_CShuffle
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
F32
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
,
GemmSpec
,
1
,
256
,
64
,
128
,
32
,
8
,
8
,
32
,
32
,
1
,
2
,
S
<
4
,
64
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
8
,
8
,
1
,
S
<
4
,
64
,
1
>
,
S
<
0
,
2
,
1
>
,
S
<
0
,
2
,
1
>
,
1
,
2
,
8
,
1
,
1
,
1
,
S
<
1
,
32
,
1
,
8
>
,
8
,
LoopScheduler
::
Default
,
PipelineVersion
::
v2
>
#endif
// clang-format on
>
;
...
...
@@ -58,8 +106,14 @@ void add_device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances(
DeviceGemm
<
Row
,
Row
,
Row
,
BF16
,
BF16
,
BF16
,
PassThrough
,
PassThrough
,
PassThrough
>>>&
instances
)
{
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances
{});
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances
<
GemmDefault
>
{});
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances
<
MNPadding
>
{});
add_device_operation_instances
(
instances
,
device_gemm_xdl_c_shuffle_bf16_bf16_bf16_mk_kn_mn_instances
<
MNKPadding
>
{});
}
}
// namespace instance
...
...
Prev
1
2
3
4
5
6
7
8
9
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment