Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7bf9a377
Commit
7bf9a377
authored
Oct 09, 2023
by
Jing Zhang
Browse files
added an example grouped_gemm_multi_abd
parent
59136091
Changes
7
Hide whitespace changes
Inline
Side-by-side
Showing
7 changed files
with
1389 additions
and
32 deletions
+1389
-32
example/15_grouped_gemm/CMakeLists.txt
example/15_grouped_gemm/CMakeLists.txt
+5
-0
example/15_grouped_gemm/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
...ed_gemm/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
+360
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
...or_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
+62
-0
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
...ion/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
+63
-0
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
...evice/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
+863
-0
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
...tion/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
+24
-21
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
...tion/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
+12
-11
No files found.
example/15_grouped_gemm/CMakeLists.txt
View file @
7bf9a377
...
@@ -42,3 +42,8 @@ if(USE_BITINT_EXTENSION_INT4)
...
@@ -42,3 +42,8 @@ if(USE_BITINT_EXTENSION_INT4)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_int4
)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_xdl_int4
)
endif
()
endif
()
endif
()
endif
()
add_example_executable
(
example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16 grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
)
if
(
result EQUAL 0
)
add_dependencies
(
example_grouped_gemm_xdl example_grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16
)
endif
()
example/15_grouped_gemm/grouped_gemm_multi_abd_xdl_fixed_nk_bias_fp16.cpp
0 → 100644
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp"
#include "ck/tensor_operation/gpu/element/unary_element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
F16
=
ck
::
half_t
;
using
F32
=
float
;
using
Row
=
ck
::
tensor_layout
::
gemm
::
RowMajor
;
using
Col
=
ck
::
tensor_layout
::
gemm
::
ColumnMajor
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
Add
=
ck
::
tensor_operation
::
element_wise
::
Add
;
using
A0DataType
=
F16
;
using
B0DataType
=
F16
;
using
AsDataType
=
ck
::
Tuple
<
A0DataType
>
;
using
BsDataType
=
ck
::
Tuple
<
B0DataType
>
;
using
AccDataType
=
F32
;
using
CShuffleDataType
=
F32
;
using
D0DataType
=
F32
;
using
DsDataType
=
ck
::
Tuple
<
D0DataType
>
;
using
EDataType
=
F32
;
using
A0Layout
=
Row
;
using
B0Layout
=
Col
;
using
AsLayout
=
ck
::
Tuple
<
A0Layout
>
;
using
BsLayout
=
ck
::
Tuple
<
B0Layout
>
;
using
D0Layout
=
Row
;
using
DsLayout
=
ck
::
Tuple
<
D0Layout
>
;
using
ELayout
=
Row
;
using
AElementOp
=
PassThrough
;
using
BElementOp
=
PassThrough
;
using
CDEElementOp
=
Add
;
static
constexpr
auto
GemmDefault
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MPadding
;
using
DeviceGemmInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
// clang-format off
//######| ALayout| BLayout| DsLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementOp
,
BElementOp
,
CDEElementOp
,
GemmDefault
,
1
,
128
,
16
,
128
,
32
,
8
,
8
,
16
,
16
,
1
,
4
,
S
<
4
,
16
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
S
<
4
,
32
,
1
>
,
S
<
1
,
0
,
2
>
,
S
<
1
,
0
,
2
>
,
2
,
1
,
1
,
1
,
1
,
1
,
S
<
1
,
16
,
1
,
8
>
,
1
,
ck
::
half_t
>
;
// clang-format on
struct
ProblemSize
final
{
std
::
vector
<
ck
::
index_t
>
Ms
;
std
::
vector
<
ck
::
index_t
>
Ns
;
std
::
vector
<
ck
::
index_t
>
Ks
;
std
::
vector
<
ck
::
index_t
>
stride_As
;
std
::
vector
<
ck
::
index_t
>
stride_Bs
;
std
::
vector
<
ck
::
index_t
>
stride_Cs
;
ck
::
index_t
group_count
;
};
struct
ExecutionConfig
final
{
bool
do_verification
=
true
;
int
init_method
=
1
;
bool
time_kernel
=
false
;
int
k_batch
=
1
;
};
bool
run_grouped_gemm
(
const
ProblemSize
&
problem_size
,
const
ExecutionConfig
&
config
)
{
auto
group_count
=
problem_size
.
group_count
;
// GEMM shape
std
::
vector
<
ck
::
tensor_operation
::
device
::
GemmMultiABDDesc
>
gemm_descs
;
gemm_descs
.
reserve
(
group_count
);
int
sum_of_m
=
0
;
auto
f_host_tensor_descriptor
=
[](
std
::
size_t
row
,
std
::
size_t
col
,
std
::
size_t
stride
,
auto
layout
)
{
using
namespace
ck
::
literals
;
if
(
std
::
is_same
<
decltype
(
layout
),
ck
::
tensor_layout
::
gemm
::
RowMajor
>::
value
)
{
return
HostTensorDescriptor
({
row
,
col
},
{
stride
,
1
_uz
});
}
else
{
return
HostTensorDescriptor
({
row
,
col
},
{
1
_uz
,
stride
});
}
};
std
::
vector
<
Tensor
<
A0DataType
>>
a_tensors
;
std
::
vector
<
Tensor
<
B0DataType
>>
b_tensors
;
std
::
vector
<
Tensor
<
D0DataType
>>
d0_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_host_tensors
;
std
::
vector
<
Tensor
<
EDataType
>>
c_device_tensors
;
a_tensors
.
reserve
(
group_count
);
b_tensors
.
reserve
(
group_count
);
d0_tensors
.
reserve
(
group_count
);
c_host_tensors
.
reserve
(
group_count
);
c_device_tensors
.
reserve
(
group_count
);
using
DeviceMemPtr
=
std
::
unique_ptr
<
DeviceMem
>
;
std
::
vector
<
DeviceMemPtr
>
a_tensors_device
,
b_tensors_device
,
d0_tensors_device
,
c_tensors_device
;
a_tensors_device
.
reserve
(
group_count
);
b_tensors_device
.
reserve
(
group_count
);
d0_tensors_device
.
reserve
(
group_count
);
c_tensors_device
.
reserve
(
group_count
);
std
::
size_t
flop
=
0
,
num_btype
=
0
;
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
sum_of_m
+=
problem_size
.
Ms
[
i
];
a_tensors
.
push_back
(
Tensor
<
A0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ks
[
i
],
problem_size
.
stride_As
[
i
],
A0Layout
{})));
b_tensors
.
push_back
(
Tensor
<
B0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ks
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Bs
[
i
],
B0Layout
{})));
d0_tensors
.
push_back
(
Tensor
<
D0DataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
0
,
ELayout
{})));
c_host_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
c_device_tensors
.
push_back
(
Tensor
<
EDataType
>
(
f_host_tensor_descriptor
(
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
stride_Cs
[
i
],
ELayout
{})));
std
::
cout
<<
"gemm["
<<
i
<<
"] a_m_k: "
<<
a_tensors
[
i
].
mDesc
<<
" b_k_n: "
<<
b_tensors
[
i
].
mDesc
<<
" d_m_n: "
<<
d0_tensors
[
i
].
mDesc
<<
" c_m_n: "
<<
c_device_tensors
[
i
].
mDesc
<<
std
::
endl
;
flop
+=
std
::
size_t
(
2
)
*
problem_size
.
Ms
[
i
]
*
problem_size
.
Ks
[
i
]
*
problem_size
.
Ns
[
i
];
num_btype
+=
sizeof
(
A0DataType
)
*
a_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
B0DataType
)
*
b_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
D0DataType
)
*
d0_tensors
[
i
].
mDesc
.
GetElementSize
()
+
sizeof
(
EDataType
)
*
c_device_tensors
[
i
].
mDesc
.
GetElementSize
();
switch
(
config
.
init_method
)
{
case
0
:
break
;
case
1
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
A0DataType
>
{
-
5
,
5
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_2
<
B0DataType
>
{
-
5
,
5
});
break
;
case
2
:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
A0DataType
>
{
0.0
,
1.0
});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
B0DataType
>
{
-
0.5
,
0.5
});
break
;
default:
a_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
0
>
{});
b_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_Sequential
<
1
>
{});
}
d0_tensors
[
i
].
GenerateTensorValue
(
GeneratorTensor_3
<
D0DataType
>
{
-
0.5
,
0.5
});
}
using
GroupedGemmKernelArgument
=
ck
::
tensor_operation
::
device
::
GroupedGemmMultiABDKernelArgument
<
1
,
1
,
1
>
;
std
::
vector
<
GroupedGemmKernelArgument
>
grouped_gemm_kernel_args_
;
grouped_gemm_kernel_args_
.
reserve
(
group_count
);
for
(
int
i
=
0
;
i
<
group_count
;
i
++
)
{
a_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
A0DataType
)
*
sum_of_m
*
problem_size
.
Ks
[
i
]));
b_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
B0DataType
)
*
problem_size
.
Ns
[
i
]
*
problem_size
.
Ks
[
i
]));
d0_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
D0DataType
)
*
problem_size
.
Ns
[
i
]));
c_tensors_device
.
emplace_back
(
std
::
make_unique
<
DeviceMem
>
(
sizeof
(
EDataType
)
*
sum_of_m
*
problem_size
.
Ns
[
i
]));
a_tensors_device
[
i
]
->
ToDevice
(
a_tensors
[
i
].
mData
.
data
(),
a_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
A0DataType
));
b_tensors_device
[
i
]
->
ToDevice
(
b_tensors
[
i
].
mData
.
data
(),
b_tensors
[
i
].
mDesc
.
GetElementSpaceSize
()
*
sizeof
(
B0DataType
));
d0_tensors_device
[
i
]
->
ToDevice
(
d0_tensors
[
i
].
mData
.
data
());
c_tensors_device
[
i
]
->
SetZero
();
gemm_descs
.
push_back
({
sum_of_m
,
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
{
1
},
{
problem_size
.
stride_Bs
[
i
]},
{
0
},
1
});
grouped_gemm_kernel_args_
.
push_back
(
{
std
::
array
<
const
void
*
,
1
>
{
a_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
b_tensors_device
[
i
]
->
GetDeviceBuffer
()},
std
::
array
<
const
void
*
,
1
>
{
d0_tensors_device
[
i
]
->
GetDeviceBuffer
()},
c_tensors_device
[
i
]
->
GetDeviceBuffer
(),
problem_size
.
Ms
[
i
],
problem_size
.
Ns
[
i
],
problem_size
.
Ks
[
i
],
std
::
array
<
ck
::
index_t
,
1
>
{
problem_size
.
stride_As
[
i
]},
std
::
array
<
ck
::
index_t
,
1
>
{
problem_size
.
stride_Bs
[
i
]},
std
::
array
<
ck
::
index_t
,
1
>
{
0
},
problem_size
.
stride_Cs
[
i
]});
}
auto
a_element_op
=
AElementOp
{};
auto
b_element_op
=
BElementOp
{};
auto
cde_element_op
=
CDEElementOp
{};
auto
gemm
=
DeviceGemmInstance
{};
auto
invoker
=
gemm
.
MakeInvoker
();
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_As
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_Bs
=
{};
std
::
vector
<
std
::
array
<
const
void
*
,
1
>>
p_Ds
=
{};
std
::
vector
<
void
*>
p_Cs
=
{};
// do GEMM
auto
argument
=
gemm
.
MakeArgument
(
p_As
,
p_Bs
,
p_Ds
,
p_Cs
,
gemm_descs
,
a_element_op
,
b_element_op
,
cde_element_op
);
if
(
!
gemm
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem"
);
}
DeviceMem
gemm_workspace_dev
(
gemm
.
GetWorkSpaceSize
(
&
argument
));
gemm
.
SetWorkSpacePointer
(
&
argument
,
gemm_workspace_dev
.
GetDeviceBuffer
());
DeviceMem
gemm_kernel_args_dev
(
gemm
.
GetDeviceKernelArgSize
(
&
argument
));
hip_check_error
(
hipMemcpy
(
gemm_kernel_args_dev
.
GetDeviceBuffer
(),
grouped_gemm_kernel_args_
.
data
(),
gemm
.
GetDeviceKernelArgSize
(
&
argument
),
hipMemcpyHostToDevice
));
gemm
.
SetDeviceKernelArgs
(
argument
,
gemm_kernel_args_dev
.
GetDeviceBuffer
());
gemm
.
SetKBatch
(
argument
,
config
.
k_batch
);
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
false
});
if
(
config
.
time_kernel
)
{
float
ave_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
config
.
time_kernel
});
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
gemm
.
GetTypeString
()
<<
std
::
endl
;
}
bool
pass
=
true
;
if
(
config
.
do_verification
)
{
using
ReferenceGemmInstance
=
ck
::
tensor_operation
::
host
::
ReferenceGemm
<
A0DataType
,
B0DataType
,
EDataType
,
AccDataType
,
AElementOp
,
BElementOp
,
PassThrough
>
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
c_tensors_device
[
i
]
->
FromDevice
(
c_device_tensors
[
i
].
mData
.
data
(),
c_device_tensors
[
i
].
mDesc
.
GetElementSize
()
*
sizeof
(
EDataType
));
auto
ref_gemm
=
ReferenceGemmInstance
{};
auto
ref_invoker
=
ref_gemm
.
MakeInvoker
();
auto
ref_argument
=
ref_gemm
.
MakeArgument
(
a_tensors
[
i
],
b_tensors
[
i
],
c_host_tensors
[
i
],
a_element_op
,
b_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
for
(
int
m
=
0
;
m
<
problem_size
.
Ms
[
i
];
++
m
)
{
for
(
int
n
=
0
;
n
<
problem_size
.
Ns
[
i
];
++
n
)
{
cde_element_op
(
c_host_tensors
[
i
](
m
,
n
),
c_host_tensors
[
i
](
m
,
n
),
d0_tensors
[
i
](
m
,
n
));
}
}
pass
&=
ck
::
utils
::
check_err
(
c_device_tensors
[
i
],
c_host_tensors
[
i
]);
}
}
return
pass
;
}
int
main
(
int
argc
,
char
*
argv
[])
{
ProblemSize
problem_size
;
ExecutionConfig
config
;
problem_size
.
group_count
=
16
;
for
(
int
i
=
0
;
i
<
problem_size
.
group_count
;
i
++
)
{
problem_size
.
Ms
.
push_back
(
16
+
16
*
i
);
problem_size
.
Ns
.
push_back
(
128
);
problem_size
.
Ks
.
push_back
(
64
);
problem_size
.
stride_As
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Bs
.
push_back
(
problem_size
.
Ks
[
i
]);
problem_size
.
stride_Cs
.
push_back
(
problem_size
.
Ns
[
i
]);
}
if
(
argc
==
5
)
{
config
.
do_verification
=
std
::
stoi
(
argv
[
1
]);
config
.
init_method
=
std
::
stoi
(
argv
[
2
]);
config
.
time_kernel
=
std
::
stoi
(
argv
[
3
]);
config
.
k_batch
=
std
::
stoi
(
argv
[
4
]);
}
else
{
printf
(
"arg1: verification (0=no, 1=yes)
\n
"
);
printf
(
"arg2: initialization (0=no init, 1=integer value, 2=decimal value)
\n
"
);
printf
(
"arg3: time kernel (0=n0, 1=yes)
\n
"
);
printf
(
"arg4: k_batch (>0)
\n
"
);
exit
(
0
);
}
return
!
run_grouped_gemm
(
problem_size
,
config
);
}
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd.hpp
0 → 100644
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
struct
GemmMultiABDDesc
{
ck
::
index_t
M_
,
N_
,
K_
;
std
::
vector
<
ck
::
index_t
>
stride_As_
;
std
::
vector
<
ck
::
index_t
>
stride_Bs_
;
std
::
vector
<
ck
::
index_t
>
stride_Ds_
;
ck
::
index_t
stride_C_
;
};
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmMultiABD
:
public
BaseOperator
{
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static_assert
(
AsLayout
::
Size
()
==
AsDataType
::
Size
(),
"wrong! inconsistent NumATensor"
);
static_assert
(
BsLayout
::
Size
()
==
BsDataType
::
Size
(),
"wrong! inconsistent NumBTensor"
);
static_assert
(
DsLayout
::
Size
()
==
DsDataType
::
Size
(),
"wrong! inconsistent NumDTensor"
);
virtual
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_as
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_ds
,
std
::
vector
<
void
*>&
p_e
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_desc
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CElementwiseOperation
c_element_op
)
=
0
;
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp
0 → 100644
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <array>
#include "device_grouped_gemm_multi_abd.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
NumATensor
=
1
,
index_t
NumBTensor
=
1
,
index_t
NumDTensor
=
0
>
struct
GroupedGemmMultiABDKernelArgument
{
std
::
array
<
const
void
*
,
NumATensor
>
p_as_grid
;
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
void
*
p_e_grid
;
index_t
M
;
index_t
N
;
index_t
K
;
std
::
array
<
index_t
,
NumATensor
>
StrideAs
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
index_t
StrideE
;
};
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CElementwiseOperation
>
struct
DeviceGroupedGemmMultiABDFixedNK
:
DeviceGroupedGemmMultiABD
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CElementwiseOperation
>
{
virtual
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
=
0
;
virtual
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
=
0
;
virtual
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
=
0
;
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_multi_abd_xdl_fixed_nk.hpp
0 → 100644
View file @
7bf9a377
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2023, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_gemm_multi_abd_fixed_nk.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
GridwiseGemm
,
typename
GemmDesc
,
GemmSpecialization
GemmSpec
,
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
Block2ETileMap
,
typename
GroupedGemmBlock2ETileMap
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
InMemoryDataOperationEnum
EGlobalMemoryDataOperation
,
bool
HasMainKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_gemm_xdl_fixed_nk
(
const
void
CK_CONSTANT_ADDRESS_SPACE
*
gemm_descs_const
,
uint32_t
*
barrier_count
,
const
index_t
barrier_size_grp
,
const
index_t
group_count
,
const
index_t
grid_size_grp
,
// const index_t KBatch,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__) || \
defined(__gfx940__) || defined(__gfx941__) || defined(__gfx942__))
__shared__
char
p_shared
[
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()];
const
index_t
KBatch
=
1
;
const
index_t
block_id
=
get_block_1d_id
();
const
auto
gemm_desc_ptr
=
reinterpret_cast
<
const
GemmDesc
*>
(
cast_pointer_to_generic_address_space
(
gemm_descs_const
));
const
index_t
group_id
=
block_id
/
grid_size_grp
;
if
(
group_id
>=
group_count
)
return
;
const
index_t
M
=
gemm_desc_ptr
[
group_id
].
M
;
const
index_t
N
=
gemm_desc_ptr
[
group_id
].
N
;
const
index_t
K
=
gemm_desc_ptr
[
group_id
].
K
;
if
(
M
*
N
*
K
==
0
)
return
;
const
auto
StrideAs
=
gemm_desc_ptr
[
group_id
].
StrideAs
;
const
auto
StrideBs
=
gemm_desc_ptr
[
group_id
].
StrideBs
;
const
auto
StrideDs
=
gemm_desc_ptr
[
group_id
].
StrideDs
;
const
auto
StrideE
=
gemm_desc_ptr
[
group_id
].
StrideE
;
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
M
,
N
,
StrideE
);
const
index_t
BlockStart
=
group_id
*
grid_size_grp
;
const
auto
local_b2e_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
KBatch
};
const
auto
local_grid_size
=
local_b2e_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
constexpr
auto
NumATensor
=
GridwiseGemm
::
AsGridPointer
::
Size
();
constexpr
auto
NumBTensor
=
GridwiseGemm
::
BsGridPointer
::
Size
();
constexpr
auto
NumDTensor
=
GridwiseGemm
::
DsGridPointer
::
Size
();
typename
GridwiseGemm
::
AsGridPointer
p_as_grid_
;
typename
GridwiseGemm
::
BsGridPointer
p_bs_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
// constexpr auto I0 = Number<0>{};
// using AsDataType = remove_cvref_t<decltype(p_as_grid_(I0))>;
// p_as_grid_(I0) = static_cast<AsDataType>(gemm_desc_ptr[group_id].p_a_grid);
// using BsDataType = remove_cvref_t<decltype(p_bs_grid_(I0))>;
// p_bs_grid_(I0) = static_cast<BsDataType>(gemm_desc_ptr[group_id].p_b_grid);
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
i
)
{
using
ADataType
=
remove_cvref_t
<
decltype
(
p_as_grid_
(
i
))
>
;
p_as_grid_
(
i
)
=
static_cast
<
ADataType
>
(
gemm_desc_ptr
[
group_id
].
p_as_grid
[
i
]);
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
i
)
{
using
BDataType
=
remove_cvref_t
<
decltype
(
p_bs_grid_
(
i
))
>
;
p_bs_grid_
(
i
)
=
static_cast
<
BDataType
>
(
gemm_desc_ptr
[
group_id
].
p_bs_grid
[
i
]);
});
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DDataType
=
remove_cvref_t
<
decltype
(
p_ds_grid_
(
i
))
>
;
p_ds_grid_
(
i
)
=
static_cast
<
DDataType
>
(
gemm_desc_ptr
[
group_id
].
p_ds_grid
[
i
]);
});
index_t
id_off
=
0
;
index_t
id_local
=
get_block_1d_id
()
-
BlockStart
;
const
index_t
mn_blocks
=
local_grid_size
/
KBatch
;
while
(
id_local
<
local_grid_size
)
{
const
auto
block_2_etile_map
=
GroupedGemmBlock2ETileMap
(
local_b2e_tile_map
,
BlockStart
,
id_off
);
auto
barrier_count_finished
=
barrier_count
+
group_id
*
barrier_size_grp
+
id_local
%
mn_blocks
;
ignore
=
barrier_count_finished
;
GridwiseGemm
::
template
Run2
<
HasMainKBlockLoop
,
GemmSpec
,
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
>(
p_as_grid_
,
p_bs_grid_
,
p_ds_grid_
,
gemm_desc_ptr
[
group_id
].
p_e_grid
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
M
,
N
,
K
,
StrideAs
,
StrideBs
,
StrideDs
,
StrideE
,
block_2_etile_map
);
id_off
+=
grid_size_grp
;
id_local
+=
grid_size_grp
;
}
#else
ignore
=
gemm_descs_const
;
ignore
=
barrier_count
;
ignore
=
barrier_size_grp
;
ignore
=
group_count
;
ignore
=
grid_size_grp
;
ignore
=
KBatch
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
c_element_op
;
#endif
}
template
<
typename
AsLayout
,
typename
BsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AsDataType
,
typename
BsDataType
,
typename
AccDataType
,
typename
CShuffleDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
GemmSpecialization
GemmSpec
,
ck
::
index_t
NumPrefetch
,
ck
::
index_t
BlockSize
,
ck
::
index_t
MPerBlock
,
ck
::
index_t
NPerBlock
,
ck
::
index_t
KPerBlock
,
ck
::
index_t
AK1
,
ck
::
index_t
BK1
,
ck
::
index_t
MPerXDL
,
ck
::
index_t
NPerXDL
,
ck
::
index_t
MXdlPerWave
,
ck
::
index_t
NXdlPerWave
,
typename
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
ck
::
index_t
ABlockTransferSrcVectorDim
,
ck
::
index_t
ABlockTransferSrcScalarPerVector
,
ck
::
index_t
ABlockTransferDstScalarPerVector_AK1
,
bool
ABlockLdsExtraM
,
typename
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
ck
::
index_t
BBlockTransferSrcVectorDim
,
ck
::
index_t
BBlockTransferSrcScalarPerVector
,
ck
::
index_t
BBlockTransferDstScalarPerVector_BK1
,
bool
BBlockLdsExtraN
,
index_t
CShuffleMXdlPerWavePerShuffle
,
index_t
CShuffleNXdlPerWavePerShuffle
,
typename
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
index_t
CDEBlockTransferScalarPerVector_NPerBlock
,
typename
ComputeType
,
LoopScheduler
LoopSched
=
make_default_loop_scheduler
()>
struct
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
:
public
DeviceGroupedGemmMultiABDFixedNK
<
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
AsDataType
,
BsDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedGemm_Xdl_Multi_ABD_Fixed_NK
;
static
constexpr
index_t
NumATensor
=
AsDataType
::
Size
();
static
constexpr
index_t
NumBTensor
=
BsDataType
::
Size
();
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
index_t
NumGemmKPrefetchStage
=
1
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmMultipleABD_xdl_cshuffle
<
AsDataType
,
BsDataType
,
ComputeType
,
AccDataType
,
CShuffleDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
NumGemmKPrefetchStage
,
BlockSize
,
MPerBlock
,
NPerBlock
,
KPerBlock
,
AK1
,
BK1
,
MPerXDL
,
NPerXDL
,
MXdlPerWave
,
NXdlPerWave
,
ABlockTransferThreadClusterLengths_AK0_M_AK1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorDim
,
ABlockTransferSrcScalarPerVector
,
ABlockTransferDstScalarPerVector_AK1
,
false
,
ABlockLdsExtraM
,
BBlockTransferThreadClusterLengths_BK0_N_BK1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorDim
,
BBlockTransferSrcScalarPerVector
,
BBlockTransferDstScalarPerVector_BK1
,
false
,
BBlockLdsExtraN
,
CShuffleMXdlPerWavePerShuffle
,
CShuffleNXdlPerWavePerShuffle
,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock
,
CDEBlockTransferScalarPerVector_NPerBlock
,
LoopSched
>
;
template
<
typename
UnderlyingBlockToCTileMap
>
struct
OffsettedBlockToCTileMapMLoops
{
using
underlying_type
=
UnderlyingBlockToCTileMap
;
__host__
__device__
OffsettedBlockToCTileMapMLoops
(
UnderlyingBlockToCTileMap
block_to_ctile_map
,
index_t
block_start
,
index_t
id_off
=
0
)
{
block_to_ctile_map_
=
block_to_ctile_map
;
block_start_
=
block_start
;
id_off_
=
id_off
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
idx_bot
=
block_to_ctile_map_
.
CalculateBottomIndex
(
make_multi_index
(
idx_top
[
Number
<
0
>
{}]
-
block_start_
+
id_off_
));
return
make_tuple
(
// idx_bot[Number<0>{}],
idx_bot
[
Number
<
1
>
{}],
idx_bot
[
Number
<
2
>
{}]);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
c_tile_idx
,
const
CTileDim
&
c_tile_dim
)
const
{
return
block_to_ctile_map_
.
ValidCTileIndex
(
c_tile_idx
,
c_tile_dim
);
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CheckValidity
(
c_grid_desc_m_n
);
}
template
<
typename
CGridDesc_M_N
>
__host__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
block_to_ctile_map_
.
CalculateGridSize
(
c_grid_desc_m_n
);
}
UnderlyingBlockToCTileMap
block_to_ctile_map_
;
index_t
block_start_
;
index_t
id_off_
;
};
template
<
index_t
MPerBlock_
,
index_t
NPerBlock_
>
struct
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
{
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
()
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
const
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&
operator
=
(
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
&&
)
=
default
;
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
index_t
M
,
index_t
N
,
index_t
KBatch
,
index_t
M01
=
8
)
:
M_
(
M
),
N_
(
N
),
KBatch_
(
KBatch
),
M01_
(
M01
)
{
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
,
index_t
KBatch
,
index_t
M01
=
8
)
:
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
),
KBatch
,
M01
)
{
}
__host__
__device__
constexpr
index_t
CalculateGridSize
(
index_t
M
,
index_t
N
)
const
{
const
auto
M0
=
math
::
integer_divide_ceil
(
M
,
MPerBlock
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N
,
NPerBlock
);
return
M0
*
N0
*
KBatch_
;
}
template
<
typename
CGridDesc_M_N
>
__host__
__device__
constexpr
index_t
CalculateGridSize
(
const
CGridDesc_M_N
&
c_grid_desc_m_n
)
const
{
return
CalculateGridSize
(
c_grid_desc_m_n
.
GetLength
(
I0
),
c_grid_desc_m_n
.
GetLength
(
I1
));
}
template
<
typename
CGridDesc_M_N
>
__host__
bool
CheckValidity
(
const
CGridDesc_M_N
&
/* c_grid_desc_m_n */
)
const
{
return
true
;
}
template
<
typename
TopIdx
>
__host__
__device__
constexpr
auto
CalculateBottomIndex
(
const
TopIdx
&
idx_top
)
const
{
auto
block_1d_id
=
idx_top
[
I0
];
const
auto
M0
=
math
::
integer_divide_ceil
(
M_
,
MPerBlock_
);
const
auto
N0
=
math
::
integer_divide_ceil
(
N_
,
NPerBlock_
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
*
KBatch_
);
// hide groups
const
index_t
idx_ksplit
=
block_1d_id
/
(
M0
*
N0
);
block_1d_id
=
block_1d_id
%
(
M0
*
N0
);
index_t
idx_N0
=
block_1d_id
%
N0
;
index_t
idx_M0
=
block_1d_id
/
N0
;
const
auto
M01_adapt
=
(
idx_M0
<
M0
-
M0
%
M01_
)
?
M01_
:
M0
%
M01_
;
index_t
idx_M00
=
idx_M0
/
M01_
;
index_t
idx_M01
=
idx_M0
%
M01_
;
index_t
idx_N0_M01_local
=
idx_N0
+
idx_M01
*
N0
;
return
make_tuple
(
idx_ksplit
,
idx_N0_M01_local
%
M01_adapt
+
idx_M00
*
M01_
,
idx_N0_M01_local
/
M01_adapt
);
}
template
<
typename
CTileIdx
,
typename
CTileDim
>
__host__
__device__
bool
ValidCTileIndex
(
const
CTileIdx
&
/* c_tile_idx */
,
const
CTileDim
&
/* c_tile_dim */
)
const
{
return
true
;
// always valid provided that user gets grid size from CalculateGridSize()
}
private:
index_t
M_
;
index_t
N_
;
index_t
KBatch_
;
index_t
M01_
;
};
using
Block2ETileMap
=
BlockToCTileMap_KBatch_M00_N0_M01Adapt_MLoops
<
MPerBlock
,
NPerBlock
>
;
using
GroupedGemmBlock2ETileMap
=
OffsettedBlockToCTileMapMLoops
<
Block2ETileMap
>
;
struct
GemmBiasTransKernelArg
{
// pointers
std
::
array
<
const
void
*
,
NumATensor
>
as_ptr_
;
std
::
array
<
const
void
*
,
NumBTensor
>
bs_ptr_
;
std
::
array
<
const
void
*
,
NumDTensor
>
ds_ptr_
;
void
*
e_ptr_
;
index_t
M_
,
N_
,
K_
;
std
::
array
<
index_t
,
NumATensor
>
StrideAs_
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs_
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs_
;
index_t
StrideE_
;
};
// Argument
struct
Argument
:
public
BaseArgument
{
void
UpdateKBatch
(
index_t
)
{}
Argument
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
,
std
::
vector
<
void
*>&
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
:
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
{
grid_size_
=
0
;
k_batch_
=
1
;
grouped_gemm_kernel_args_dev
=
nullptr
;
group_count_
=
ck
::
type_convert
<
ck
::
index_t
>
(
gemm_descs
.
size
());
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
index_t
group_id
=
0
;
sum_of_m
=
gemm_descs
[
0
].
M_
;
const
index_t
AverM
=
math
::
integer_divide_ceil
(
sum_of_m
,
group_count_
);
const
index_t
N
=
gemm_descs
[
0
].
N_
;
const
index_t
K
=
gemm_descs
[
0
].
K_
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
if
(
sum_of_m
!=
gemm_descs
[
i
].
M_
||
N
!=
gemm_descs
[
i
].
N_
||
K
!=
gemm_descs
[
i
].
K_
)
{
throw
std
::
runtime_error
(
"wrong! M/N/K is not identical"
);
}
a_mtx_mraw_kraw_
.
emplace_back
(
sum_of_m
,
K
);
b_mtx_nraw_kraw_
.
emplace_back
(
N
,
K
);
// pointer
std
::
array
<
const
void
*
,
NumATensor
>
p_as_grid
;
std
::
array
<
const
void
*
,
NumBTensor
>
p_bs_grid
;
std
::
array
<
const
void
*
,
NumDTensor
>
p_ds_grid
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
j
)
{
p_as_grid
[
j
]
=
nullptr
;
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
j
)
{
p_bs_grid
[
j
]
=
nullptr
;
});
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
p_ds_grid
[
j
]
=
nullptr
;
});
std
::
array
<
index_t
,
NumATensor
>
StrideAs
;
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
;
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
;
const
index_t
StrideE
=
gemm_descs
[
i
].
stride_C_
;
static_for
<
0
,
NumATensor
,
1
>
{}([
&
](
auto
j
)
{
if
(
gemm_descs
[
i
].
stride_As_
.
size
()
!=
NumATensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_As_.size() does not match NumATensor"
);
}
StrideAs
[
j
]
=
gemm_descs
[
i
].
stride_As_
[
j
];
});
static_for
<
0
,
NumBTensor
,
1
>
{}([
&
](
auto
j
)
{
if
(
gemm_descs
[
i
].
stride_Bs_
.
size
()
!=
NumBTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Bs_.size() does not match NumBTensor"
);
}
StrideBs
[
j
]
=
gemm_descs
[
i
].
stride_Bs_
[
j
];
});
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
j
)
{
if
(
gemm_descs
[
i
].
stride_Ds_
.
size
()
!=
NumDTensor
)
{
throw
std
::
runtime_error
(
"wrong! gemm_descs[i].stride_Ds_.size() does not match NumDTensor"
);
}
StrideDs
[
j
]
=
gemm_descs
[
i
].
stride_Ds_
[
j
];
});
const
auto
e_grid_desc_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
AverM
,
N
,
StrideE
);
// block-to-e-tile map
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_m_n
,
k_batch_
};
grid_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_m_n
);
if
(
group_id
*
grid_size_grp_
!=
grid_size_
)
{
throw
std
::
runtime_error
(
"wrong! grid_size_grp_ is not identical!"
);
}
grid_size_
+=
grid_size_grp_
;
// check block-to-E-tile
if
(
!
local_b2c_tile_map
.
CheckValidity
(
e_grid_desc_m_n
))
{
throw
std
::
runtime_error
(
"wrong! block_2_etile_map validation failed"
);
}
// if(!GridwiseGemm::
// template CheckValidity<AsLayout, BsLayout, DsLayout, ELayout, GemmSpec>(
// AverM, N, K, StrideA, StrideB, StrideDs, StrideE, 1))
//{
// throw std::runtime_error(
//"wrong! GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3 has invalid setting");
//}
gemm_desc_kernel_arg_
.
push_back
(
GemmBiasTransKernelArg
{
p_as_grid
,
p_bs_grid
,
p_ds_grid
,
nullptr
,
AverM
,
N
,
K
,
StrideAs
,
StrideBs
,
StrideDs
,
StrideE
,
});
group_id
++
;
}
const
auto
e_grid_desc_sum_m_n
=
GridwiseGemm
::
template
MakeEGridDescriptor_M_N
<
ELayout
,
GemmSpec
>(
sum_of_m
,
gemm_desc_kernel_arg_
[
0
].
N_
,
gemm_desc_kernel_arg_
[
0
].
StrideE_
);
const
auto
local_b2c_tile_map
=
Block2ETileMap
{
e_grid_desc_sum_m_n
,
1
};
barrier_size_grp_
=
local_b2c_tile_map
.
CalculateGridSize
(
e_grid_desc_sum_m_n
);
}
// private:
index_t
group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
std
::
vector
<
GemmBiasTransKernelArg
>
gemm_desc_kernel_arg_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
a_mtx_mraw_kraw_
;
std
::
vector
<
Tuple
<
index_t
,
index_t
>>
b_mtx_nraw_kraw_
;
const
void
*
grouped_gemm_kernel_args_dev
;
index_t
grid_size_
;
index_t
grid_size_grp_
;
index_t
barrier_size_grp_
;
index_t
sum_of_m
;
index_t
k_batch_
=
1
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
bool
has_main_k_block_loop
=
true
;
for
(
std
::
size_t
i
=
0
;
i
<
arg
.
gemm_desc_kernel_arg_
.
size
();
i
++
)
{
// const auto KPad =
// GridwiseGemm::CalculateKPadded(arg.gemm_desc_kernel_arg_[i].K_, arg.k_batch_);
if
(
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
arg
.
gemm_desc_kernel_arg_
[
i
].
K_
)
!=
has_main_k_block_loop
)
{
throw
std
::
runtime_error
(
"wrong! not all gemm has_main_k_block_loop"
);
}
}
if
(
arg
.
grouped_gemm_kernel_args_dev
==
nullptr
)
{
throw
std
::
runtime_error
(
"wrong! grouped_gemm_kernel_args_dev is nullpr"
);
}
float
ave_time
=
0
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop_
,
auto
e_global_memory_operation_
)
{
const
auto
kernel
=
kernel_grouped_gemm_xdl_fixed_nk
<
GridwiseGemm
,
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
,
GemmSpec
,
AsLayout
,
BsLayout
,
DsLayout
,
ELayout
,
Block2ETileMap
,
GroupedGemmBlock2ETileMap
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
e_global_memory_operation_
,
has_main_k_block_loop_
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
grid_size_
),
dim3
(
BlockSize
),
0
,
cast_pointer_to_constant_address_space
(
arg
.
grouped_gemm_kernel_args_dev
),
reinterpret_cast
<
uint32_t
*>
(
arg
.
p_workspace_
),
arg
.
barrier_size_grp_
,
arg
.
gemm_desc_kernel_arg_
.
size
(),
arg
.
grid_size_grp_
,
// arg.k_batch_,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
c_element_op_
);
};
constexpr
auto
AtomicAdd
=
InMemoryDataOperationEnum
::
AtomicAdd
;
constexpr
auto
Set
=
InMemoryDataOperationEnum
::
Set
;
if
(
arg
.
k_batch_
>
1
)
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
AtomicAdd
>
{});
}
}
else
{
if
(
has_main_k_block_loop
)
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
else
{
ave_time
=
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
InMemoryDataOperationEnum
,
Set
>
{});
}
}
return
ave_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
{
return
false
;
}
bool
supported
=
true
;
// If we use padding we do not support vector loads for dimensions not divisible by vector
// load size.
if
constexpr
(
GemmSpec
!=
GemmSpecialization
::
Default
)
{
// [A|B]BlockTransferSrcVectorDim value define dimension in the block {K0,M,K1} layout,
// thus we have to adapt it to the {M,K} or {N,K} layout.
const
auto
a_raw_vector_dim
=
ABlockTransferSrcVectorDim
!=
1
?
1
:
0
;
const
auto
b_raw_vector_dim
=
BBlockTransferSrcVectorDim
!=
1
?
1
:
0
;
for
(
index_t
i
=
0
;
i
<
arg
.
group_count_
;
++
i
)
{
const
auto
a_vector_dim
=
arg
.
a_mtx_mraw_kraw_
[
i
].
At
(
Number
<
a_raw_vector_dim
>
{});
const
auto
b_vector_dim
=
arg
.
b_mtx_nraw_kraw_
[
i
].
At
(
Number
<
b_raw_vector_dim
>
{});
supported
=
supported
&
(
a_vector_dim
%
ABlockTransferSrcScalarPerVector
==
0
);
supported
=
supported
&
(
b_vector_dim
%
BBlockTransferSrcScalarPerVector
==
0
);
}
}
return
supported
;
}
// polymorphic
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_As
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmMultiABDDesc
>
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
{
return
Argument
{
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
// polymorphic
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
std
::
vector
<
std
::
array
<
const
void
*
,
NumATensor
>>&
p_As
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumBTensor
>>&
p_Bs
,
std
::
vector
<
std
::
array
<
const
void
*
,
NumDTensor
>>&
p_Ds
,
std
::
vector
<
void
*>&
p_Es
,
std
::
vector
<
GemmMultiABDDesc
>&
gemm_descs
,
AElementwiseOperation
a_element_op
,
BElementwiseOperation
b_element_op
,
CDEElementwiseOperation
c_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_As
,
p_Bs
,
p_Ds
,
p_Es
,
gemm_descs
,
a_element_op
,
b_element_op
,
c_element_op
);
}
// polymorphic
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
// polymorphic
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedGemm_Xdl_Fixed_NK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
KPerBlock
<<
", "
<<
AK1
<<
", "
<<
BK1
<<
", "
<<
MPerXDL
<<
", "
<<
NPerXDL
<<
", "
<<
MXdlPerWave
<<
", "
<<
NXdlPerWave
<<
", "
<<
ABlockTransferSrcScalarPerVector
<<
", "
<<
BBlockTransferSrcScalarPerVector
<<
", "
<<
CShuffleMXdlPerWavePerShuffle
<<
", "
<<
CShuffleNXdlPerWavePerShuffle
<<
", "
<<
getGemmSpecializationString
(
GemmSpec
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
static
void
SetDeviceKernelArgs
(
Argument
&
arg
,
const
void
*
kernel_args
)
{
arg
.
grouped_gemm_kernel_args_dev
=
kernel_args
;
}
// polymorphic
void
SetDeviceKernelArgs
(
BaseArgument
*
p_arg
,
const
void
*
kernel_args
)
const
override
{
return
SetDeviceKernelArgs
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
kernel_args
);
}
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
arg
.
barrier_size_grp_
*
sizeof
(
uint32_t
);
}
size_t
GetDeviceKernelArgSize
(
const
BaseArgument
*
p_arg
)
const
override
{
auto
arg
=
*
dynamic_cast
<
const
Argument
*>
(
p_arg
);
return
arg
.
group_count_
*
sizeof
(
GroupedGemmMultiABDKernelArgument
<
NumATensor
,
NumBTensor
,
NumDTensor
>
);
}
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
override
{
auto
p_arg_
=
dynamic_cast
<
Argument
*>
(
p_arg
);
p_arg_
->
p_workspace_
=
p_workspace
;
hip_check_error
(
hipMemset
(
p_workspace
,
0
,
GetWorkSpaceSize
(
p_arg
)));
}
static
void
SetKBatch
(
Argument
&
arg
,
index_t
k_batch
)
{
arg
.
UpdateKBatch
(
k_batch
);
}
// polymorphic
void
SetKBatch
(
BaseArgument
*
p_arg
,
index_t
k_batch
)
const
override
{
return
SetKBatch
(
*
dynamic_cast
<
Argument
*>
(
p_arg
),
k_batch
);
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_abd_xdl_cshuffle.hpp
View file @
7bf9a377
...
@@ -428,14 +428,14 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
...
@@ -428,14 +428,14 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
[
&
](
auto
i
)
{
[
&
](
auto
i
)
{
using
ALayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
AsLayout
>>
;
using
ALayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
AsLayout
>>
;
return
MakeAGridDescriptor_M_
N
<
ALayout
,
GemmSpec
>
(
MRaws
[
i
],
KRaws
[
i
],
AsStride
[
i
]);
return
MakeAGridDescriptor_M_
K
<
ALayout
,
GemmSpec
>
(
MRaws
[
i
],
KRaws
[
i
],
AsStride
[
i
]);
},
},
Number
<
NumATensor
>
{});
Number
<
NumATensor
>
{});
}
}
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
template
<
typename
BLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
__host__
__device__
static
auto
MakeBGridDescriptor_N_K
(
index_t
K
Raw
,
index_t
N
Raw
,
index_t
StrideB
)
MakeBGridDescriptor_N_K
(
index_t
N
Raw
,
index_t
K
Raw
,
index_t
StrideB
)
{
{
constexpr
auto
matrix_padder
=
constexpr
auto
matrix_padder
=
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
ck
::
tensor_operation
::
device
::
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
...
@@ -459,15 +459,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
...
@@ -459,15 +459,15 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
template
<
typename
BsLayout
,
GemmSpecialization
GemmSpec
>
template
<
typename
BsLayout
,
GemmSpecialization
GemmSpec
>
__host__
__device__
static
auto
__host__
__device__
static
auto
MakeBsGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NumBTensor
>&
K
Raws
,
MakeBsGridDescriptor_N_K
(
const
std
::
array
<
index_t
,
NumBTensor
>&
N
Raws
,
const
std
::
array
<
index_t
,
NumBTensor
>&
N
Raws
,
const
std
::
array
<
index_t
,
NumBTensor
>&
K
Raws
,
const
std
::
array
<
index_t
,
NumBTensor
>&
BsStride
)
const
std
::
array
<
index_t
,
NumBTensor
>&
BsStride
)
{
{
return
generate_tuple
(
return
generate_tuple
(
[
&
](
auto
i
)
{
[
&
](
auto
i
)
{
using
BLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
BsLayout
>>
;
using
BLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
BsLayout
>>
;
return
MakeBGridDescriptor_N_K
<
BLayout
,
GemmSpec
>
(
K
Raws
[
i
],
N
Raws
[
i
],
BsStride
[
i
]);
return
MakeBGridDescriptor_N_K
<
BLayout
,
GemmSpec
>
(
N
Raws
[
i
],
K
Raws
[
i
],
BsStride
[
i
]);
},
},
Number
<
NumBTensor
>
{});
Number
<
NumBTensor
>
{});
}
}
...
@@ -571,6 +571,8 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
...
@@ -571,6 +571,8 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
return
;
return
;
}
}
// printf("%d %d\n", block_work_idx[I0], block_work_idx[I1]);
// HACK: this force m/n_block_data_idx_on_grid into SGPR
// HACK: this force m/n_block_data_idx_on_grid into SGPR
const
index_t
m_block_data_idx_on_grid
=
const
index_t
m_block_data_idx_on_grid
=
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
__builtin_amdgcn_readfirstlane
(
block_work_idx
[
I0
]
*
MPerBlock
);
...
@@ -657,6 +659,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
...
@@ -657,6 +659,7 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
auto
blockwise_gemm
=
BlockwiseGemmXdlops_k0mk1_k0nk1_m0n0m1n1m2m3m4n2_Selector
<
BlockSize
,
BlockSize
,
ComputeDataType
,
ComputeDataType
,
ComputeDataType
,
AccDataType
,
AccDataType
,
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
a_block_desc_ak0_m_ak1
),
decltype
(
b_block_desc_bk0_n_bk1
),
decltype
(
b_block_desc_bk0_n_bk1
),
...
@@ -953,22 +956,22 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
...
@@ -953,22 +956,22 @@ struct GridwiseGemmMultipleABD_xdl_cshuffle
typename
DsLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
ELayout
,
typename
Block2ETileMap
>
typename
Block2ETileMap
>
__device__
static
void
Run
(
AsGridPointer
p_as_grid
,
__device__
static
void
Run
2
(
AsGridPointer
p_as_grid
,
BsGridPointer
p_bs_grid
,
BsGridPointer
p_bs_grid
,
DsGridPointer
p_ds_grid
,
DsGridPointer
p_ds_grid
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_e_grid_
,
void
*
__restrict__
p_shared
,
void
*
__restrict__
p_shared
,
const
AElementwiseOperation
&
a_element_op
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
,
const
index_t
M
,
const
index_t
M
,
const
index_t
N
,
const
index_t
N
,
const
index_t
K
,
const
index_t
K
,
const
std
::
array
<
index_t
,
NumATensor
>
StrideAs
,
const
std
::
array
<
index_t
,
NumATensor
>
StrideAs
,
const
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
,
const
std
::
array
<
index_t
,
NumBTensor
>
StrideBs
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
std
::
array
<
index_t
,
NumDTensor
>
StrideDs
,
const
index_t
StrideE
,
const
index_t
StrideE
,
const
Block2ETileMap
&
block_2_etile_map
)
const
Block2ETileMap
&
block_2_etile_map
)
{
{
using
AsGridDesc_M_K
=
using
AsGridDesc_M_K
=
remove_cvref_t
<
decltype
(
MakeAsGridDescriptor_M_K
<
AsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
remove_cvref_t
<
decltype
(
MakeAsGridDescriptor_M_K
<
AsLayout
,
GemmSpec
>
({},
{},
{}))
>
;
...
...
include/ck/tensor_operation/gpu/thread/threadwise_tensor_slice_transfer_v7r2.hpp
View file @
7bf9a377
...
@@ -142,9 +142,9 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -142,9 +142,9 @@ struct ThreadwiseTensorSliceTransfer_v7r2
__device__
void
RunRead
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
)
__device__
void
RunRead
(
const
SrcDescs
&
src_descs
,
const
SrcBuffers
&
src_bufs
)
{
{
// loop over space-filling curve
// loop over space-filling curve
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
static_for
<
0
,
src_
num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
src_vectors
=
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
();
auto
src_vectors
=
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
();
auto
dst_vectors
=
generate_vectors
<
DstDatas
,
Dst
ScalarPerVector
>
();
auto
dst_vectors
=
generate_vectors
<
DstDatas
,
Src
ScalarPerVector
>
();
// copy data from src_bufs into src_vectors
// copy data from src_bufs into src_vectors
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
static_for
<
0
,
nSrc
,
1
>
{}([
&
](
auto
i
)
{
...
@@ -251,7 +251,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -251,7 +251,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
dst_vectors_tuple_
(
iAccess
)
=
dst_vectors
;
dst_vectors_tuple_
(
iAccess
)
=
dst_vectors
;
// move coordinate
// move coordinate
if
constexpr
(
iAccess
.
value
!=
num_access
-
1
)
if
constexpr
(
iAccess
.
value
!=
src_
num_access
-
1
)
{
{
constexpr
auto
forward_step
=
SrcSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
constexpr
auto
forward_step
=
SrcSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
...
@@ -282,7 +282,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -282,7 +282,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
__device__
void
RunWrite
(
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
__device__
void
RunWrite
(
const
DstDescs
&
dst_descs
,
DstBuffers
dst_bufs
)
{
{
// loop over space-filling curve
// loop over space-filling curve
static_for
<
0
,
num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
static_for
<
0
,
dst_
num_access
,
1
>
{}([
&
](
auto
iAccess
)
{
auto
dst_vectors
=
dst_vectors_tuple_
[
iAccess
];
auto
dst_vectors
=
dst_vectors_tuple_
[
iAccess
];
// copy data from buf_vectors into dst_bufs
// copy data from buf_vectors into dst_bufs
...
@@ -303,7 +303,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -303,7 +303,7 @@ struct ThreadwiseTensorSliceTransfer_v7r2
});
});
// move coordinate
// move coordinate
if
constexpr
(
iAccess
.
value
!=
num_access
-
1
)
if
constexpr
(
iAccess
.
value
!=
dst_
num_access
-
1
)
{
{
constexpr
auto
forward_step
=
DstSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
constexpr
auto
forward_step
=
DstSpaceFillingCurve
::
GetForwardStep
(
iAccess
);
...
@@ -346,25 +346,25 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -346,25 +346,25 @@ struct ThreadwiseTensorSliceTransfer_v7r2
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
__device__
static
constexpr
auto
GetSrcCoordinateResetStep
()
{
{
if
constexpr
(
num_access
==
0
)
if
constexpr
(
src_
num_access
==
0
)
{
{
return
typename
SrcSpaceFillingCurve
::
Index
{};
return
typename
SrcSpaceFillingCurve
::
Index
{};
}
}
else
else
{
{
return
SrcSpaceFillingCurve
::
GetStepBetween
(
Number
<
num_access
-
1
>
{},
Number
<
0
>
{});
return
SrcSpaceFillingCurve
::
GetStepBetween
(
Number
<
src_
num_access
-
1
>
{},
Number
<
0
>
{});
}
}
}
}
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
__device__
static
constexpr
auto
GetDstCoordinateResetStep
()
{
{
if
constexpr
(
num_access
==
0
)
if
constexpr
(
dst_
num_access
==
0
)
{
{
return
typename
DstSpaceFillingCurve
::
Index
{};
return
typename
DstSpaceFillingCurve
::
Index
{};
}
}
else
else
{
{
return
DstSpaceFillingCurve
::
GetStepBetween
(
Number
<
num_access
-
1
>
{},
Number
<
0
>
{});
return
DstSpaceFillingCurve
::
GetStepBetween
(
Number
<
dst_
num_access
-
1
>
{},
Number
<
0
>
{});
}
}
}
}
...
@@ -408,9 +408,10 @@ struct ThreadwiseTensorSliceTransfer_v7r2
...
@@ -408,9 +408,10 @@ struct ThreadwiseTensorSliceTransfer_v7r2
using
SrcVectorsType
=
decltype
(
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
());
using
SrcVectorsType
=
decltype
(
generate_vectors
<
SrcDatas
,
SrcScalarPerVector
>
());
using
DstVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
DstScalarPerVector
>
());
using
DstVectorsType
=
decltype
(
generate_vectors
<
DstDatas
,
DstScalarPerVector
>
());
static
constexpr
auto
num_access
=
SrcSpaceFillingCurve
::
GetNumOfAccess
();
static
constexpr
auto
src_num_access
=
SrcSpaceFillingCurve
::
GetNumOfAccess
();
static
constexpr
auto
dst_num_access
=
DstSpaceFillingCurve
::
GetNumOfAccess
();
StaticallyIndexedArray
<
DstVectorsType
,
num_access
>
dst_vectors_tuple_
;
StaticallyIndexedArray
<
DstVectorsType
,
dst_
num_access
>
dst_vectors_tuple_
;
SrcCoords
src_coords_
;
SrcCoords
src_coords_
;
DstCoords
dst_coords_
;
DstCoords
dst_coords_
;
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment