Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
gaoqiong
composable_kernel
Commits
7bcaf2a7
Unverified
Commit
7bcaf2a7
authored
Dec 19, 2022
by
Adam Osewski
Committed by
GitHub
Dec 19, 2022
Browse files
Merge branch 'develop' into wavelet_model
parents
e59daa22
0345963e
Changes
188
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
2011 additions
and
122 deletions
+2011
-122
example/14_gemm_xdl_quantization/CMakeLists.txt
example/14_gemm_xdl_quantization/CMakeLists.txt
+0
-1
example/34_batchnorm/batchnorm_backward_nhwc.cpp
example/34_batchnorm/batchnorm_backward_nhwc.cpp
+44
-40
example/44_conv2d_fwd_quantization/CMakeLists.txt
example/44_conv2d_fwd_quantization/CMakeLists.txt
+1
-0
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
...conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
+342
-0
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
...n/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
+22
-22
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
...uantization/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
+6
-5
example/44_elementwise_permute/CMakeLists.txt
example/44_elementwise_permute/CMakeLists.txt
+1
-0
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
...44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
+130
-0
include/ck/ck.hpp
include/ck/ck.hpp
+10
-1
include/ck/tensor_operation/gpu/device/device_base.hpp
include/ck/tensor_operation/gpu/device/device_base.hpp
+12
-0
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
...tensor_operation/gpu/device/device_batchnorm_backward.hpp
+31
-5
include/ck/tensor_operation/gpu/device/device_elementwise_2d.hpp
.../ck/tensor_operation/gpu/device/device_elementwise_2d.hpp
+341
-0
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
.../device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
+959
-0
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
+10
-1
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
...ration/gpu/device/impl/device_batchnorm_backward_impl.hpp
+52
-44
include/ck/tensor_operation/gpu/device/impl/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp
...device/impl/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp
+2
-0
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
...e/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
+8
-1
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
...or_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
+12
-1
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
...sor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
+12
-1
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
...r_operation/gpu/element/binary_element_wise_operation.hpp
+16
-0
No files found.
example/14_gemm_xdl_quantization/CMakeLists.txt
deleted
100644 → 0
View file @
e59daa22
add_example_executable
(
example_gemm_xdl_relu_quantization_int8 gemm_xdl_relu_quantization_int8.cpp
)
\ No newline at end of file
example/34_batchnorm/batchnorm_backward_nhwc.cpp
View file @
7bcaf2a7
...
...
@@ -11,7 +11,7 @@
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/host_common_util.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward
_nhwc_c
.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_batchnorm_backward.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp"
static
struct
option
long_options
[]
=
{{
"inOutLengths"
,
required_argument
,
nullptr
,
'D'
},
...
...
@@ -106,7 +106,7 @@ class BatchNormBwdArg
using
namespace
ck
;
template
<
typename
InOut
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
template
<
typename
X
DataType
,
typename
AccDataType
,
bool
UseMultiblockInK
>
bool
bnorm_bwd_nhwc_test
(
bool
do_verification
,
int
init_method
,
bool
time_kernel
,
...
...
@@ -118,13 +118,15 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
constexpr
index_t
Rank
=
4
;
constexpr
index_t
NumReduceDim
=
3
;
using
ScaleDataType
=
XDataType
;
const
std
::
vector
<
size_t
>
scaleBiasMeanVarLengths
=
{
inOutLengths
[
3
]};
// input data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
x
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dy
(
inOutLengths
);
Tensor
<
X
DataType
>
x
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dy
(
inOutLengths
);
Tensor
<
Acc
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
Scale
DataType
>
bnScale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedMean
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
savedInvVar
(
scaleBiasMeanVarLengths
);
...
...
@@ -132,8 +134,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
Tensor
<
AccDataType
>
savedVariance
(
scaleBiasMeanVarLengths
);
// output data of the batchnorm backward algorithm
Tensor
<
InOut
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
InOut
DataType
>
dx
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx_ref
(
inOutLengths
);
Tensor
<
Acc
DataType
>
dx
(
inOutLengths
);
Tensor
<
AccDataType
>
dscale
(
scaleBiasMeanVarLengths
);
Tensor
<
AccDataType
>
dbias
(
scaleBiasMeanVarLengths
);
...
...
@@ -153,7 +155,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
noise_stddev
=
0.0001
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
// initialize the savedMean to be values with tiny variation to the mean of the x values
savedMean
.
GenerateTensorValue
(
GeneratorTensor_4
<
AccDataType
>
{
x_mean
,
noise_stddev
},
...
...
@@ -182,7 +184,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
const
float
x_stddev
=
1.0
f
;
// input data in normal distribution
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
InOut
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
x
.
GenerateTensorValue
(
GeneratorTensor_4
<
X
DataType
>
{
x_mean
,
x_stddev
},
num_thread
);
};
if
(
do_verification
)
...
...
@@ -190,34 +192,34 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
switch
(
init_method
)
{
case
0
:
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
InOut
DataType
>
{},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_0
<
Acc
DataType
>
{},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_0
<
Scale
DataType
>
{},
num_thread
);
break
;
case
1
:
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
InOut
DataType
>
{
1
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_1
<
Acc
DataType
>
{
1
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_1
<
Scale
DataType
>
{
1
},
num_thread
);
break
;
case
2
:
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
InOut
DataType
>
{
-
5
,
5
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_2
<
Acc
DataType
>
{
-
2
,
2
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_2
<
Scale
DataType
>
{
-
5
,
5
},
num_thread
);
break
;
default:
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
InOut
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
dy
.
GenerateTensorValue
(
GeneratorTensor_3
<
Acc
DataType
>
{
-
0.2
f
,
0.2
f
},
num_thread
);
bnScale
.
GenerateTensorValue
(
GeneratorTensor_3
<
Scale
DataType
>
{
-
0.5
f
,
0.5
f
},
num_thread
);
}
};
// input data of the batchnorm backward algorithm
DeviceMem
x_dev
(
sizeof
(
InOut
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
InOut
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
x_dev
(
sizeof
(
X
DataType
)
*
x
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dy_dev
(
sizeof
(
Acc
DataType
)
*
dy
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Acc
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bnScale_dev
(
sizeof
(
Scale
DataType
)
*
bnScale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedMean_dev
(
sizeof
(
AccDataType
)
*
savedMean
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
savedInvVar_dev
(
sizeof
(
AccDataType
)
*
savedInvVar
.
mDesc
.
GetElementSpaceSize
());
// output data of the batchnorm backward algorithm
DeviceMem
dx_dev
(
sizeof
(
InOut
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dx_dev
(
sizeof
(
Acc
DataType
)
*
dx
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dscale_dev
(
sizeof
(
AccDataType
)
*
dscale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
dbias_dev
(
sizeof
(
AccDataType
)
*
dbias
.
mDesc
.
GetElementSpaceSize
());
...
...
@@ -249,13 +251,13 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
using
PassThroughOp
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceBatchNormBwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
InOut
DataType
,
InOut
DataType
,
InOut
DataType
,
ck
::
tensor_operation
::
device
::
DeviceBatchNormBwdImpl
<
X
DataType
,
Acc
DataType
,
Acc
DataType
,
AccDataType
,
Acc
DataType
,
// ScaleDataType
AccDataType
,
//
B
iasDataType
AccDataType
,
// MeanVarDataType
Scale
DataType
,
// ScaleDataType
AccDataType
,
//
DscaleDb
iasDataType
AccDataType
,
// MeanVarDataType
PassThroughOp
,
Rank
,
NumReduceDim
,
...
...
@@ -269,8 +271,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
1
,
// XSrcVectorSize
1
,
// DySrcVectorSize
1
,
// DxDstVectorSize
1
,
// ScaleSrc
Dst
VectorSize
1
,
//
B
iasDstVectorSize
1
,
// ScaleSrcVectorSize
1
,
//
DscaleDb
iasDstVectorSize
1
>
;
// MeanVarSrcVectorSize
auto
batchnorm_bwd
=
DeviceBatchNormBwdInstance
{};
...
...
@@ -324,7 +326,7 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
// inputing of x, dy, scale, outputing of dx, dscale, dbias
num_bytes
+=
total_length
*
sizeof
(
InOut
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
total_length
*
sizeof
(
X
DataType
)
*
3
+
invariant_length
*
sizeof
(
AccDataType
)
*
3
;
// outputing of mean, inv-variance
num_bytes
+=
haveSavedMeanInvVar
?
invariant_length
*
sizeof
(
AccDataType
)
*
2
:
0
;
...
...
@@ -341,14 +343,16 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
if
(
do_verification
)
{
using
ReferenceBatchNormBwdInstance
=
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd_Input_N_H_W_C_Output_C
<
InOutDataType
,
InOutDataType
,
InOutDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
PassThroughOp
>
;
ck
::
tensor_operation
::
host
::
ReferenceBatchNormBwd
<
XDataType
,
AccDataType
,
AccDataType
,
AccDataType
,
ScaleDataType
,
// ScaleDataType
AccDataType
,
AccDataType
,
PassThroughOp
,
Rank
,
NumReduceDim
>
;
auto
batchNormBwd_ref
=
ReferenceBatchNormBwdInstance
{};
...
...
@@ -390,8 +394,8 @@ bool bnorm_bwd_nhwc_test(bool do_verification,
dbias_dev
.
FromDevice
(
dbias
.
data
());
// clang-format off
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
1
e-
5
,
1
e-
5
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
1
e-
5
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dbias
.
mData
,
dbias_ref
.
mData
,
"dBias result:"
,
2
e-
4
,
2
e-
4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dscale
.
mData
,
dscale_ref
.
mData
,
"dScale result:"
,
2
e-
4
,
2e-4
);
pass
=
pass
&&
ck
::
utils
::
check_err
(
dx
.
mData
,
dx_ref
.
mData
,
"dx result:"
);
// clang-format on
};
...
...
example/44_conv2d_fwd_quant/CMakeLists.txt
→
example/44_conv2d_fwd_quant
ization
/CMakeLists.txt
View file @
7bcaf2a7
add_example_executable
(
example_conv2d_fwd_xdl_perchannel_quantization_int8 conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_perlayer_quantization_int8 conv2d_fwd_xdl_perlayer_quantization_int8.cpp
)
add_example_executable
(
example_conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8 conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
)
example/44_conv2d_fwd_quantization/conv2d_fwd_xdl_bias_relu_perchannel_quantization_int8.cpp
0 → 100644
View file @
7bcaf2a7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/impl/device_grouped_conv_fwd_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/algorithm.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
using
InDataType
=
int8_t
;
using
WeiDataType
=
int8_t
;
using
BiasDataType
=
int32_t
;
using
RequantScaleDataType
=
float
;
using
AccDataType
=
int32_t
;
using
CShuffleDataType
=
int32_t
;
using
OutDataType
=
int8_t
;
template
<
ck
::
index_t
...
Is
>
using
S
=
ck
::
Sequence
<
Is
...
>
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
InElementOp
=
PassThrough
;
using
WeiElementOp
=
PassThrough
;
using
ActivationOp
=
ck
::
tensor_operation
::
element_wise
::
Relu
;
using
OutElementOp
=
ck
::
tensor_operation
::
element_wise
::
Add_Activation_Mul2_Clamp
<
ActivationOp
>
;
static
constexpr
auto
ConvSpec
=
ck
::
tensor_operation
::
device
::
ConvolutionForwardSpecialization
::
Default
;
static
constexpr
auto
GemmSpec
=
ck
::
tensor_operation
::
device
::
GemmSpecialization
::
MNKPadding
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InLayout
,
typename
WeiLayout
,
typename
BiasLayout
,
typename
RequantScaleLayout
,
typename
OutLayout
>
using
DeviceGroupedConvNDFwdInstance
=
ck
::
tensor_operation
::
device
::
DeviceGroupedConvFwdMultipleD_Xdl_CShuffle
<
NDimSpatial
,
InLayout
,
WeiLayout
,
ck
::
Tuple
<
BiasLayout
,
RequantScaleLayout
>
,
OutLayout
,
InDataType
,
WeiDataType
,
AccDataType
,
CShuffleDataType
,
ck
::
Tuple
<
BiasDataType
,
RequantScaleDataType
>
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
ConvSpec
,
// ConvForwardSpecialization
GemmSpec
,
// GemmSpecialization
1
,
//
256
,
// BlockSize
128
,
// MPerBlock
256
,
// NPerBlock
64
,
// KPerBlock
16
,
// AK1
16
,
// BK1
32
,
// MPerXdl
32
,
// NPerXdl
2
,
// MXdlPerWave
4
,
// NXdlPerWave
S
<
4
,
64
,
1
>
,
// ABlockTransferThreadClusterLengths_AK0_M_AK1
S
<
1
,
0
,
2
>
,
// ABlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// ABlockTransferSrcAccessOrder
2
,
// ABlockTransferSrcVectorDim
16
,
// ABlockTransferSrcScalarPerVector
16
,
// ABlockTransferDstScalarPerVector_AK1
1
,
// ABlockLdsExtraM
S
<
4
,
64
,
1
>
,
// BBlockTransferThreadClusterLengths_BK0_N_BK1
S
<
1
,
0
,
2
>
,
// BBlockTransferThreadClusterArrangeOrder
S
<
1
,
0
,
2
>
,
// BBlockTransferSrcAccessOrder
2
,
// BBlockTransferSrcVectorDim
16
,
// BBlockTransferSrcScalarPerVector
16
,
// BBlockTransferDstScalarPerVector_BK1
1
,
// BBlockLdsExtraN
1
,
1
,
S
<
1
,
64
,
1
,
4
>
,
8
>
;
template
<
ck
::
index_t
NDimSpatial
,
typename
InDataType
,
typename
WeiDataType
,
typename
OutDataType
,
typename
InElementOp
,
typename
WeiElementOp
,
typename
OutElementOp
,
typename
DeviceConvNDFwdInstance
>
bool
run_grouped_conv_fwd
(
bool
do_verification
,
bool
time_kernel
,
const
ck
::
utils
::
conv
::
ConvParam
&
conv_param
,
const
HostTensorDescriptor
&
in_g_n_c_wis_desc
,
const
HostTensorDescriptor
&
wei_g_k_c_xs_desc
,
const
HostTensorDescriptor
&
bias_g_k_desc
,
const
HostTensorDescriptor
&
requant_scale_g_k_desc
,
const
HostTensorDescriptor
&
out_g_n_k_wos_desc
,
const
InElementOp
&
in_element_op
,
const
WeiElementOp
&
wei_element_op
,
const
OutElementOp
&
out_element_op
)
{
Tensor
<
InDataType
>
in
(
in_g_n_c_wis_desc
);
Tensor
<
WeiDataType
>
wei
(
wei_g_k_c_xs_desc
);
Tensor
<
BiasDataType
>
bias
(
bias_g_k_desc
);
Tensor
<
RequantScaleDataType
>
requant_scale
(
requant_scale_g_k_desc
);
Tensor
<
OutDataType
>
out_host
(
out_g_n_k_wos_desc
);
Tensor
<
OutDataType
>
out_device
(
out_g_n_k_wos_desc
);
std
::
cout
<<
"in: "
<<
in
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"wei: "
<<
wei
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"bias: "
<<
bias
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"requant_scale: "
<<
requant_scale
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"out: "
<<
out_host
.
mDesc
<<
std
::
endl
;
in
.
GenerateTensorValue
(
GeneratorTensor_2
<
InDataType
>
{
-
128
,
127
});
wei
.
GenerateTensorValue
(
GeneratorTensor_2
<
WeiDataType
>
{
-
128
,
127
});
bias
.
GenerateTensorValue
(
GeneratorTensor_2
<
BiasDataType
>
{
-
128
,
127
});
requant_scale
.
GenerateTensorValue
(
GeneratorTensor_2
<
RequantScaleDataType
>
{
0
,
1
});
DeviceMem
in_device_buf
(
sizeof
(
InDataType
)
*
in
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
wei_device_buf
(
sizeof
(
WeiDataType
)
*
wei
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
bias_device_buf
(
sizeof
(
BiasDataType
)
*
bias
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
requant_scale_device_buf
(
sizeof
(
RequantScaleDataType
)
*
requant_scale
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
out_device_buf
(
sizeof
(
OutDataType
)
*
out_device
.
mDesc
.
GetElementSpaceSize
());
in_device_buf
.
ToDevice
(
in
.
mData
.
data
());
wei_device_buf
.
ToDevice
(
wei
.
mData
.
data
());
bias_device_buf
.
ToDevice
(
bias
.
mData
.
data
());
requant_scale_device_buf
.
ToDevice
(
requant_scale
.
mData
.
data
());
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d0_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
d1_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_strides
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
conv_filter_dilations
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_left_pads
{};
std
::
array
<
ck
::
index_t
,
NDimSpatial
>
input_right_pads
{};
auto
copy
=
[](
const
auto
&
x
,
auto
&
y
)
{
ck
::
ranges
::
copy
(
x
,
y
.
begin
());
};
copy
(
in_g_n_c_wis_desc
.
GetLengths
(),
a_g_n_c_wis_lengths
);
copy
(
in_g_n_c_wis_desc
.
GetStrides
(),
a_g_n_c_wis_strides
);
copy
(
wei_g_k_c_xs_desc
.
GetLengths
(),
b_g_k_c_xs_lengths
);
copy
(
wei_g_k_c_xs_desc
.
GetStrides
(),
b_g_k_c_xs_strides
);
copy
(
bias_g_k_desc
.
GetLengths
(),
d0_g_n_k_wos_lengths
);
copy
(
bias_g_k_desc
.
GetStrides
(),
d0_g_n_k_wos_strides
);
copy
(
requant_scale_g_k_desc
.
GetLengths
(),
d1_g_n_k_wos_lengths
);
copy
(
requant_scale_g_k_desc
.
GetStrides
(),
d1_g_n_k_wos_strides
);
copy
(
out_g_n_k_wos_desc
.
GetLengths
(),
e_g_n_k_wos_lengths
);
copy
(
out_g_n_k_wos_desc
.
GetStrides
(),
e_g_n_k_wos_strides
);
copy
(
conv_param
.
conv_filter_strides_
,
conv_filter_strides
);
copy
(
conv_param
.
conv_filter_dilations_
,
conv_filter_dilations
);
copy
(
conv_param
.
input_left_pads_
,
input_left_pads
);
copy
(
conv_param
.
input_right_pads_
,
input_right_pads
);
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
(),
requant_scale_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{
d0_g_n_k_wos_lengths
,
d1_g_n_k_wos_lengths
},
{
d0_g_n_k_wos_strides
,
d1_g_n_k_wos_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
throw
std
::
runtime_error
(
"wrong! device_conv with the specified compilation parameters does "
"not support this Conv problem"
);
}
float
avg_time
=
invoker
.
Run
(
argument
,
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
conv_param
.
GetFlops
();
std
::
size_t
num_btype
=
conv_param
.
GetByte
<
InDataType
,
WeiDataType
,
OutDataType
>
();
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
avg_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
avg_time
;
std
::
cout
<<
"Perf: "
<<
avg_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s, "
<<
conv
.
GetTypeString
()
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
Tensor
<
CShuffleDataType
>
c_host
(
out_g_n_k_wos_desc
);
auto
ref_conv
=
ck
::
tensor_operation
::
host
::
ReferenceConvFwd
<
NDimSpatial
,
InDataType
,
WeiDataType
,
CShuffleDataType
,
InElementOp
,
WeiElementOp
,
PassThrough
>
();
auto
ref_invoker
=
ref_conv
.
MakeInvoker
();
auto
ref_argument
=
ref_conv
.
MakeArgument
(
in
,
wei
,
c_host
,
conv_param
.
conv_filter_strides_
,
conv_param
.
conv_filter_dilations_
,
conv_param
.
input_left_pads_
,
conv_param
.
input_right_pads_
,
in_element_op
,
wei_element_op
,
PassThrough
{});
ref_invoker
.
Run
(
ref_argument
);
// TODO: implement elementwise operation for host
out_host
.
ForEach
([
&
](
auto
&
,
auto
idx
)
{
out_element_op
(
out_host
(
idx
),
c_host
(
idx
),
bias
(
idx
),
requant_scale
(
idx
));
});
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
ck
::
index_t
ndim_spatial
=
2
;
ck
::
utils
::
conv
::
ConvParam
conv_param
{
ndim_spatial
,
// n_dim
1
,
// group
4
,
// batch
64
,
// output channels
32
,
// input chanels
{
3
,
3
},
// weight HW
{
71
,
71
},
// x HW
{
2
,
2
},
// strides
{
1
,
1
},
// dilations
{
1
,
1
},
// left_pads
{
1
,
1
}
// right_pads
};
const
auto
in_element_op
=
InElementOp
{};
const
auto
wei_element_op
=
WeiElementOp
{};
const
auto
out_element_op
=
OutElementOp
{
ActivationOp
{}};
using
InLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWC
;
using
WeiLayout
=
ck
::
tensor_layout
::
convolution
::
GKYXC
;
using
BiasLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
RequantScaleLayout
=
ck
::
tensor_layout
::
convolution
::
G_K
;
using
OutLayout
=
ck
::
tensor_layout
::
convolution
::
GNHWK
;
const
auto
in_g_n_c_wis_desc
=
ck
::
utils
::
conv
::
make_input_host_tensor_descriptor_g_n_c_wis_packed
<
InLayout
>
(
conv_param
);
const
auto
wei_g_k_c_xs_desc
=
ck
::
utils
::
conv
::
make_weight_host_tensor_descriptor_g_k_c_xs_packed
<
WeiLayout
>
(
conv_param
);
// TODO - make_bias_host_tensor_descriptor_g_n_k_wos_packed()
const
auto
bias_g_k_desc
=
HostTensorDescriptor
({
conv_param
.
G_
,
conv_param
.
N_
,
conv_param
.
K_
,
conv_param
.
output_spatial_lengths_
[
0
],
conv_param
.
output_spatial_lengths_
[
1
]},
{
conv_param
.
K_
,
// g
0
,
// n
1
,
// k
0
,
// ho
0
// wo
});
const
auto
requant_scale_g_k_desc
=
bias_g_k_desc
;
const
auto
out_g_n_k_wos_desc
=
ck
::
utils
::
conv
::
make_output_host_tensor_descriptor_g_n_k_wos_packed
<
OutLayout
>
(
conv_param
);
std
::
cout
<<
out_g_n_k_wos_desc
<<
std
::
endl
;
using
deviceOp
=
DeviceGroupedConvNDFwdInstance
<
ndim_spatial
,
InLayout
,
WeiLayout
,
BiasLayout
,
RequantScaleLayout
,
OutLayout
>
;
return
run_grouped_conv_fwd
<
ndim_spatial
,
InDataType
,
WeiDataType
,
OutDataType
,
InElementOp
,
WeiElementOp
,
OutElementOp
,
deviceOp
>
(
do_verification
,
time_kernel
,
conv_param
,
in_g_n_c_wis_desc
,
wei_g_k_c_xs_desc
,
bias_g_k_desc
,
requant_scale_g_k_desc
,
out_g_n_k_wos_desc
,
in_element_op
,
wei_element_op
,
out_element_op
);
}
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
→
example/44_conv2d_fwd_quant
ization
/conv2d_fwd_xdl_bias_relu_perlayer_quantization_int8.cpp
View file @
7bcaf2a7
...
...
@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
...
...
@@ -163,26 +164,25 @@ bool run_grouped_conv_fwd(bool do_verification,
// do Conv
auto
conv
=
DeviceConvNDFwdInstance
{};
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
1
>
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_lengths
}},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
1
>
{{
d0_g_n_k_wos_strides
}},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
{
bias_device_buf
.
GetDeviceBuffer
()},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
{
d0_g_n_k_wos_lengths
},
{
d0_g_n_k_wos_strides
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
in_element_op
,
wei_element_op
,
out_element_op
);
if
(
!
conv
.
IsSupportedArgument
(
argument
))
{
...
...
@@ -235,8 +235,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
pass
&=
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
...
...
example/44_conv2d_fwd_quant/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
→
example/44_conv2d_fwd_quant
ization
/conv2d_fwd_xdl_perlayer_quantization_int8.cpp
View file @
7bcaf2a7
...
...
@@ -11,6 +11,7 @@
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
#include "ck/library/utility/literals.hpp"
#include "ck/library/utility/convolution_parameter.hpp"
#include "ck/library/utility/convolution_host_tensor_descriptor_helper.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd.hpp"
...
...
@@ -150,14 +151,14 @@ bool run_grouped_conv_fwd(bool do_verification,
auto
invoker
=
conv
.
MakeInvoker
();
auto
argument
=
conv
.
MakeArgument
(
in_device_buf
.
GetDeviceBuffer
(),
wei_device_buf
.
GetDeviceBuffer
(),
std
::
array
<
const
void
*
,
0
>
{},
{},
out_device_buf
.
GetDeviceBuffer
(),
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}
},
std
::
array
<
std
::
array
<
ck
::
index_t
,
NDimSpatial
+
3
>
,
0
>
{{}
},
{
},
{
},
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
...
...
@@ -213,8 +214,8 @@ bool run_grouped_conv_fwd(bool do_verification,
out_device_buf
.
FromDevice
(
out_device
.
mData
.
data
());
pass
&=
ck
::
utils
::
check_err
(
out_device
.
mData
,
out_host
.
mData
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
pass
&=
ck
::
utils
::
check_err
(
out_device
,
out_host
,
"Error: incorrect results!"
,
1e-5
f
,
1e-4
f
);
}
return
(
pass
?
0
:
1
);
...
...
example/44_elementwise_permute/CMakeLists.txt
View file @
7bcaf2a7
add_example_executable
(
example_elementwise_permute_4D_fp16 elementwise_permute_4D_fp16.cpp
)
add_example_executable
(
example_elementwise_permute_4D_fp16_2d elementwise_permute_4D_fp16_2d.cpp
)
example/44_elementwise_permute/elementwise_permute_4D_fp16_2d.cpp
0 → 100644
View file @
7bcaf2a7
#include <iostream>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_2d.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/device_memory.hpp"
#include "ck/library/utility/host_tensor.hpp"
#include "ck/library/utility/host_tensor_generator.hpp"
using
F16
=
ck
::
half_t
;
using
ADataType
=
F16
;
using
BDataType
=
F16
;
using
PassThrough
=
ck
::
tensor_operation
::
element_wise
::
PassThrough
;
using
DeviceElementwisePermuteInstance
=
ck
::
tensor_operation
::
device
::
DeviceElementwise
<
ck
::
Tuple
<
ADataType
>
,
ck
::
Tuple
<
BDataType
>
,
PassThrough
,
3
,
// NumDim_M
1
,
// NumDim_N
8
,
8
,
ck
::
Sequence
<
8
>
,
ck
::
Sequence
<
8
>>
;
template
<
typename
HostTensorA
,
typename
HostTensorB
,
typename
Functor
>
void
host_elementwise4D
(
HostTensorB
&
B_nhwc
,
const
HostTensorA
&
A_nchw
,
const
std
::
vector
<
std
::
size_t
>&
shape_nchw
,
Functor
functor
)
{
for
(
std
::
size_t
n
=
0
;
n
<
shape_nchw
[
0
];
++
n
)
for
(
std
::
size_t
c
=
0
;
c
<
shape_nchw
[
1
];
++
c
)
for
(
std
::
size_t
h
=
0
;
h
<
shape_nchw
[
2
];
++
h
)
for
(
std
::
size_t
w
=
0
;
w
<
shape_nchw
[
3
];
++
w
)
{
auto
a_val
=
A_nchw
(
n
,
c
,
h
,
w
);
functor
(
B_nhwc
(
n
,
h
,
w
,
c
),
a_val
);
}
}
int
main
()
{
bool
do_verification
=
true
;
bool
time_kernel
=
true
;
const
int
N
=
120
;
const
int
C
=
128
;
const
int
H
=
32
;
const
int
W
=
1024
;
/**const int N = 120;
const int H = 32;
const int W = 64;
const int C = 128;**/
std
::
vector
<
std
::
size_t
>
nchw
=
{
N
,
C
,
H
,
W
};
std
::
vector
<
std
::
size_t
>
nhwc
=
{
N
,
H
,
W
,
C
};
Tensor
<
ADataType
>
a
(
nchw
);
Tensor
<
BDataType
>
b
(
nhwc
);
a
.
GenerateTensorValue
(
GeneratorTensor_3
<
ADataType
>
{
0.0
,
1.0
});
DeviceMem
a_device_buf
(
sizeof
(
ADataType
)
*
a
.
mDesc
.
GetElementSpaceSize
());
DeviceMem
b_device_buf
(
sizeof
(
BDataType
)
*
b
.
mDesc
.
GetElementSpaceSize
());
a_device_buf
.
ToDevice
(
a
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "Tensor a : ", a.mData, ",") << std::endl;
std
::
array
<
const
void
*
,
1
>
input
=
{
a_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
void
*
,
1
>
output
=
{
b_device_buf
.
GetDeviceBuffer
()};
std
::
array
<
ck
::
index_t
,
4
>
ab_lengths
{
N
,
H
,
W
,
C
};
std
::
array
<
ck
::
index_t
,
4
>
a_strides
=
{
C
*
H
*
W
,
W
,
1
,
H
*
W
};
std
::
array
<
ck
::
index_t
,
4
>
b_strides
=
{
H
*
W
*
C
,
W
*
C
,
C
,
1
};
auto
broadcastPermute
=
DeviceElementwisePermuteInstance
{};
auto
argument
=
broadcastPermute
.
MakeArgumentPointer
(
ab_lengths
,
{
a_strides
},
{
b_strides
},
input
,
output
,
PassThrough
{});
if
(
!
broadcastPermute
.
IsSupportedArgument
(
argument
.
get
()))
{
throw
std
::
runtime_error
(
"The runtime parameters seems not supported by the device instance, exiting!"
);
};
std
::
cout
<<
"A (nchw): "
<<
a
.
mDesc
<<
std
::
endl
;
std
::
cout
<<
"B (nhwc): "
<<
b
.
mDesc
<<
std
::
endl
;
auto
broadcastPermute_invoker_ptr
=
broadcastPermute
.
MakeInvokerPointer
();
float
ave_time
=
broadcastPermute_invoker_ptr
->
Run
(
argument
.
get
(),
StreamConfig
{
nullptr
,
time_kernel
});
std
::
size_t
flop
=
std
::
size_t
(
2
)
*
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
];
std
::
size_t
num_btype
=
sizeof
(
ADataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
])
+
sizeof
(
BDataType
)
*
(
nchw
[
0
]
*
nchw
[
1
]
*
nchw
[
2
]
*
nchw
[
3
]);
float
tflops
=
static_cast
<
float
>
(
flop
)
/
1.E9
/
ave_time
;
float
gb_per_sec
=
num_btype
/
1.E6
/
ave_time
;
std
::
cout
<<
"Perf: "
<<
ave_time
<<
" ms, "
<<
tflops
<<
" TFlops, "
<<
gb_per_sec
<<
" GB/s"
<<
std
::
endl
;
bool
pass
=
true
;
if
(
do_verification
)
{
b_device_buf
.
FromDevice
(
b
.
mData
.
data
());
// LogRangeAsType<float>(std::cout << "Tensor b : ", b.mData, ",") << std::endl;
Tensor
<
BDataType
>
host_b
(
nhwc
);
host_elementwise4D
<
Tensor
<
ADataType
>
,
Tensor
<
BDataType
>
,
PassThrough
>
(
host_b
,
a
,
nchw
,
PassThrough
{});
// LogRangeAsType<float>(std::cout << "Host b : ", host_b.mData, ",") << std::endl;
pass
&=
ck
::
utils
::
check_err
(
b
.
mData
,
host_b
.
mData
,
"Error: Incorrect results b"
,
1e-3
,
1e-3
);
}
return
pass
?
0
:
1
;
}
include/ck/ck.hpp
View file @
7bcaf2a7
...
...
@@ -30,7 +30,7 @@
// check GPU target
#ifdef __HIP_DEVICE_COMPILE__
#if !(defined(__gfx803__) || defined(__gfx900__) || defined(__gfx906__) || defined(__gfx908__) || \
defined(__gfx90a__) || defined(__gfx1030__))
defined(__gfx90a__) || defined(__gfx1030__)
|| defined(__gfx1100__)
)
#error Not supported target
#endif
#endif
...
...
@@ -43,6 +43,8 @@
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x00020000
#elif defined(__gfx1030__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x31014000
#elif defined(__gfx1100__) // for GPU code
#define CK_BUFFER_RESOURCE_3RD_DWORD 0x10020000
#endif
// FMA instruction
...
...
@@ -67,6 +69,13 @@
#define CK_USE_AMD_MFMA_BF16_1K_OP
#endif
// WMMA instruction
#ifndef __HIP_DEVICE_COMPILE__ // for host code
#define CK_USE_AMD_WMMA
#elif defined(__gfx1100__) // for GPU code
#define CK_USE_AMD_WMMA
#endif
// buffer load
#define CK_USE_AMD_BUFFER_LOAD 1
...
...
include/ck/tensor_operation/gpu/device/device_base.hpp
View file @
7bcaf2a7
...
...
@@ -5,6 +5,7 @@
#include <cmath>
#include <string>
#include <sstream>
#include "ck/stream_config.hpp"
...
...
@@ -46,6 +47,17 @@ struct BaseOperator
virtual
bool
IsSupportedArgument
(
const
BaseArgument
*
)
{
return
false
;
}
virtual
std
::
string
GetTypeString
()
const
{
return
""
;
}
virtual
std
::
string
GetTypeIdName
()
const
{
return
typeid
(
*
this
).
name
();
}
virtual
std
::
string
GetTypeIdHashCode
()
const
{
std
::
ostringstream
oss
;
oss
<<
std
::
hex
<<
typeid
(
*
this
).
hash_code
();
return
oss
.
str
();
};
virtual
size_t
GetWorkSpaceSize
(
const
BaseArgument
*
)
const
{
return
0
;
}
virtual
void
SetWorkSpacePointer
(
BaseArgument
*
p_arg
,
void
*
p_workspace
)
const
...
...
include/ck/tensor_operation/gpu/device/device_batchnorm_backward.hpp
View file @
7bcaf2a7
...
...
@@ -13,7 +13,16 @@ namespace ck {
namespace
tensor_operation
{
namespace
device
{
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
,
typename
DyElementwiseOp
>
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
struct
DeviceBatchNormBwd
:
public
BaseOperator
{
static
constexpr
index_t
NumInvariantDim
=
Rank
-
NumBatchNormReduceDim
;
...
...
@@ -26,7 +35,7 @@ struct DeviceBatchNormBwd : public BaseOperator
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_dy
,
...
...
@@ -42,9 +51,26 @@ struct DeviceBatchNormBwd : public BaseOperator
virtual
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
=
0
;
};
template
<
index_t
Rank
,
index_t
NumBatchNormReduceDim
,
typename
DyElementwiseOp
>
using
DeviceBatchNormBwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormBwd
<
Rank
,
NumBatchNormReduceDim
,
DyElementwiseOp
>>
;
template
<
typename
XDataType
,
typename
DxDataType
,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
DscaleDbiasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
index_t
NumBatchNormReduceDim
>
using
DeviceBatchNormBwdPtr
=
std
::
unique_ptr
<
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>>
;
}
// namespace device
}
// namespace tensor_operation
...
...
include/ck/tensor_operation/gpu/device/device_elementwise_2d.hpp
0 → 100644
View file @
7bcaf2a7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/math.hpp"
#include "ck/utility/sequence.hpp"
#include "ck/tensor_operation/gpu/device/device_elementwise_base.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_elementwise_2d.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/host_utility/kernel_launch.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
template
<
typename
InDataTypeTuple
,
typename
OutDataTypeTuple
,
typename
ElementwiseOperation
,
index_t
NumDim_m
,
index_t
NumDim_n
,
index_t
MPerThread
,
index_t
NPerThread
,
typename
InScalarPerVectorSeq
,
typename
OutScalarPerVectorSeq
>
struct
DeviceElementwise
:
public
DeviceElementwiseBase
<
InDataTypeTuple
,
OutDataTypeTuple
,
ElementwiseOperation
,
NumDim_m
+
NumDim_n
>
{
static
constexpr
index_t
NumDim
=
NumDim_m
+
NumDim_n
;
static
constexpr
int
NumInput
=
InDataTypeTuple
::
Size
();
static
constexpr
int
NumOutput
=
OutDataTypeTuple
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static_assert
(
NumInput
==
InScalarPerVectorSeq
::
Size
()
&&
NumOutput
==
OutScalarPerVectorSeq
::
Size
(),
"Tuple size is inconsistent with the number of in/out!"
);
static
auto
GenerateInDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
nullptr
);
},
Number
<
NumInput
>
{});
};
static
auto
GenerateOutDataTypePointerTuple
()
{
return
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
nullptr
);
},
Number
<
NumOutput
>
{});
};
using
InDataTypePointerTuple
=
decltype
(
GenerateInDataTypePointerTuple
());
using
OutDataTypePointerTuple
=
decltype
(
GenerateOutDataTypePointerTuple
());
template
<
typename
Desc_MN
>
static
auto
PadDescriptor_MN_2d
(
Desc_MN
desc_mn
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
std
::
ignore
=
blockSize
;
std
::
ignore
=
gridSize
;
const
auto
m
=
desc_mn
.
GetLength
(
I0
);
const
auto
n
=
desc_mn
.
GetLength
(
I1
);
const
index_t
loop_step_m
=
num_threads_m
*
MPerThread
;
const
index_t
loop_step_n
=
num_threads_n
*
NPerThread
;
const
auto
pad_m
=
math
::
integer_least_multiple
(
m
,
loop_step_m
)
-
m
;
const
auto
pad_n
=
math
::
integer_least_multiple
(
n
,
loop_step_n
)
-
n
;
const
auto
desc_mn_pad
=
transform_tensor_descriptor
(
desc_mn
,
make_tuple
(
make_right_pad_transform
(
m
,
pad_m
),
make_right_pad_transform
(
n
,
pad_n
)),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
desc_mn_pad
;
}
static
auto
MakeDescriptor_MN
(
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
stride
,
index_t
gridSize
,
index_t
blockSize
,
index_t
num_threads_m
,
index_t
num_threads_n
)
{
auto
tupleOfShape
=
generate_tuple
([
&
](
auto
I
)
{
return
lengths
[
I
];
},
Number
<
NumDim
>
{});
auto
tupleOfStride
=
generate_tuple
([
&
](
auto
I
)
{
return
stride
[
I
];
},
Number
<
NumDim
>
{});
// nd desc - [s0, s1, s2, ...]
const
auto
desc
=
make_naive_tensor_descriptor
(
tupleOfShape
,
tupleOfStride
);
constexpr
auto
mDimIds
=
typename
arithmetic_sequence_gen
<
0
,
NumDim_m
,
1
>::
type
();
constexpr
auto
nDimIds
=
typename
arithmetic_sequence_gen
<
NumDim_m
,
NumDim_m
+
NumDim_n
,
1
>::
type
();
const
auto
mLengths
=
get_container_subset
(
tupleOfShape
,
mDimIds
);
const
auto
nLengths
=
get_container_subset
(
tupleOfShape
,
nDimIds
);
// merge nd to 2d desc - [s0 * s1 * ...]
if
constexpr
(
NumDim
>
2
)
{
const
auto
desc_mn
=
transform_tensor_descriptor
(
desc
,
make_tuple
(
make_merge_transform
(
mLengths
),
make_merge_transform
(
nLengths
)),
make_tuple
(
mDimIds
,
nDimIds
),
make_tuple
(
Sequence
<
0
>
{},
Sequence
<
1
>
{}));
return
PadDescriptor_MN_2d
(
desc_mn
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
else
return
PadDescriptor_MN_2d
(
desc
,
gridSize
,
blockSize
,
num_threads_m
,
num_threads_n
);
}
template
<
index_t
TupleSize
>
static
auto
GenerateInOutGrid2dDescTuple
(
Number
<
TupleSize
>
)
{
return
generate_tuple
(
[
&
](
auto
)
{
if
constexpr
(
NumDim
>
2
)
{
return
MakeDescriptor_MN
({
1
,
1
},
{
1
,
1
},
1
,
1
,
1
,
1
);
}
else
{
return
MakeDescriptor_MN
({
1
},
{
1
},
1
,
1
,
1
,
1
);
};
},
Number
<
TupleSize
>
{});
};
using
OutGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumOutput
>
{}));
using
InGrid2dDescTuple
=
decltype
(
GenerateInOutGrid2dDescTuple
(
Number
<
NumInput
>
{}));
using
GridwiseElementwise
=
GridwiseElementwise_2D
<
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
,
MPerThread
,
NPerThread
,
InScalarPerVectorSeq
,
OutScalarPerVectorSeq
>
;
struct
Argument
:
public
BaseArgument
{
Argument
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
:
lengths_
(
lengths
),
inStridesArray_
(
inStridesArray
),
outStridesArray_
(
outStridesArray
),
elementwise_op_
(
elementwise_op
),
blockSize_
(
256
),
gridSize_
(
120
),
// FIXME - Calculate the grid size by number of CU in the future
num_threads_m_
((
gridSize_
*
blockSize_
)
/
16
),
num_threads_n_
(
16
)
{
static_assert
(
NumDim_m
>
0
,
""
);
static_assert
(
NumDim_n
>
0
,
""
);
in_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
InDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
const
DataType
*>
(
in_dev_buffers
[
I
.
value
]);
},
Number
<
NumInput
>
{});
out_dev_buffers_
=
generate_tuple
(
[
&
](
auto
I
)
{
using
DataType
=
remove_cvref_t
<
decltype
(
OutDataTypeTuple
{}[
I
])
>
;
return
static_cast
<
DataType
*>
(
out_dev_buffers
[
I
.
value
]);
},
Number
<
NumOutput
>
{});
in_grid_2d_desc_tuple_
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
lengths
,
inStridesArray
[
I
.
value
],
gridSize_
,
blockSize_
,
num_threads_m_
,
num_threads_n_
);
},
Number
<
NumInput
>
{});
out_grid_2d_desc_tuple_
=
generate_tuple
(
[
&
](
auto
I
)
{
return
MakeDescriptor_MN
(
lengths
,
outStridesArray
[
I
.
value
],
gridSize_
,
blockSize_
,
num_threads_m_
,
num_threads_n_
);
},
Number
<
NumOutput
>
{});
}
InDataTypePointerTuple
in_dev_buffers_
;
OutDataTypePointerTuple
out_dev_buffers_
;
InGrid2dDescTuple
in_grid_2d_desc_tuple_
;
OutGrid2dDescTuple
out_grid_2d_desc_tuple_
;
std
::
array
<
index_t
,
NumDim
>
lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray_
;
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray_
;
ElementwiseOperation
elementwise_op_
;
index_t
blockSize_
;
index_t
gridSize_
;
index_t
num_threads_m_
;
index_t
num_threads_n_
;
};
struct
Invoker
:
public
BaseInvoker
{
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
const
auto
kernel
=
kernel_elementwise_2d
<
GridwiseElementwise
,
InGrid2dDescTuple
,
OutGrid2dDescTuple
,
InDataTypePointerTuple
,
OutDataTypePointerTuple
,
ElementwiseOperation
>
;
float
elapsed_time
=
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
arg
.
gridSize_
),
dim3
(
arg
.
blockSize_
),
0
,
arg
.
in_grid_2d_desc_tuple_
,
arg
.
out_grid_2d_desc_tuple_
,
arg
.
in_dev_buffers_
,
arg
.
out_dev_buffers_
,
arg
.
elementwise_op_
,
arg
.
num_threads_m_
,
arg
.
num_threads_n_
);
return
elapsed_time
;
}
// polymorphic
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
const
Argument
*
pArg
=
dynamic_cast
<
const
Argument
*>
(
p_arg
);
if
(
pArg
==
nullptr
)
return
false
;
if
(
pArg
->
lengths_
.
back
()
%
MPerThread
!=
0
)
return
false
;
auto
IsScalarPerVectorValid
=
[
&
](
const
std
::
array
<
index_t
,
NumDim
>&
lengths
,
const
std
::
array
<
index_t
,
NumDim
>&
strides
,
index_t
scalarPerVector
,
index_t
vectorDim
)
{
if
(
strides
[
vectorDim
]
==
1
&&
(
lengths
[
vectorDim
]
%
scalarPerVector
==
0
||
lengths
[
vectorDim
]
%
scalarPerVector
==
lengths
[
vectorDim
]))
{
return
true
;
}
if
(
strides
[
vectorDim
]
!=
1
&&
scalarPerVector
==
strides
[
vectorDim
])
{
return
true
;
}
return
false
;
};
bool
valid
=
true
;
static_for
<
0
,
NumInput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
inStridesArray_
[
I
.
value
],
InScalarPerVectorSeq
::
At
(
I
),
NumDim_m
-
1
))
valid
=
false
;
});
static_for
<
0
,
NumOutput
,
1
>
{}([
&
](
auto
I
)
{
if
(
!
IsScalarPerVectorValid
(
pArg
->
lengths_
,
pArg
->
outStridesArray_
[
I
.
value
],
OutScalarPerVectorSeq
::
At
(
I
),
NumDim
-
1
))
valid
=
false
;
});
return
valid
;
};
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
std
::
array
<
index_t
,
NumDim
>
lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumInput
>
inStridesArray
,
const
std
::
array
<
std
::
array
<
index_t
,
NumDim
>
,
NumOutput
>
outStridesArray
,
const
std
::
array
<
const
void
*
,
NumInput
>
in_dev_buffers
,
const
std
::
array
<
void
*
,
NumOutput
>
out_dev_buffers
,
ElementwiseOperation
elementwise_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
lengths
,
inStridesArray
,
outStridesArray
,
in_dev_buffers
,
out_dev_buffers
,
elementwise_op
);
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
();
};
};
// namespace device
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/device_grouped_conv_fwd_dl_multiple_d_nhwc_kyxc_nhwk.hpp
0 → 100644
View file @
7bcaf2a7
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
#include <iostream>
#include <iterator>
#include <numeric>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/operator_transform/transform_conv_fwd_to_gemm.hpp"
#include "ck/tensor_operation/gpu/device/device_grouped_conv_fwd_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/matrix_padder.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_multiple_d.hpp"
#include "ck/host_utility/device_prop.hpp"
#include "ck/host_utility/kernel_launch.hpp"
#include "ck/host_utility/io.hpp"
namespace
ck
{
namespace
tensor_operation
{
namespace
device
{
namespace
{
template
<
index_t
NumDTensor
>
struct
ComputePtrOffsetOfStridedBatch
{
ComputePtrOffsetOfStridedBatch
()
=
default
;
ComputePtrOffsetOfStridedBatch
(
index_t
BatchStrideA
,
index_t
BatchStrideB
,
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs
,
index_t
BatchStrideE
)
:
BatchStrideA_
(
BatchStrideA
),
BatchStrideB_
(
BatchStrideB
),
BatchStrideDs_
(
BatchStrideDs
),
BatchStrideE_
(
BatchStrideE
)
{
}
__host__
__device__
constexpr
long_index_t
GetAPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideA_
);
}
__host__
__device__
constexpr
long_index_t
GetBPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideB_
);
}
__host__
__device__
constexpr
auto
GetDsPtrOffset
(
index_t
g_idx
)
const
{
Array
<
long_index_t
,
NumDTensor
>
ds_offset
;
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
ds_offset
(
i
)
=
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideDs_
[
i
]);
});
return
ds_offset
;
}
__host__
__device__
constexpr
long_index_t
GetEPtrOffset
(
index_t
g_idx
)
const
{
return
g_idx
*
static_cast
<
long_index_t
>
(
BatchStrideE_
);
}
index_t
BatchStrideA_
;
index_t
BatchStrideB_
;
Array
<
ck
::
index_t
,
NumDTensor
>
BatchStrideDs_
;
index_t
BatchStrideE_
;
};
/*
* \brief Wrapper function of GridwiseGemm::Run to realize BatchedGEMM.
*
* \tparam ComputePtrOffsetOfBatch Class that computes the base pointer offsets of A, B, C matrix
* given the batch. For example, ComputePtrOffsetOfStridedBatch() computes the offsets of evenly
* strided batched, but we can easily extend to other layouts. The returned offset can be either \p
* index_t or \p long_index_t. If it returns \p long_index_t, we are not subject to the 2GB
* limitations.
*
* \tparam Block2ETileMap Block2ETileMap::CalculateBottomIndex() takes in id of a workgroup and
* returns the 2D index of the tile that it computes. \see
* GridwiseGemm_k0mk1_k0nk1_mn_xdlops_v2r3::Run().
*
* \note Using \p ComputePtrOffsetOfBatch gives us the flexibility that 2 workgroups can compute 2
* tiles from different matrices. Keep in mind that these 2 matrices can share the same grid
* descriptor (like in BatchedGEMM), or use their own grid descriptors (in GroupedGemm). \link
* device_conv3d_fwd_xdl_ndhwc_kzyxc_ndhwk.hpp kernel_gemm_xdlops_v2r3_for_conv3d \endlink for \link
* DeviceConv3d \endlink uses the same concept, but currently does NOT encapsulate the computing of
* pointer offset into \p ComputePtrOffsetOfStridedBatch.
*
* \note \p Block2ETileMap allows customized mapping between a workgroup and the C-tile it computes.
* Together with \p ComputePtrOffsetOfBatch, we can reuse GridwiseGemm (and GridwiseGemm fusion ) to
* realize BatchedGemm and GroupedGemm (and the corresponding GEMM fusion).
*
*/
template
<
typename
GridwiseGemm
,
typename
ABDataType
,
typename
DsPointer
,
typename
EDataType
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
typename
AGridDesc_K0_M0_M1_K1
,
typename
BGridDesc_K0_N0_N1_K1
,
typename
DsGridDesc_M0_M10_M11_N0_N10_N11
,
typename
CGridDesc_M0_M10_M11_N0_N10_N11
,
typename
Block2CTileMap
,
typename
ComputePtrOffsetOfBatch
,
bool
HasMainKBlockLoop
,
bool
HasDoubleTailKBlockLoop
>
__global__
void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__
(
CK_MAX_THREAD_PER_BLOCK
,
CK_MIN_BLOCK_PER_CU
)
#endif
kernel_grouped_conv_fwd_dl_multiple_d
(
const
ABDataType
*
__restrict__
p_a_grid
,
const
ABDataType
*
__restrict__
p_b_grid
,
DsPointer
p_ds_grid
,
EDataType
*
__restrict__
p_e_grid
,
const
AElementwiseOperation
a_element_op
,
const
BElementwiseOperation
b_element_op
,
const
CDEElementwiseOperation
cde_element_op
,
const
index_t
batch_count
,
const
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1
,
const
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1
,
const
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
const
CGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11
,
const
Block2CTileMap
block_2_ctile_map
,
const
ComputePtrOffsetOfBatch
compute_ptr_offset_of_batch
)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx906__) || defined(__gfx1030__))
// offset base pointer for each work-group
const
index_t
num_blocks_per_batch
=
__builtin_amdgcn_readfirstlane
(
get_grid_size
()
/
batch_count
);
const
index_t
g_idx
=
__builtin_amdgcn_readfirstlane
(
get_block_1d_id
()
/
num_blocks_per_batch
);
const
long_index_t
a_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
g_idx
)));
const
long_index_t
b_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
g_idx
)));
const
long_index_t
c_batch_offset
=
__builtin_amdgcn_readfirstlane
(
static_cast
<
long_index_t
>
(
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
g_idx
)));
const
auto
ds_batch_offset
=
compute_ptr_offset_of_batch
.
GetDsPtrOffset
(
g_idx
);
constexpr
index_t
shared_block_size
=
GridwiseGemm
::
GetSharedMemoryNumberOfByte
()
/
sizeof
(
ABDataType
);
__shared__
ABDataType
p_shared
[
shared_block_size
];
DsPointer
p_ds_grid_grp
;
static
constexpr
index_t
NumDTensor
=
DsGridDesc_M0_M10_M11_N0_N10_N11
::
Size
();
static_for
<
0
,
NumDTensor
,
1
>
{}(
[
&
](
auto
i
)
{
p_ds_grid_grp
(
i
)
=
p_ds_grid
[
i
]
+
ds_batch_offset
[
i
];
});
GridwiseGemm
::
Run
(
p_a_grid
+
a_batch_offset
,
p_b_grid
+
b_batch_offset
,
p_ds_grid_grp
,
p_e_grid
+
c_batch_offset
,
p_shared
,
a_element_op
,
b_element_op
,
cde_element_op
,
a_grid_desc_k0_m0_m1_k1
,
b_grid_desc_k0_n0_n1_k1
,
ds_grid_desc_m0_m10_m11_n0_n10_n11
,
e_grid_desc_m0_m10_m11_n0_n10_n11
,
block_2_ctile_map
,
integral_constant
<
bool
,
HasMainKBlockLoop
>
{},
integral_constant
<
bool
,
HasDoubleTailKBlockLoop
>
{});
#else
ignore
=
p_a_grid
;
ignore
=
p_b_grid
;
ignore
=
p_ds_grid
;
ignore
=
p_e_grid
;
ignore
=
a_element_op
;
ignore
=
b_element_op
;
ignore
=
cde_element_op
;
ignore
=
batch_count
;
ignore
=
a_grid_desc_k0_m0_m1_k1
;
ignore
=
b_grid_desc_k0_n0_n1_k1
;
ignore
=
ds_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
e_grid_desc_m0_m10_m11_n0_n10_n11
;
ignore
=
compute_ptr_offset_of_batch
;
ignore
=
block_2_ctile_map
;
compute_ptr_offset_of_batch
.
GetAPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetBPtrOffset
(
0
);
compute_ptr_offset_of_batch
.
GetEPtrOffset
(
0
);
#endif
}
}
// namespace
//
// @brief Device Convolution operation.
//
// Supports:
// @li Forward convolution with up to 3 spatial dimentions
// @li Input tensor in GNWC data format
// @li Weight tensor in GKXC data format
// @li Output tensor in GNWK data format
//
// 1D:
// out[N, Wo, K] = in[N, Wi, C] * wei[K, X, C]
// 2D:
// out[N, Ho, Wo, K] = in[N, Hi, Wi, C] * wei[K, Y, X, C]
// 3D:
// out[N, Do, Ho, Wo, K] = in[N, Di, Hi, Wi, C] * wei[K, Z, Y, X, C]
//
template
<
index_t
NDimSpatial
,
typename
ADataType
,
typename
BDataType
,
typename
DsDataType
,
typename
EDataType
,
typename
AccDataType
,
typename
ALayout
,
typename
BLayout
,
typename
DsLayout
,
typename
ELayout
,
typename
AElementwiseOperation
,
typename
BElementwiseOperation
,
typename
CDEElementwiseOperation
,
ConvolutionForwardSpecialization
ConvForwardSpecialization
,
GemmSpecialization
GemmSpec
,
index_t
BlockSize
,
index_t
MPerBlock
,
index_t
NPerBlock
,
index_t
K0PerBlock
,
index_t
K1
,
index_t
M1PerThread
,
index_t
N1PerThread
,
index_t
KPerThread
,
typename
M1N1ThreadClusterM1Xs
,
typename
M1N1ThreadClusterN1Xs
,
typename
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
typename
ABlockTransferThreadClusterArrangeOrder
,
typename
ABlockTransferSrcAccessOrder
,
typename
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
typename
ABlockTransferSrcVectorTensorContiguousDimOrder
,
typename
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
typename
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
typename
BBlockTransferThreadClusterArrangeOrder
,
typename
BBlockTransferSrcAccessOrder
,
typename
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
typename
BBlockTransferSrcVectorTensorContiguousDimOrder
,
typename
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
typename
CThreadTransferSrcDstAccessOrder
,
index_t
CThreadTransferSrcDstVectorDim
,
index_t
CThreadTransferDstScalarPerVector
>
struct
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
:
public
DeviceGroupedConvFwdMultipleD
<
NDimSpatial
,
ALayout
,
BLayout
,
DsLayout
,
ELayout
,
ADataType
,
BDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
>
{
using
DeviceOp
=
DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK
;
static
constexpr
index_t
NumDTensor
=
DsDataType
::
Size
();
static
constexpr
auto
I0
=
Number
<
0
>
{};
static
constexpr
auto
I1
=
Number
<
1
>
{};
static
constexpr
auto
I2
=
Number
<
2
>
{};
static
constexpr
auto
I3
=
Number
<
3
>
{};
static
constexpr
auto
conv_to_gemm_transformer
=
TransformConvFwdToGemm
<
NDimSpatial
,
ConvForwardSpecialization
>
{};
static
constexpr
auto
matrix_padder
=
MatrixPadder
<
GemmSpec
,
index_t
,
index_t
,
index_t
>
{
MPerBlock
,
NPerBlock
,
K0PerBlock
};
template
<
typename
ALay
>
static
auto
MakeAGridDescriptor_AK0_M_AK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
)
{
const
auto
in_gemmmraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeADescriptor_M_K
<
ALay
>(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
);
const
auto
in_gemmm_gemmk_desc
=
matrix_padder
.
PadADescriptor_M_K
(
in_gemmmraw_gemmkraw_desc
);
const
auto
M
=
in_gemmm_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
in_gemmm_gemmk_desc
.
GetLength
(
I1
);
const
auto
AK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
in_gemmm_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
AK0
,
K1
)),
make_pass_through_transform
(
M
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
BLay
>
static
auto
MakeBGridDescriptor_BK0_N_BK1
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
)
{
const
auto
wei_gemmnraw_gemmkraw_desc
=
conv_to_gemm_transformer
.
template
MakeBDescriptor_N_K
<
BLay
>(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
);
const
auto
wei_gemmn_gemmk_desc
=
matrix_padder
.
PadBDescriptor_N_K
(
wei_gemmnraw_gemmkraw_desc
);
const
auto
N
=
wei_gemmn_gemmk_desc
.
GetLength
(
I0
);
const
auto
K
=
wei_gemmn_gemmk_desc
.
GetLength
(
I1
);
const
auto
BK0
=
K
/
K1
;
return
transform_tensor_descriptor
(
wei_gemmn_gemmk_desc
,
make_tuple
(
make_unmerge_transform
(
make_tuple
(
BK0
,
K1
)),
make_pass_through_transform
(
N
)),
make_tuple
(
Sequence
<
1
>
{},
Sequence
<
0
>
{}),
make_tuple
(
Sequence
<
0
,
2
>
{},
Sequence
<
1
>
{}));
}
template
<
typename
ELay
>
static
auto
MakeEGridDescriptor_M_N
(
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
)
{
const
auto
out_gemmmraw_gemmnraw_desc
=
conv_to_gemm_transformer
.
template
MakeCDescriptor_M_N
<
ELay
>(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
);
const
auto
out_gemmm_gemmn_desc
=
matrix_padder
.
PadCDescriptor_M_N
(
out_gemmmraw_gemmnraw_desc
);
return
out_gemmm_gemmn_desc
;
}
static
auto
MakeDsGridDescriptor_M_N
(
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
)
{
return
generate_tuple
(
[
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
return
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
},
Number
<
NumDTensor
>
{});
}
// desc for problem definition
using
AGridDesc_AK0_M_AK1
=
remove_cvref_t
<
decltype
(
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
({},
{},
{},
{},
{},
{},
{},
{},
{},
{}))
>
;
using
BGridDesc_BK0_N_BK1
=
remove_cvref_t
<
decltype
(
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
({},
{}))
>
;
using
DsGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeDsGridDescriptor_M_N
({},
{}))
>
;
using
EGridDesc_M_N
=
remove_cvref_t
<
decltype
(
MakeEGridDescriptor_M_N
<
ELayout
>
({},
{}))
>
;
// GridwiseGemm
using
GridwiseGemm
=
GridwiseGemmDlMultipleD_km_kn_mn
<
BlockSize
,
ADataType
,
AccDataType
,
DsDataType
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
InMemoryDataOperationEnum
::
Set
,
AGridDesc_AK0_M_AK1
,
BGridDesc_BK0_N_BK1
,
EGridDesc_M_N
,
MPerBlock
,
NPerBlock
,
K0PerBlock
,
K1
,
M1PerThread
,
N1PerThread
,
KPerThread
,
M1N1ThreadClusterM1Xs
,
M1N1ThreadClusterN1Xs
,
ABlockTransferThreadSliceLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterLengths_K0_M0_M1_K1
,
ABlockTransferThreadClusterArrangeOrder
,
ABlockTransferSrcAccessOrder
,
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
,
ABlockTransferSrcVectorTensorContiguousDimOrder
,
ABlockTransferDstVectorTensorLengths_K0_M0_M1_K1
,
BBlockTransferThreadSliceLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterLengths_K0_N0_N1_K1
,
BBlockTransferThreadClusterArrangeOrder
,
BBlockTransferSrcAccessOrder
,
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
,
BBlockTransferSrcVectorTensorContiguousDimOrder
,
BBlockTransferDstVectorTensorLengths_K0_N0_N1_K1
,
CThreadTransferSrcDstAccessOrder
,
CThreadTransferSrcDstVectorDim
,
CThreadTransferDstScalarPerVector
>
;
using
AGridDesc_K0_M0_M1_K1
=
decltype
(
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
AGridDesc_AK0_M_AK1
{}));
using
BGridDesc_K0_N0_N1_K1
=
decltype
(
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
BGridDesc_BK0_N_BK1
{}));
using
DsGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
DsGridDesc_M_N
{}));
using
CGridDesc_M0_M10_M11_N0_N10_N11
=
decltype
(
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
EGridDesc_M_N
{}));
using
DefaultBlock2CTileMap
=
decltype
(
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
EGridDesc_M_N
{}));
// Argument
struct
Argument
:
public
BaseArgument
{
Argument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
:
p_a_grid_
{
static_cast
<
const
ADataType
*>
(
p_a
)},
p_b_grid_
{
static_cast
<
const
BDataType
*>
(
p_b
)},
p_ds_grid_
{},
p_e_grid_
{
static_cast
<
EDataType
*>
(
p_e
)},
num_group_
{
a_g_n_c_wis_lengths
[
0
]},
a_grid_desc_ak0_m_ak1_
{
DeviceOp
::
MakeAGridDescriptor_AK0_M_AK1
<
ALayout
>
(
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
)},
b_grid_desc_bk0_n_bk1_
{
DeviceOp
::
MakeBGridDescriptor_BK0_N_BK1
<
BLayout
>
(
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
)},
e_grid_desc_m_n_
{
DeviceOp
::
MakeEGridDescriptor_M_N
<
ELayout
>
(
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
)},
a_grid_desc_k0_m0_m1_k1_
{},
b_grid_desc_k0_n0_n1_k1_
{},
ds_grid_desc_m0_m10_m11_n0_n10_n11_
{},
e_grid_desc_m0_m10_m11_n0_n10_n11_
{},
block_2_ctile_map_
{},
compute_ptr_offset_of_batch_
{},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
cde_element_op_
{
cde_element_op
},
a_g_n_c_wis_lengths_
{
a_g_n_c_wis_lengths
},
a_g_n_c_wis_strides_
{
a_g_n_c_wis_strides
},
b_g_k_c_xs_lengths_
{
b_g_k_c_xs_lengths
},
b_g_k_c_xs_strides_
{
b_g_k_c_xs_strides
},
e_g_n_k_wos_lengths_
{
e_g_n_k_wos_lengths
},
e_g_n_k_wos_strides_
{
e_g_n_k_wos_strides
},
conv_filter_strides_
{
conv_filter_strides
},
conv_filter_dilations_
{
conv_filter_dilations
},
input_left_pads_
{
input_left_pads
},
input_right_pads_
{
input_right_pads
}
{
// A/B/E Batch Stride
compute_ptr_offset_of_batch_
.
BatchStrideA_
=
a_g_n_c_wis_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideB_
=
b_g_k_c_xs_strides
[
0
];
compute_ptr_offset_of_batch_
.
BatchStrideE_
=
e_g_n_k_wos_strides
[
0
];
// populate pointer, batch stride, desc for Ds
static_for
<
0
,
NumDTensor
,
1
>
{}([
&
](
auto
i
)
{
using
DLayout
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsLayout
>>
;
using
DDataType
=
remove_cvref_t
<
tuple_element_t
<
i
.
value
,
DsDataType
>>
;
// D pointer
p_ds_grid_
(
i
)
=
static_cast
<
const
DDataType
*>
(
p_ds
[
i
]);
// D batch stride
compute_ptr_offset_of_batch_
.
BatchStrideDs_
(
i
)
=
ds_g_n_k_wos_strides
[
i
][
0
];
// D desc
ds_grid_desc_m_n_
(
i
)
=
DeviceOp
::
MakeEGridDescriptor_M_N
<
DLayout
>
(
ds_g_n_k_wos_lengths
[
i
],
ds_g_n_k_wos_strides
[
i
]);
});
// populate desc for Ds/E
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
e_grid_desc_m_n_
))
{
a_grid_desc_k0_m0_m1_k1_
=
GridwiseGemm
::
MakeAGridDescriptor_K0_M0_M1_K1
(
a_grid_desc_ak0_m_ak1_
);
b_grid_desc_k0_n0_n1_k1_
=
GridwiseGemm
::
MakeBGridDescriptor_K0_N0_N1_K1
(
b_grid_desc_bk0_n_bk1_
);
e_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeCGridDescriptor_M0_M10_M11_N0_N10_N11
(
e_grid_desc_m_n_
);
ds_grid_desc_m0_m10_m11_n0_n10_n11_
=
GridwiseGemm
::
MakeDsGridDescriptor_M0_M10_M11_N0_N10_N11
(
ds_grid_desc_m_n_
);
block_2_ctile_map_
=
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
e_grid_desc_m_n_
);
}
}
void
Print
()
const
{
std
::
cout
<<
"A[K0, M, K1]: "
<<
a_grid_desc_ak0_m_ak1_
<<
std
::
endl
;
std
::
cout
<<
"B[K0, N, K1]: "
<<
b_grid_desc_bk0_n_bk1_
<<
std
::
endl
;
std
::
cout
<<
"E[M, N]: "
<<
e_grid_desc_m_n_
<<
std
::
endl
;
std
::
cout
<<
"num_group: "
<<
num_group_
<<
std
::
endl
;
std
::
cout
<<
"A[k0, m0, m1, k1]: "
<<
a_grid_desc_k0_m0_m1_k1_
<<
std
::
endl
;
std
::
cout
<<
"B[k0, n0, n1, k1]: "
<<
b_grid_desc_k0_n0_n1_k1_
<<
std
::
endl
;
std
::
cout
<<
"A[m0, m10, m11, n0, n10, n11]: "
<<
e_grid_desc_m0_m10_m11_n0_n10_n11_
<<
std
::
endl
;
}
// private:
// pointers
const
ADataType
*
p_a_grid_
;
const
BDataType
*
p_b_grid_
;
typename
GridwiseGemm
::
DsGridPointer
p_ds_grid_
;
EDataType
*
p_e_grid_
;
// tensor descriptors for problem definiton
index_t
num_group_
;
AGridDesc_AK0_M_AK1
a_grid_desc_ak0_m_ak1_
;
BGridDesc_BK0_N_BK1
b_grid_desc_bk0_n_bk1_
;
DsGridDesc_M_N
ds_grid_desc_m_n_
;
EGridDesc_M_N
e_grid_desc_m_n_
;
// tensor descriptors for block/thread-wise copy
AGridDesc_K0_M0_M1_K1
a_grid_desc_k0_m0_m1_k1_
;
BGridDesc_K0_N0_N1_K1
b_grid_desc_k0_n0_n1_k1_
;
DsGridDesc_M0_M10_M11_N0_N10_N11
ds_grid_desc_m0_m10_m11_n0_n10_n11_
;
CGridDesc_M0_M10_M11_N0_N10_N11
e_grid_desc_m0_m10_m11_n0_n10_n11_
;
// block-to-e-tile map
DefaultBlock2CTileMap
block_2_ctile_map_
;
// for computing batch offset
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
compute_ptr_offset_of_batch_
;
// element-wise op
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
cde_element_op_
;
// for checking IsSupportedArgument()
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
a_g_n_c_wis_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
b_g_k_c_xs_strides_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_lengths_
;
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>
ds_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_lengths_
;
std
::
array
<
index_t
,
NDimSpatial
+
3
>
e_g_n_k_wos_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_strides_
;
std
::
array
<
index_t
,
NDimSpatial
>
conv_filter_dilations_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_left_pads_
;
std
::
array
<
index_t
,
NDimSpatial
>
input_right_pads_
;
};
// Invoker
struct
Invoker
:
public
BaseInvoker
{
using
Argument
=
DeviceOp
::
Argument
;
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
)
{
if
(
stream_config
.
log_level_
>
0
)
{
arg
.
Print
();
}
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_m_n_
))
{
throw
std
::
runtime_error
(
"wrong! DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK has invalid setting"
);
}
const
index_t
grid_size
=
GridwiseGemm
::
CalculateGridSize
(
arg
.
e_grid_desc_m_n_
.
GetLength
(
I0
),
arg
.
e_grid_desc_m_n_
.
GetLength
(
I1
))
*
arg
.
num_group_
;
auto
launch_kernel
=
[
&
](
auto
has_main_k_block_loop
,
auto
has_double_tail_k_block_loop
)
{
constexpr
bool
has_main_loop
=
has_main_k_block_loop
.
value
;
constexpr
bool
has_double_loop
=
has_double_tail_k_block_loop
;
const
auto
kernel
=
kernel_grouped_conv_fwd_dl_multiple_d
<
GridwiseGemm
,
ADataType
,
// TODO: distiguish A/B datatype
typename
GridwiseGemm
::
DsGridPointer
,
EDataType
,
AElementwiseOperation
,
BElementwiseOperation
,
CDEElementwiseOperation
,
DeviceOp
::
AGridDesc_K0_M0_M1_K1
,
DeviceOp
::
BGridDesc_K0_N0_N1_K1
,
DeviceOp
::
DsGridDesc_M0_M10_M11_N0_N10_N11
,
DeviceOp
::
CGridDesc_M0_M10_M11_N0_N10_N11
,
DefaultBlock2CTileMap
,
ComputePtrOffsetOfStridedBatch
<
NumDTensor
>
,
has_main_loop
,
has_double_loop
>
;
return
launch_and_time_kernel
(
stream_config
,
kernel
,
dim3
(
grid_size
),
dim3
(
BlockSize
),
0
,
arg
.
p_a_grid_
,
arg
.
p_b_grid_
,
arg
.
p_ds_grid_
,
arg
.
p_e_grid_
,
arg
.
a_element_op_
,
arg
.
b_element_op_
,
arg
.
cde_element_op_
,
arg
.
a_g_n_c_wis_lengths_
[
0
],
// Group count
arg
.
a_grid_desc_k0_m0_m1_k1_
,
arg
.
b_grid_desc_k0_n0_n1_k1_
,
arg
.
ds_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
e_grid_desc_m0_m10_m11_n0_n10_n11_
,
arg
.
block_2_ctile_map_
,
arg
.
compute_ptr_offset_of_batch_
);
};
const
auto
K0
=
arg
.
a_grid_desc_k0_m0_m1_k1_
.
GetLength
(
I0
);
const
bool
has_main_k_block_loop
=
GridwiseGemm
::
CalculateHasMainKBlockLoop
(
K0
);
const
bool
has_double_tail_k_block_loop
=
GridwiseGemm
::
CalculateHasDoubleTailKBlockLoop
(
K0
);
if
(
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
if
(
has_main_k_block_loop
&&
!
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
true
>
{},
integral_constant
<
bool
,
false
>
{});
}
else
if
(
!
has_main_k_block_loop
&&
has_double_tail_k_block_loop
)
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
true
>
{});
}
else
{
return
launch_kernel
(
integral_constant
<
bool
,
false
>
{},
integral_constant
<
bool
,
false
>
{});
}
return
0
;
}
float
Run
(
const
BaseArgument
*
p_arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
override
{
return
Run
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
),
stream_config
);
}
};
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
namespace
ctc
=
tensor_layout
::
convolution
;
// check device
if
(
!
(
ck
::
get_device_name
()
==
"gfx906"
||
ck
::
get_device_name
()
==
"gfx1030"
))
{
return
false
;
}
// check ConvolutionForwardSpecialization
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Stride1Pad0
)
{
// check if it's 1x1, stride=1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
ConvStride
=
arg
.
conv_filter_strides_
[
i
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
ConvStride
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
std
::
cout
<<
"Filter1x1Stride1Pad0 check: XY_index = "
<<
i
<<
" X = "
<<
X
<<
" ConvStride = "
<<
ConvStride
<<
" LeftPad = "
<<
LeftPad
<<
" RightPad = "
<<
RightPad
<<
std
::
endl
;
return
false
;
}
}
}
else
if
constexpr
(
ConvForwardSpecialization
==
ConvolutionForwardSpecialization
::
Filter1x1Pad0
)
{
// check if it's 1x1 conv
for
(
index_t
i
=
0
;
i
<
NDimSpatial
;
++
i
)
{
const
index_t
X
=
arg
.
b_g_k_c_xs_lengths_
[
i
+
3
];
const
index_t
LeftPad
=
arg
.
input_left_pads_
[
i
];
const
index_t
RightPad
=
arg
.
input_right_pads_
[
i
];
if
(
!
(
X
==
1
&&
LeftPad
==
0
&&
RightPad
==
0
))
{
std
::
cout
<<
"Filter1x1Stride1Pad0 check: XY_index = "
<<
i
<<
" X = "
<<
X
<<
" LeftPad = "
<<
LeftPad
<<
" RightPad = "
<<
RightPad
<<
std
::
endl
;
return
false
;
}
}
}
// check vector access of A
// FIXME: layout
if
constexpr
(
is_same_v
<
ALayout
,
ctc
::
G_NW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
G_NDHW_C
>
||
is_same_v
<
ALayout
,
ctc
::
GNWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNHWC
>
||
is_same_v
<
ALayout
,
ctc
::
GNDHWC
>
||
is_same_v
<
ALayout
,
ctc
::
NWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NHWGC
>
||
is_same_v
<
ALayout
,
ctc
::
NDHWGC
>
)
{
auto
srcVectorLengths
=
ABlockTransferSrcVectorTensorLengths_K0_M0_M1_K1
{};
if
(
srcVectorLengths
[
I1
]
!=
1
||
srcVectorLengths
[
I2
]
!=
1
)
{
return
false
;
}
if
(
K1
%
srcVectorLengths
[
I3
]
!=
0
||
K0PerBlock
%
srcVectorLengths
[
I0
]
!=
0
)
{
return
false
;
}
const
index_t
C
=
arg
.
a_g_n_c_wis_lengths_
[
2
];
if
(
C
%
(
srcVectorLengths
[
I0
]
*
srcVectorLengths
[
I3
])
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of B
// FIXME: layout
if
constexpr
(
is_same_v
<
BLayout
,
ctc
::
G_K_X_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_YX_C
>
||
is_same_v
<
BLayout
,
ctc
::
G_K_ZYX_C
>
||
is_same_v
<
BLayout
,
ctc
::
GKXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKYXC
>
||
is_same_v
<
BLayout
,
ctc
::
GKZYXC
>
||
is_same_v
<
BLayout
,
ctc
::
KXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KYXGC
>
||
is_same_v
<
BLayout
,
ctc
::
KZYXGC
>
)
{
auto
srcVectorLengths
=
BBlockTransferSrcVectorTensorLengths_K0_N0_N1_K1
{};
if
(
srcVectorLengths
[
I1
]
!=
1
||
srcVectorLengths
[
I2
]
!=
1
)
{
return
false
;
}
if
(
K1
%
srcVectorLengths
[
I3
]
!=
0
||
K0PerBlock
%
srcVectorLengths
[
I0
]
!=
0
)
{
return
false
;
}
const
index_t
C
=
arg
.
b_g_k_c_xs_lengths_
[
2
];
if
(
C
%
(
srcVectorLengths
[
I0
]
*
srcVectorLengths
[
I3
])
!=
0
)
{
return
false
;
}
}
else
{
return
false
;
}
// check vector access of E
if
constexpr
(
is_same_v
<
ELayout
,
ctc
::
G_NW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
G_NDHW_K
>
||
is_same_v
<
ELayout
,
ctc
::
GNWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNHWK
>
||
is_same_v
<
ELayout
,
ctc
::
GNDHWK
>
||
is_same_v
<
ELayout
,
ctc
::
NWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NHWGK
>
||
is_same_v
<
ELayout
,
ctc
::
NDHWGK
>
)
{
const
index_t
K
=
arg
.
e_g_n_k_wos_lengths_
[
2
];
if
(
!
(
K
%
CThreadTransferDstScalarPerVector
==
0
&&
CThreadTransferSrcDstVectorDim
==
5
))
{
return
false
;
}
}
else
{
return
false
;
}
// check Gridwise GEMM
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
e_grid_desc_m_n_
);
}
bool
IsSupportedArgument
(
const
BaseArgument
*
p_arg
)
override
{
return
IsSupportedArgument
(
*
dynamic_cast
<
const
Argument
*>
(
p_arg
));
}
static
auto
MakeArgument
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
{
return
Argument
{
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
};
}
static
auto
MakeInvoker
()
{
return
Invoker
{};
}
std
::
unique_ptr
<
BaseArgument
>
MakeArgumentPointer
(
const
void
*
p_a
,
const
void
*
p_b
,
const
std
::
array
<
const
void
*
,
NumDTensor
>&
p_ds
,
void
*
p_e
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
a_g_n_c_wis_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
b_g_k_c_xs_strides
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_lengths
,
const
std
::
array
<
std
::
array
<
index_t
,
NDimSpatial
+
3
>
,
NumDTensor
>&
ds_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_lengths
,
const
std
::
array
<
index_t
,
NDimSpatial
+
3
>&
e_g_n_k_wos_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_strides
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
conv_filter_dilations
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_left_pads
,
const
std
::
array
<
index_t
,
NDimSpatial
>&
input_right_pads
,
const
AElementwiseOperation
&
a_element_op
,
const
BElementwiseOperation
&
b_element_op
,
const
CDEElementwiseOperation
&
cde_element_op
)
override
{
return
std
::
make_unique
<
Argument
>
(
p_a
,
p_b
,
p_ds
,
p_e
,
a_g_n_c_wis_lengths
,
a_g_n_c_wis_strides
,
b_g_k_c_xs_lengths
,
b_g_k_c_xs_strides
,
ds_g_n_k_wos_lengths
,
ds_g_n_k_wos_strides
,
e_g_n_k_wos_lengths
,
e_g_n_k_wos_strides
,
conv_filter_strides
,
conv_filter_dilations
,
input_left_pads
,
input_right_pads
,
a_element_op
,
b_element_op
,
cde_element_op
);
}
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
{
return
std
::
make_unique
<
Invoker
>
(
Invoker
{});
}
std
::
string
GetTypeString
()
const
override
{
auto
str
=
std
::
stringstream
();
// clang-format off
str
<<
"DeviceGroupedConvFwdDlMultipleD_NHWC_KYXC_NHWK"
<<
"<"
<<
BlockSize
<<
", "
<<
MPerBlock
<<
", "
<<
NPerBlock
<<
", "
<<
K0PerBlock
<<
", "
<<
getConvForwardSpecializationString
(
ConvForwardSpecialization
)
<<
">"
;
// clang-format on
return
str
.
str
();
}
};
}
// namespace device
}
// namespace tensor_operation
}
// namespace ck
include/ck/tensor_operation/gpu/device/impl/device_batched_gemm_xdl.hpp
View file @
7bcaf2a7
...
...
@@ -373,7 +373,8 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
kraw_
{
K
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_k0_m_k1_
,
b_grid_desc_k0_n_k1_
,
...
...
@@ -401,6 +402,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
kraw_
;
};
// Invoker
...
...
@@ -410,6 +412,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
float
Run
(
const
Argument
&
arg
,
const
StreamConfig
&
stream_config
=
StreamConfig
{})
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_{" << arg.a_grid_desc_k0_m_k1_.GetLength(I0)
<< ", " << arg.a_grid_desc_k0_m_k1_.GetLength(I1) << ", "
...
...
@@ -422,6 +425,7 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
std::cout << "arg.c_grid_desc_m_n_{" << arg.c_grid_desc_m_n_.GetLength(I0) << ", "
<< arg.c_grid_desc_m_n_.GetLength(I1) << "}" << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
...
...
@@ -528,6 +532,11 @@ struct DeviceBatchedGemmXdl : public DeviceBatchedGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
arg
.
kraw_
%
K1
!=
0
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_batchnorm_backward_impl.hpp
View file @
7bcaf2a7
...
...
@@ -27,7 +27,7 @@ template <typename XDataType,
typename
DyDataType
,
typename
AccDataType
,
typename
ScaleDataType
,
typename
B
iasDataType
,
typename
DscaleDb
iasDataType
,
typename
MeanVarDataType
,
typename
DyElementwiseOp
,
index_t
Rank
,
...
...
@@ -42,11 +42,19 @@ template <typename XDataType,
index_t
XSrcVectorSize
,
index_t
DySrcVectorSize
,
index_t
DxDstVectorSize
,
index_t
ScaleSrc
Dst
VectorSize
,
index_t
B
iasDstVectorSize
,
index_t
ScaleSrcVectorSize
,
index_t
DscaleDb
iasDstVectorSize
,
index_t
MeanVarSrcVectorSize
>
struct
DeviceBatchNormBwdImpl
:
public
DeviceBatchNormBwd
<
Rank
,
NumBatchNormReduceDim
,
DyElementwiseOp
>
struct
DeviceBatchNormBwdImpl
:
public
DeviceBatchNormBwd
<
XDataType
,
DxDataType
,
DyDataType
,
AccDataType
,
ScaleDataType
,
DscaleDbiasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
Rank
,
NumBatchNormReduceDim
>
{
static_assert
(
Rank
<=
6
,
"Bigger Rank size is not supported!"
);
static_assert
(
BlockSize
==
MThreadClusterSize
*
KThreadClusterSize
,
...
...
@@ -194,7 +202,7 @@ struct DeviceBatchNormBwdImpl
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
XDataType
*
p_x
,
const
DyDataType
*
p_dy
,
...
...
@@ -204,11 +212,11 @@ struct DeviceBatchNormBwdImpl
const
DyElementwiseOp
dy_elementwise_op
,
double
epsilon
,
DxDataType
*
p_dx
,
S
caleDataType
*
p_dscale
,
B
iasDataType
*
p_dbias
)
Ds
caleD
biasD
ataType
*
p_dscale
,
DscaleDb
iasDataType
*
p_dbias
)
:
bnScaleBiasMeanVarLengths_
(
bnScaleBiasMeanVarLengths
),
bnScaleStrides_
(
bnScaleStrides
),
bn
B
iasStrides_
(
bn
B
iasStrides
),
bn
DscaleDb
iasStrides_
(
bn
DscaleDb
iasStrides
),
bnMeanVarStrides_
(
bnMeanVarStrides
),
p_x_
(
p_x
),
p_dy_
(
p_dy
),
...
...
@@ -272,8 +280,8 @@ struct DeviceBatchNormBwdImpl
MakeXY2dDescriptor
(
xyLengths_
,
dxStrides_
,
blkGroupSize
,
numBlockTileIteration
);
scale_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnScaleStrides
);
bias_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bn
B
iasStrides
);
dscale_d
bias_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bn
DscaleDb
iasStrides
);
mean_var_grid_desc_m
=
MakeScaleBiasMeanVar1dDescriptor
(
bnScaleBiasMeanVarLengths
,
bnMeanVarStrides
);
}
...
...
@@ -289,7 +297,7 @@ struct DeviceBatchNormBwdImpl
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleBiasMeanVarLengths_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnScaleStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bn
B
iasStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bn
DscaleDb
iasStrides_
;
std
::
array
<
index_t
,
Rank
-
NumBatchNormReduceDim
>
bnMeanVarStrides_
;
const
XDataType
*
p_x_
;
...
...
@@ -299,8 +307,8 @@ struct DeviceBatchNormBwdImpl
const
MeanVarDataType
*
p_savedInvVar_
;
const
DyElementwiseOp
dy_elementwise_op_
;
DxDataType
*
p_dx_
;
S
caleDataType
*
p_dscale_
;
B
iasDataType
*
p_dbias_
;
Ds
caleD
biasD
ataType
*
p_dscale_
;
DscaleDb
iasDataType
*
p_dbias_
;
long_index_t
invariant_length
;
long_index_t
reduce_length
;
...
...
@@ -313,7 +321,7 @@ struct DeviceBatchNormBwdImpl
XYGridDesc_M_K
dy_grid_desc_m_k
;
XYGridDesc_M_K
dx_grid_desc_m_k
;
ScaleBiasGridDesc_M
scale_grid_desc_m
;
ScaleBiasGridDesc_M
bias_grid_desc_m
;
ScaleBiasGridDesc_M
dscale_d
bias_grid_desc_m
;
MeanVarGridDesc_M
mean_var_grid_desc_m
;
void
*
workspace_mean
;
...
...
@@ -337,11 +345,11 @@ struct DeviceBatchNormBwdImpl
{
// workspace for the partial reduced result for dscale
workspace_size
+=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
S
caleDataType
)
+
64
;
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
Ds
caleD
biasD
ataType
)
+
64
;
// workspace for the partial reduced result for dbias
workspace_size
+=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
B
iasDataType
)
+
64
;
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
DscaleDb
iasDataType
)
+
64
;
if
(
!
pArg_
->
haveSavedMeanInvVar_
)
{
...
...
@@ -379,7 +387,7 @@ struct DeviceBatchNormBwdImpl
// setup buffer for the partial reduced result for dscale
pArg_
->
workspace_reduce_dscale
=
pArg_
->
p_workspace_
;
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
S
caleDataType
);
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
Ds
caleD
biasD
ataType
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
// setup buffer for the partial reduced result for dbias
...
...
@@ -388,7 +396,7 @@ struct DeviceBatchNormBwdImpl
if
(
UseMultiblockInK
&&
pArg_
->
blkGroupSize
>
1
)
{
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
B
iasDataType
);
space_sz
=
pArg_
->
invariant_length
*
pArg_
->
blkGroupSize
*
sizeof
(
DscaleDb
iasDataType
);
space_sz
=
math
::
integer_least_multiple
(
space_sz
,
64
);
// setup buffer for welford intermediate mean
...
...
@@ -454,7 +462,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
AccDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -477,7 +485,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
AccDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -493,8 +501,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize
,
DySrcVectorSize
,
DxDstVectorSize
,
ScaleSrc
Dst
VectorSize
,
B
iasDstVectorSize
,
ScaleSrcVectorSize
,
DscaleDb
iasDstVectorSize
,
MeanVarSrcVectorSize
>
;
if
(
UseMultiblockInK
&&
arg
.
blkGroupSize
>
1
)
...
...
@@ -553,7 +561,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
AccDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -568,7 +576,7 @@ struct DeviceBatchNormBwdImpl
DyDataType
,
DxDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -614,8 +622,8 @@ struct DeviceBatchNormBwdImpl
:
static_cast
<
MeanVarDataType
*>
(
arg
.
workspace_savedInvVar
),
arg
.
p_x_
,
arg
.
p_dy_
,
static_cast
<
S
caleDataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
B
iasDataType
*>
(
arg
.
workspace_reduce_dbias
));
static_cast
<
Ds
caleD
biasD
ataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
DscaleDb
iasDataType
*>
(
arg
.
workspace_reduce_dbias
));
avg_time
+=
launch_and_time_kernel
(
stream_config
,
...
...
@@ -629,13 +637,13 @@ struct DeviceBatchNormBwdImpl
dscale_dbias_grid_desc_m_k
,
arg
.
mean_var_grid_desc_m
,
arg
.
scale_grid_desc_m
,
arg
.
bias_grid_desc_m
,
arg
.
dscale_d
bias_grid_desc_m
,
arg
.
blkGroupSize
,
arg
.
reduce_length
,
arg
.
numBlockTileIteration
,
numDscaleDbiasBlockTileIteration
,
static_cast
<
const
S
caleDataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
const
B
iasDataType
*>
(
arg
.
workspace_reduce_dbias
),
static_cast
<
const
Ds
caleD
biasD
ataType
*>
(
arg
.
workspace_reduce_dscale
),
static_cast
<
const
DscaleDb
iasDataType
*>
(
arg
.
workspace_reduce_dbias
),
arg
.
haveSavedMeanInvVar_
?
arg
.
p_savedMean_
:
static_cast
<
const
MeanVarDataType
*>
(
arg
.
workspace_savedMean
),
...
...
@@ -664,7 +672,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
AccDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -680,8 +688,8 @@ struct DeviceBatchNormBwdImpl
XSrcVectorSize
,
DySrcVectorSize
,
DxDstVectorSize
,
ScaleSrc
Dst
VectorSize
,
B
iasDstVectorSize
,
ScaleSrcVectorSize
,
DscaleDb
iasDstVectorSize
,
MeanVarSrcVectorSize
>
;
const
auto
kern_batchnorm_bwd
=
kernel_batchnorm_backward_with_blockwise_welford
<
...
...
@@ -691,7 +699,7 @@ struct DeviceBatchNormBwdImpl
DxDataType
,
AccDataType
,
ScaleDataType
,
B
iasDataType
,
DscaleDb
iasDataType
,
MeanVarDataType
,
DyElementwiseOp
,
XYGridDesc_M_K
,
...
...
@@ -708,7 +716,7 @@ struct DeviceBatchNormBwdImpl
arg
.
dy_grid_desc_m_k
,
arg
.
dx_grid_desc_m_k
,
arg
.
scale_grid_desc_m
,
arg
.
bias_grid_desc_m
,
arg
.
dscale_d
bias_grid_desc_m
,
arg
.
mean_var_grid_desc_m
,
get_reduce_count_per_thread
,
arg
.
reduce_length
,
...
...
@@ -764,16 +772,16 @@ struct DeviceBatchNormBwdImpl
return
false
;
};
if
(
pArg_
->
bnScaleStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
ScaleSrc
Dst
VectorSize
!=
1
)
if
(
pArg_
->
bnScaleStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
ScaleSrcVectorSize
!=
1
)
return
false
;
if
(
pArg_
->
bn
B
iasStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
B
iasDstVectorSize
!=
1
)
if
(
pArg_
->
bn
DscaleDb
iasStrides_
[
NumInvariantDim
-
1
]
!=
1
&&
DscaleDb
iasDstVectorSize
!=
1
)
return
false
;
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
ScaleSrc
Dst
VectorSize
!=
0
)
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
ScaleSrcVectorSize
!=
0
)
return
false
;
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
B
iasDstVectorSize
!=
0
)
if
(
pArg_
->
bnScaleBiasMeanVarLengths_
[
NumInvariantDim
-
1
]
%
DscaleDb
iasDstVectorSize
!=
0
)
return
false
;
if
(
pArg_
->
haveSavedMeanInvVar_
)
...
...
@@ -806,7 +814,7 @@ struct DeviceBatchNormBwdImpl
const
std
::
array
<
int
,
NumBatchNormReduceDim
>
reduceDims
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleBiasMeanVarLengths
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnScaleStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
B
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bn
DscaleDb
iasStrides
,
const
std
::
array
<
ck
::
index_t
,
NumInvariantDim
>
bnMeanVarStrides
,
const
void
*
p_x
,
const
void
*
p_dy
,
...
...
@@ -826,7 +834,7 @@ struct DeviceBatchNormBwdImpl
reduceDims
,
bnScaleBiasMeanVarLengths
,
bnScaleStrides
,
bn
B
iasStrides
,
bn
DscaleDb
iasStrides
,
bnMeanVarStrides
,
static_cast
<
const
XDataType
*>
(
p_x
),
static_cast
<
const
DyDataType
*>
(
p_dy
),
...
...
@@ -836,8 +844,8 @@ struct DeviceBatchNormBwdImpl
dy_elementwise_op
,
epsilon
,
static_cast
<
DxDataType
*>
(
p_dx
),
static_cast
<
S
caleDataType
*>
(
p_dscale
),
static_cast
<
B
iasDataType
*>
(
p_dbias
));
static_cast
<
Ds
caleD
biasD
ataType
*>
(
p_dscale
),
static_cast
<
DscaleDb
iasDataType
*>
(
p_dbias
));
};
std
::
unique_ptr
<
BaseInvoker
>
MakeInvokerPointer
()
override
...
...
@@ -854,7 +862,7 @@ struct DeviceBatchNormBwdImpl
str
<<
"M_C"
<<
MThreadClusterSize
<<
"_S"
<<
MThreadSliceSize
<<
","
;
str
<<
"K_C"
<<
KThreadClusterSize
<<
"_S"
<<
KThreadSliceSize
<<
","
;
str
<<
"XDyDxVectorDim_"
<<
XDyDxVectorDim
<<
","
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_scale_"
<<
ScaleSrc
Dst
VectorSize
<<
"_bias_"
<<
B
iasDstVectorSize
<<
"_mean_var_"
<<
MeanVarSrcVectorSize
<<
"_Dx_"
<<
DxDstVectorSize
<<
">"
;
str
<<
"VectorSize_X"
<<
XSrcVectorSize
<<
"_scale_"
<<
ScaleSrcVectorSize
<<
"_bias_"
<<
DscaleDb
iasDstVectorSize
<<
"_mean_var_"
<<
MeanVarSrcVectorSize
<<
"_Dx_"
<<
DxDstVectorSize
<<
">"
;
// clang-format on
return
str
.
str
();
...
...
include/ck/tensor_operation/gpu/device/impl/device_conv2d_bwd_data_xdl_nhwc_kyxc_nhwk.hpp
View file @
7bcaf2a7
...
...
@@ -549,6 +549,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
float
ave_time
=
0
;
for
(
size_t
i
=
0
;
i
<
arg
.
a_grid_desc_k0_m_k1_container_
.
size
();
i
++
)
{
#if 0
{
std::cout << "arg.a_grid_desc_k0_m_k1_container_{"
<< arg.a_grid_desc_k0_m_k1_container_[i].GetLength(I0) << ", "
...
...
@@ -581,6 +582,7 @@ struct DeviceConv2dBwdDataXdl_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_N_Ho_Wo_K
<< arg.c_grid_desc_m0_n0_m1_n1_m2_m3_m4_n2_container_[i].GetLength(I5)
<< " ) " << std::endl;
}
#endif
if
(
!
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_container_
[
i
],
arg
.
b_grid_desc_k0_n_k1_container_
[
i
],
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl.hpp
View file @
7bcaf2a7
...
...
@@ -265,7 +265,8 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
N01_
{
N01
},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
kraw_
{
K
}
{
a_grid_desc_k0_m_k1_
=
DeviceGemmXdl
::
MakeAGridDescriptor_K0_M_K1
(
M
,
K
,
StrideA
);
b_grid_desc_k0_n_k1_
=
DeviceGemmXdl
::
MakeBGridDescriptor_K0_N_K1
(
K
,
N
,
StrideB
);
...
...
@@ -299,6 +300,7 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
kraw_
;
};
// Invoker
...
...
@@ -443,6 +445,11 @@ struct DeviceGemmXdl : public DeviceGemm<ALayout,
return
false
;
}
if
(
arg
.
kraw_
%
K1
!=
0
)
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_k0_m_k1_
,
arg
.
b_grid_desc_k0_n_k1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_gemm_xdl_cshuffle.hpp
View file @
7bcaf2a7
...
...
@@ -422,7 +422,8 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
block_2_ctile_map_
{
GridwiseGemm
::
MakeDefaultBlock2CTileMap
(
c_grid_desc_m_n_
)},
a_element_op_
{
a_element_op
},
b_element_op_
{
b_element_op
},
c_element_op_
{
c_element_op
}
c_element_op_
{
c_element_op
},
kraw_
{
KRaw
}
{
if
(
GridwiseGemm
::
CheckValidity
(
a_grid_desc_ak0_m_ak1_
,
b_grid_desc_bk0_n_bk1_
,
...
...
@@ -448,6 +449,7 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CElementwiseOperation
c_element_op_
;
index_t
kraw_
;
};
// Invoker
...
...
@@ -577,6 +579,15 @@ struct DeviceGemm_Xdl_CShuffle : public DeviceGemm<ALayout,
return
false
;
}
if
((
arg
.
kraw_
%
AK1
!=
0
||
arg
.
kraw_
%
BK1
!=
0
)
&&
!
(
GemmSpec
==
GemmSpecialization
::
MKPadding
||
GemmSpec
==
GemmSpecialization
::
NKPadding
||
GemmSpec
==
GemmSpecialization
::
MNKPadding
||
GemmSpec
==
GemmSpecialization
::
KPadding
))
{
return
false
;
}
return
GridwiseGemm
::
CheckValidity
(
arg
.
a_grid_desc_ak0_m_ak1_
,
arg
.
b_grid_desc_bk0_n_bk1_
,
arg
.
c_grid_desc_m_n_
,
...
...
include/ck/tensor_operation/gpu/device/impl/device_grouped_gemm_xdl.hpp
View file @
7bcaf2a7
...
...
@@ -373,12 +373,20 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
gemm_desc_kernel_arg_
.
reserve
(
group_count_
);
skipped_group_count_
=
0
;
for
(
std
::
size_t
i
=
0
;
i
<
gemm_descs
.
size
();
i
++
)
{
const
index_t
M
=
gemm_descs
[
i
].
M_
;
const
index_t
N
=
gemm_descs
[
i
].
N_
;
const
index_t
K
=
gemm_descs
[
i
].
K_
;
if
(
M
==
0
)
{
skipped_group_count_
++
;
continue
;
}
const
index_t
StrideA
=
gemm_descs
[
i
].
stride_A_
;
const
index_t
StrideB
=
gemm_descs
[
i
].
stride_B_
;
const
index_t
StrideC
=
gemm_descs
[
i
].
stride_C_
;
...
...
@@ -470,6 +478,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
// private:
index_t
group_count_
;
index_t
skipped_group_count_
;
AElementwiseOperation
a_element_op_
;
BElementwiseOperation
b_element_op_
;
CDEElementwiseOperation
c_element_op_
;
...
...
@@ -581,7 +591,8 @@ struct DeviceGroupedGemm_Xdl : public DeviceGroupedGemm<ALayout,
static
bool
IsSupportedArgument
(
const
Argument
&
arg
)
{
if
(
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
!=
arg
.
group_count_
)
if
((
ck
::
type_convert
<
ck
::
index_t
>
(
arg
.
gemm_desc_kernel_arg_
.
size
())
+
arg
.
skipped_group_count_
)
!=
arg
.
group_count_
)
{
return
false
;
}
...
...
include/ck/tensor_operation/gpu/element/binary_element_wise_operation.hpp
View file @
7bcaf2a7
...
...
@@ -187,6 +187,22 @@ struct AddRelu
const
float
a
=
x0
+
type_convert
<
float
>
(
x1
);
y
=
a
>
0.0
f
?
a
:
0.0
f
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
int
,
int
,
int8_t
>
(
int
&
y
,
const
int
&
x0
,
const
int8_t
&
x1
)
const
{
const
int8_t
a
=
x0
+
x1
;
y
=
a
>
0
?
a
:
0
;
};
template
<
>
__host__
__device__
constexpr
void
operator
()
<
int8_t
,
int8_t
,
int8_t
>
(
int8_t
&
y
,
const
int8_t
&
x0
,
const
int8_t
&
x1
)
const
{
const
int8_t
a
=
x0
+
x1
;
y
=
a
>
0
?
a
:
0
;
};
};
struct
AddHardswish
...
...
Prev
1
2
3
4
5
6
…
10
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment