Commit 7aa37568 authored by danyao12's avatar danyao12
Browse files

qloop dropout optimize

parent 4274096b
......@@ -121,6 +121,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -194,6 +195,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -257,7 +259,7 @@ using DeviceGemmInstance =
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
......@@ -266,7 +268,8 @@ using DeviceGemmInstance =
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -282,7 +285,7 @@ using DeviceGemmInstance =
8,
true,
4,
S<8, 32, 1>, // B1BlockTransfer
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
......
......@@ -113,11 +113,11 @@ static constexpr bool Deterministic = false;
#if(DIM <= 32)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 32, 32, 8, 8, 2, 32, 32, 1, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 1, S<1, 64, 1, 4>, 8, 4, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 32, 32, 8, 8, 2, 32, 32, 1, 4, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 1, S<1, 64, 1, 4>, 8, 4, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......@@ -129,11 +129,11 @@ using DeviceGemmInstanceBWD =
#elif(DIM <= 64)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 4, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 4, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......@@ -152,11 +152,11 @@ using DeviceGemmInstanceBWD =
#elif(DIM <= 128)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 4, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 4, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 4, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......
......@@ -121,6 +121,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
1, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -194,6 +195,7 @@ using DeviceGemmInstance =
1, // MXdlPerWave
4, // NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -257,7 +259,7 @@ using DeviceGemmInstance =
128, // MPerBlock
128, // NPerBlock
32, // KPerBlock
128, // Gemm1NPerBlock
64, // Gemm1NPerBlock
32, // Gemm1KPerBlock
8, // AK1
8, // BK1
......@@ -266,7 +268,8 @@ using DeviceGemmInstance =
32, // NPerXDL
1, // MXdlPerWave
4, // NXdlPerWave
4, // Gemm1NXdlPerWave
2, // Gemm1NXdlPerWave
1, // DropoutStep
S<4, 64, 1>, // ABlockTransfer
S<1, 0, 2>,
S<1, 0, 2>,
......@@ -282,7 +285,7 @@ using DeviceGemmInstance =
8,
true,
1,
S<8, 32, 1>, // B1BlockTransfer
S<16, 16, 1>, // B1BlockTransfer
S<0, 2, 1>,
S<0, 2, 1>,
1,
......
......@@ -112,11 +112,11 @@ static constexpr bool Deterministic = false;
#if(DIM <= 32)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 32, 32, 8, 8, 2, 32, 32, 1, 4, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 1, S<1, 64, 1, 4>, 8, 1, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 32, 32, 8, 8, 2, 32, 32, 1, 4, 1, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 2, 2, false, 1, 1, S<1, 64, 1, 4>, 8, 1, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......@@ -128,11 +128,11 @@ using DeviceGemmInstanceBWD =
#elif(DIM <= 64)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 1, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 1, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......@@ -151,11 +151,11 @@ using DeviceGemmInstanceBWD =
#elif(DIM <= 128)
// clang-format off
using DeviceGemmInstanceFWD =
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 128, 32, 8, 8, 2, 32, 32, 1, 4, 4, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<8, 32, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 1, MaskingSpec, Deterministic>;
// #################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| ADataType| BDataType| B1DataType| CDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1|Dropout| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| D0BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector| D1BlockTransfer| MaskingSpec| Deterministic|
// #################################################################################| | | | | | | | | | | | | | | DataType| DataType| Elementwise| Elementwise| Elementwise| Elementwise| Elementwise| Specialization| | | | | Prefetch| Size| MPer| NPer| KPer| NPer| KPer| | | | XDL| XDL| MXdl| NXdl| NXdl| Step| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| SrcScalar| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| _NPerBlock| SrcScalar| | |
// #################################################################################| | | | | | | | | | | | | | | | | Operation| Operation| Operation| Operation| Operation| | | | | | Stage| | Block| Block| Block| Block| Block| | | | | | Per| Per| Per| | Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerVector| Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| | PerVector| | |
// #################################################################################| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Wave| Wave| Wave| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
ck::tensor_operation::device::DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2< NumDimG, NumDimM, NumDimN, NumDimK, NumDimO, InputDataType, InputDataType, InputDataType, InputDataType, GemmDataType, ZDataType, LSEDataType, Acc0BiasDataType, Acc1BiasDataType, AccDataType, ShuffleDataType, QKVElementOp, QKVElementOp, Scale, QKVElementOp, YElementOp, GemmSpec, TensorSpecQ, TensorSpecK, TensorSpecV, TensorSpecY, 1, 256, 128, 128, 32, 64, 32, 8, 8, 2, 32, 32, 1, 4, 2, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, true, 1, S<16, 16, 1>, S<0, 2, 1>, S<0, 2, 1>, 1, 4, 2, false, 1, 2, S<1, 32, 1, 8>, 8, 1, MaskingSpec, Deterministic>;
using DeviceGemmInstanceBWD =
// ########################################################################################| NumDimG| NumDimM| NumDimN| NumDimK| NumDimO| InputDataType| OutputDataType| GemmDataType| ZDataType| LSEDataType| Acc0BiasDataType| Acc1BiasDataType| GemmAcc| CShuffle| A| B| Acc| B1| C| GEMM| ATensorSpec| B0TensorSpec| B1TensorSpec| CTensorSpec| NumGemmK| Block| Gemm01| Gemm0| Gemm0| Gemm1| Gemm1| AK1| BK1| B1K1| MPer| NPer| Gemm0| Gemm0| Gemm1| Gemm2| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockTransfer| B0BlockLds| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockTransfer| B1BlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CShuffleBlockTransferScalarPerVector_NPerBlock| MaskingSpec| Deterministic|
......
......@@ -138,12 +138,12 @@ struct BlockwiseDropout
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{} * MRaw);
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{} * MRaw);
}
block_sync_lds();
......@@ -179,12 +179,12 @@ struct BlockwiseDropout
constexpr int tmp_size = MRepeat * KRepeat;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{} * MRaw);
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{} * MRaw);
}
block_sync_lds();
......@@ -218,21 +218,19 @@ struct BlockwiseDropout
}
// get raw z matrix with random number for shuffle
template <typename ZThreadBuffer,
typename Step,
typename Offset> // N3*N4=8
template <typename ZThreadBuffer, typename Step, typename Offset>
__host__ __device__ void GenerateZMatrixAttnFwd(ck::philox& ph,
index_t element_global_1d_id,
ZThreadBuffer& z_thread_buf)
{
constexpr int tmp_size = MRepeat * KRepeat / Step{}.value;
int philox_calls = tmp_size / 4;
int philox_calls = tmp_size / 8;
ushort tmp[tmp_size];
for(int i = 0; i < philox_calls; i++)
{
ph.get_random_4x16((tmp + i * 4), element_global_1d_id + i * Offset{});
ph.get_random_8x16((tmp + i * 8), element_global_1d_id + i * Offset{});
}
static_for<0, tmp_size, 1>{}([&](auto i) { z_thread_buf(i) = tmp[i.value]; });
......
......@@ -40,7 +40,7 @@ template <typename GridwiseGemm,
typename D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename B1GridDesc_BK0_N_BK1,
typename CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6,
typename LSEGridDescriptor_M,
typename Block2CTileMap,
typename ComputeBasePtrOfStridedBatch,
......@@ -73,8 +73,8 @@ __global__ void
const B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
const LSEGridDescriptor_M lse_grid_desc_m,
const Block2CTileMap block_2_ctile_map,
const index_t batch_count,
......@@ -141,7 +141,7 @@ __global__ void
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
lse_grid_desc_m,
block_2_ctile_map,
c0_matrix_mask,
......@@ -174,7 +174,7 @@ __global__ void
d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
lse_grid_desc_m,
block_2_ctile_map,
c0_matrix_mask,
......@@ -203,7 +203,7 @@ __global__ void
ignore = d0s_griddesc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = b1_grid_desc_bk0_n_bk1;
ignore = c_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
ignore = z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6;
ignore = lse_grid_desc_m;
ignore = block_2_ctile_map;
ignore = batch_count;
......@@ -263,6 +263,7 @@ template <index_t NumDimG,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
index_t DropoutStep,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
......@@ -564,6 +565,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
MXdlPerWave,
NXdlPerWave,
Gemm1NXdlPerWave,
DropoutStep,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
......@@ -735,8 +737,9 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
seed_ = std::get<0>(seeds);
offset_ = std::get<1>(seeds);
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(z_grid_desc_m_n_);
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_ =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6(
z_grid_desc_m_n_);
m_raw_padded_ = GridwiseGemm::GetPaddedSize(raw_lengths_mz_nz_kz_gemm1nz_[0]);
n_raw_padded_ = GridwiseGemm::GetPaddedSize(raw_lengths_mz_nz_kz_gemm1nz_[1]);
......@@ -791,8 +794,8 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_;
// block-to-c-tile map
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
......@@ -876,7 +879,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
typename GridwiseGemm::D0sGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
DeviceOp::B1GridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5,
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6,
DeviceOp::LSEGridDesc_M,
typename GridwiseGemm::DefaultBlock2CTileMap,
ComputeBasePtrOfStridedBatch,
......@@ -909,7 +912,7 @@ struct DeviceBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
arg.d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.b1_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg.z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
arg.lse_grid_desc_m_,
arg.block_2_ctile_map_,
arg.batch_count_,
......
......@@ -135,7 +135,7 @@ __global__ void
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
arg_ptr[group_id].lse_grid_desc_m_,
arg_ptr[group_id].block_2_ctile_map_,
arg_ptr[group_id].c0_matrix_mask_,
......@@ -173,7 +173,7 @@ __global__ void
arg_ptr[group_id].d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].b1_grid_desc_bk0_n_bk1_,
arg_ptr[group_id].c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_,
arg_ptr[group_id].z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_,
arg_ptr[group_id].lse_grid_desc_m_,
arg_ptr[group_id].block_2_ctile_map_,
arg_ptr[group_id].c0_matrix_mask_,
......@@ -244,6 +244,7 @@ template <index_t NumDimG,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
index_t DropoutStep,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
......@@ -566,6 +567,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
MXdlPerWave,
NXdlPerWave,
Gemm1NXdlPerWave,
DropoutStep,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
......@@ -622,8 +624,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
B1GridDesc_BK0_N_BK1 b1_grid_desc_bk0_n_bk1_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5_;
typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6_;
ZGridDesc_M_N z_grid_desc_m_n_;
LSEGridDesc_M lse_grid_desc_m_;
......@@ -768,12 +770,8 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n);
// typename GridwiseGemm::ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5
// z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
const auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
const auto z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6 =
GridwiseGemm::MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6(
z_grid_desc_m_n);
const index_t BlockStart = grid_size_;
......@@ -829,7 +827,7 @@ struct DeviceGroupedMultiheadAttentionForward_Xdl_CShuffle_V2
d0s_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
b1_grid_desc_bk0_n_bk1,
c_grid_desc_mblock_mperblock_nblock_nperblock,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
z_grid_desc_m_n,
lse_grid_desc_m,
block_2_ctile_map.CalculateGridSize(c_grid_desc_m_n),
......
......@@ -1533,8 +1533,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Kloop_Xdl_CShuffle_V1
unsigned short,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
// z matrix global desc
/*const auto M = q_grid_desc_k0_m_k1.GetLength(I1);
const auto N = k_grid_desc_k0_n_k1.GetLength(I1);
......@@ -1966,16 +1966,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Kloop_Xdl_CShuffle_V1
// P_dropped
static_for<0, n0, 1>{}([&](auto i) {
blockwise_dropout.template ApplyDropout<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(z_tensor_buffer),
true,
decltype(n0),
decltype(i)>(
s_slash_p_thread_buf, ph, z_tenor_buffer);
s_slash_p_thread_buf, ph, z_tensor_buffer);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_buf);
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
......
......@@ -1473,8 +1473,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Kloop_Xdl_CShuffle_V2
unsigned short,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
// z matrix global desc
/*const auto M = q_grid_desc_k0_m_k1.GetLength(I1);
const auto N = k_grid_desc_k0_n_k1.GetLength(I1);
......@@ -1865,16 +1865,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Kloop_Xdl_CShuffle_V2
// P_dropped
static_for<0, n0, 1>{}([&](auto i) {
blockwise_dropout.template ApplyDropout<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(z_tensor_buffer),
true,
decltype(n0),
decltype(i)>(
s_slash_p_thread_buf, ph, z_tenor_buffer);
s_slash_p_thread_buf, ph, z_tensor_buffer);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_buf);
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
......
......@@ -110,6 +110,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
static constexpr auto Gemm0MWaves = MPerBlock / (MPerXdl * MXdlPerWave);
static constexpr auto Gemm0NWaves = NPerBlock / (NPerXdl * NXdlPerWave);
static constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
static constexpr auto DropoutNThread = mfma.num_input_blks; // 2
// get_random_8x16() generates 8 random numbers each time
static constexpr auto DropoutTile = Number<DropoutNThread * 8>{}; // 16
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// C desc for source in blockwise copy
......@@ -119,10 +124,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
const auto M = z_grid_desc_m_n.GetLength(I0);
const auto N = z_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
return transform_tensor_descriptor(
z_grid_desc_m_n,
......@@ -136,9 +140,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
__host__ __device__ static constexpr auto GetPaddedSize(const index_t size)
{
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto group_size = mfma.group_size;
return math::integer_divide_ceil(size, group_size) * group_size;
return math::integer_divide_ceil(size, DropoutTile) * DropoutTile;
}
__device__ static auto GetGemm0WaveIdx()
......@@ -542,9 +544,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
BBlockDesc_BK0_N_BK1{});
}
static constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t KPack = math::max(math::lcm(AK1, BK1), mfma.k_per_blk);
// Blockwise gemm with transposed XDL output
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
......@@ -646,8 +646,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static constexpr index_t GemmKPack =
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.group_size;
static constexpr index_t GemmKPack = mfma.group_size;
static constexpr index_t GemmMWave = Gemm0NWaves; // 4 // 4
static constexpr index_t GemmNWave = Gemm0MWaves; // 1 // 1
......@@ -770,9 +769,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
static constexpr index_t GemmNRepeat = Gemm2NXdlPerWave; // 1 // 1
static constexpr index_t GemmMRepeat = Gemm2_M / GemmMWave / MPerXdl; // 1 // 1
static constexpr index_t GemmKLoop = Gemm2_K / Sum_K; // 2 // 2
static constexpr index_t GemmKPack =
math::max(A_K1, MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t B_K3 = GemmKPack; // 8
static constexpr index_t GemmKPack = math::max(A_K1, mfma.k_per_blk);
static constexpr index_t B_K3 = GemmKPack; // 8
static constexpr index_t B_K2 =
XdlopsGemm<GemmDataType, MPerXdl, NPerXdl, GemmKPack, false>{}.K0PerXdlops; // 2
static constexpr index_t B_K1 = Sum_K / B_K2 / B_K3; // 4
......@@ -1570,8 +1568,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
ushort,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize());
......@@ -1759,7 +1757,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax.RunWithPreCalcStats(s_slash_p_thread_buf, lse_thread_buf);
constexpr auto position_offset = M3 * M4;
// save z to global
if constexpr(IsDropout)
{
......@@ -1774,23 +1771,27 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
blockwise_dropout
.template ApplyDropoutAttnBwdSaveZ<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(position_offset),
true>(
s_slash_p_thread_buf, ph, global_elem_id, z_tenor_buffer, raw_n_padded);
decltype(z_tensor_buffer),
decltype(DropoutTile),
true>(s_slash_p_thread_buf,
ph,
global_elem_id,
z_tensor_buffer,
raw_n_padded);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
z_grid_buf);
}
......@@ -1806,15 +1807,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V1
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
// P_dropped
blockwise_dropout.template ApplyDropoutAttnBwd<decltype(s_slash_p_thread_buf),
decltype(position_offset),
decltype(DropoutTile),
true>(
s_slash_p_thread_buf, ph, global_elem_id, raw_n_padded);
}
......
......@@ -121,6 +121,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
static constexpr auto B1K0 = Number<Gemm1KPerBlock / B1K1Value>{};
static constexpr auto B1K1 = Number<B1K1Value>{};
static constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
static constexpr auto DropoutNThread = mfma.num_input_blks; // 2
// get_random_8x16() generates 8 random numbers each time
static constexpr auto DropoutTile = Number<DropoutNThread * 8>{}; // 16
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
......@@ -133,10 +138,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
const auto M = z_grid_desc_m_n.GetLength(I0);
const auto N = z_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
return transform_tensor_descriptor(
z_grid_desc_m_n,
......@@ -150,9 +154,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
__host__ __device__ static constexpr auto GetPaddedSize(const index_t size)
{
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto group_size = mfma.group_size;
return math::integer_divide_ceil(size, group_size) * group_size;
return math::integer_divide_ceil(size, DropoutTile) * DropoutTile;
}
__device__ static auto GetGemm0WaveIdx()
......@@ -522,9 +524,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
true, // DstResetCoord
NumGemmKPrefetchStage>;
static constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t KPack = math::max(math::lcm(AK1, BK1), mfma.k_per_blk);
// Blockwise gemm with transposed XDL output
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
......@@ -657,8 +657,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static constexpr index_t GemmKPack =
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.group_size;
static constexpr index_t GemmKPack = mfma.group_size;
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
BlockSize,
......@@ -709,9 +708,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
static constexpr index_t GemmMWave = BlockSize / get_warp_size() / GemmNWave;
static constexpr index_t GemmNRepeat = Gemm2NXdlPerWave;
static constexpr index_t GemmMRepeat = Gemm2_M / GemmMWave / MPerXdl;
static constexpr index_t GemmKPack =
math::max(math::lcm(A_K1, B_K1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t GemmKPack = math::max(math::lcm(A_K1, B_K1), mfma.k_per_blk);
using BBlockSliceLengths = Sequence<B_K0, Gemm2_N, B_K1>;
using BThreadClusterLengths =
......@@ -1554,8 +1551,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
ushort,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize());
......@@ -1722,7 +1719,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax.RunWithPreCalcStats(s_slash_p_thread_buf, lse_thread_buf);
constexpr auto position_offset = M3 * M4;
// save z to global
if constexpr(IsDropout)
{
......@@ -1737,23 +1733,27 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
blockwise_dropout
.template ApplyDropoutAttnBwdSaveZ<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(position_offset),
true>(
s_slash_p_thread_buf, ph, global_elem_id, z_tenor_buffer, raw_n_padded);
decltype(z_tensor_buffer),
decltype(DropoutTile),
true>(s_slash_p_thread_buf,
ph,
global_elem_id,
z_tensor_buffer,
raw_n_padded);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
z_grid_buf);
}
......@@ -1769,14 +1769,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_Light_V2
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
// P_dropped
blockwise_dropout.template ApplyDropoutAttnBwd<decltype(s_slash_p_thread_buf),
decltype(position_offset),
decltype(DropoutTile),
true>(
s_slash_p_thread_buf, ph, global_elem_id, raw_n_padded);
}
......
......@@ -109,6 +109,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
static constexpr auto Gemm0MWaves = MPerBlock / (MPerXdl * MXdlPerWave);
static constexpr auto Gemm0NWaves = NPerBlock / (NPerXdl * NXdlPerWave);
static constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
static constexpr auto DropoutNThread = mfma.num_input_blks; // 2
// get_random_8x16() generates 8 random numbers each time
static constexpr auto DropoutTile = Number<DropoutNThread * 8>{}; // 16
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
// C desc for source in blockwise copy
......@@ -118,10 +123,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
const auto M = z_grid_desc_m_n.GetLength(I0);
const auto N = z_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
return transform_tensor_descriptor(
z_grid_desc_m_n,
......@@ -135,9 +139,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
__host__ __device__ static constexpr auto GetPaddedSize(const index_t size)
{
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto group_size = mfma.group_size;
return math::integer_divide_ceil(size, group_size) * group_size;
return math::integer_divide_ceil(size, DropoutTile) * DropoutTile;
}
__device__ static auto GetGemm0WaveIdx()
......@@ -563,9 +565,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
BBlockDesc_BK0_N_BK1{});
}
static constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t KPack = math::max(math::lcm(AK1, BK1), mfma.k_per_blk);
// Blockwise gemm with transposed XDL output
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
......@@ -667,8 +667,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static constexpr index_t GemmKPack =
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.group_size;
static constexpr index_t GemmKPack = mfma.group_size;
static constexpr index_t GemmMWave = Gemm0NWaves; // 4 // 4
static constexpr index_t GemmNWave = Gemm0MWaves; // 1 // 1
......@@ -791,9 +790,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
static constexpr index_t GemmNRepeat = Gemm2NXdlPerWave; // 1 // 1
static constexpr index_t GemmMRepeat = Gemm2_M / GemmMWave / MPerXdl; // 1 // 1
static constexpr index_t GemmKLoop = Gemm2_K / Sum_K; // 2 // 2
static constexpr index_t GemmKPack =
math::max(A_K1, MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t B_K3 = GemmKPack; // 8
static constexpr index_t GemmKPack = math::max(A_K1, mfma.k_per_blk);
static constexpr index_t B_K3 = GemmKPack; // 8
static constexpr index_t B_K2 =
XdlopsGemm<GemmDataType, MPerXdl, NPerXdl, GemmKPack, false>{}.K0PerXdlops; // 2
static constexpr index_t B_K1 = Sum_K / B_K2 / B_K3; // 4
......@@ -1621,8 +1619,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
ushort,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize());
......@@ -1946,7 +1944,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax.RunWithPreCalcStats(s_slash_p_thread_buf, lse_thread_buf);
constexpr auto position_offset = M3 * M4;
// save z to global
if constexpr(IsDropout)
{
......@@ -1961,23 +1958,27 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
blockwise_dropout
.template ApplyDropoutAttnBwdSaveZ<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(position_offset),
true>(
s_slash_p_thread_buf, ph, global_elem_id, z_tenor_buffer, raw_n_padded);
decltype(z_tensor_buffer),
decltype(DropoutTile),
true>(s_slash_p_thread_buf,
ph,
global_elem_id,
z_tensor_buffer,
raw_n_padded);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
z_grid_buf);
}
......@@ -1993,15 +1994,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V1
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
// P_dropped
blockwise_dropout.template ApplyDropoutAttnBwd<decltype(s_slash_p_thread_buf),
decltype(position_offset),
decltype(DropoutTile),
true>(
s_slash_p_thread_buf, ph, global_elem_id, raw_n_padded);
}
......
......@@ -120,6 +120,11 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
static constexpr auto B1K0 = Number<Gemm1KPerBlock / B1K1Value>{};
static constexpr auto B1K1 = Number<B1K1Value>{};
static constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
static constexpr auto DropoutNThread = mfma.num_input_blks; // 2
// get_random_8x16() generates 8 random numbers each time
static constexpr auto DropoutTile = Number<DropoutNThread * 8>{}; // 16
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
......@@ -132,10 +137,9 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
const auto M = z_grid_desc_m_n.GetLength(I0);
const auto N = z_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
constexpr auto M3 = mfma.num_groups_per_blk;
constexpr auto M4 = mfma.num_input_blks;
constexpr auto M5 = mfma.group_size;
return transform_tensor_descriptor(
z_grid_desc_m_n,
......@@ -149,9 +153,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
__host__ __device__ static constexpr auto GetPaddedSize(const index_t size)
{
constexpr auto mfma = MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto group_size = mfma.group_size;
return math::integer_divide_ceil(size, group_size) * group_size;
return math::integer_divide_ceil(size, DropoutTile) * DropoutTile;
}
__device__ static auto GetGemm0WaveIdx()
......@@ -543,9 +545,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
true, // DstResetCoord
NumGemmKPrefetchStage>;
static constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t KPack = math::max(math::lcm(AK1, BK1), mfma.k_per_blk);
// Blockwise gemm with transposed XDL output
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
......@@ -678,8 +678,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
static constexpr index_t GemmKPack =
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.group_size;
static constexpr index_t GemmKPack = mfma.group_size;
using BlockwiseGemm = BlockwiseGemmXdlops_v2<
BlockSize,
......@@ -730,9 +729,7 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
static constexpr index_t GemmMWave = BlockSize / get_warp_size() / GemmNWave;
static constexpr index_t GemmNRepeat = Gemm2NXdlPerWave;
static constexpr index_t GemmMRepeat = Gemm2_M / GemmMWave / MPerXdl;
static constexpr index_t GemmKPack =
math::max(math::lcm(A_K1, B_K1),
MfmaSelector<GemmDataType, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
static constexpr index_t GemmKPack = math::max(math::lcm(A_K1, B_K1), mfma.k_per_blk);
using BBlockSliceLengths = Sequence<B_K0, Gemm2_N, B_K1>;
using BThreadClusterLengths =
......@@ -1582,8 +1579,8 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
ushort,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize());
......@@ -1862,7 +1859,6 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
// scaling is already performed in the preceding statements with s_element_op
blockwise_softmax.RunWithPreCalcStats(s_slash_p_thread_buf, lse_thread_buf);
constexpr auto position_offset = M3 * M4;
// save z to global
if constexpr(IsDropout)
{
......@@ -1877,23 +1873,27 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
blockwise_dropout
.template ApplyDropoutAttnBwdSaveZ<decltype(s_slash_p_thread_buf),
decltype(z_tenor_buffer),
decltype(position_offset),
true>(
s_slash_p_thread_buf, ph, global_elem_id, z_tenor_buffer, raw_n_padded);
decltype(z_tensor_buffer),
decltype(DropoutTile),
true>(s_slash_p_thread_buf,
ph,
global_elem_id,
z_tensor_buffer,
raw_n_padded);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
z_grid_buf);
}
......@@ -1909,14 +1909,16 @@ struct GridwiseBatchedMultiheadAttentionBackward_Qloop_Xdl_CShuffle_V2
auto m_global = m_local + m_block_data_idx_on_grid;
auto n_global = n_local + n_block_data_idx_on_grid;
auto global_elem_id_raw = z_random_matrix_offset + m_global * raw_n_padded +
n_global; // unique element global 1d id
auto global_tile_id = z_random_matrix_offset +
(m_global / DropoutTile) * DropoutTile * raw_n_padded +
(n_global / DropoutTile) * DropoutTile;
auto global_elem_id = global_tile_id + (wave_m_n_id[I0] * M4) +
(n_global % DropoutTile) * raw_n_padded;
auto global_elem_id =
(global_elem_id_raw % M4) * raw_n_padded + (global_elem_id_raw / M4) * M4;
// P_dropped
blockwise_dropout.template ApplyDropoutAttnBwd<decltype(s_slash_p_thread_buf),
decltype(position_offset),
decltype(DropoutTile),
true>(
s_slash_p_thread_buf, ph, global_elem_id, raw_n_padded);
}
......
......@@ -873,8 +873,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V1
unsigned short,
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize(),
true>
z_tenor_buffer;
z_tenor_buffer.Clear();
z_tensor_buffer;
z_tensor_buffer.Clear();
// z matrix global desc
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
......@@ -1022,16 +1022,16 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V1
{
static_for<0, n0, 1>{}([&](auto i) {
blockwise_dropout.template ApplyDropout<decltype(acc_thread_buf),
decltype(z_tenor_buffer),
decltype(z_tensor_buffer),
false,
decltype(n0),
decltype(i)>(
acc_thread_buf, ph, z_tenor_buffer);
acc_thread_buf, ph, z_tensor_buffer);
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tenor_buffer,
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_buf);
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
......
......@@ -60,6 +60,7 @@ template <typename FloatAB,
index_t MXdlPerWave,
index_t NXdlPerWave,
index_t Gemm1NXdlPerWave,
index_t DropoutStepValue,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
......@@ -113,6 +114,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static constexpr auto I5 = Number<5>{};
static constexpr auto I6 = Number<6>{};
static constexpr auto I7 = Number<7>{};
static constexpr auto I8 = Number<8>{};
static constexpr auto I9 = Number<9>{};
static constexpr auto WaveSize = 64;
......@@ -130,54 +133,76 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static constexpr auto B1K0 = Number<Gemm1KPerBlock / B1K1Value>{};
static constexpr auto B1K1 = Number<B1K1Value>{};
static constexpr auto mfma = MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma;
static constexpr auto DropoutNThread = mfma.num_input_blks; // 2
// get_random_8x16() generates 8 random numbers each time
static constexpr auto DropoutTile = Number<DropoutNThread * 8>{}; // 16
static constexpr auto DropoutMThread = DropoutTile; // 16
static constexpr auto DropoutTilePerXdl = NPerXdl / DropoutTile; // 2
static constexpr auto DropoutStep = Number<DropoutStepValue>{}; // 1 2 4
static constexpr auto DropoutNRepeat =
Number<math::integer_divide_ceil(DropoutStep, DropoutTilePerXdl)>{}; // 1 1 2
static constexpr auto DropoutGroupPerTile =
Number<mfma.num_groups_per_blk / DropoutTilePerXdl>{}; // 2
static constexpr auto DropoutStepPerXdl =
Number<math::min(DropoutStep, DropoutTilePerXdl)>{}; // 1 2 2
using ThisThreadBlock = ThisThreadBlock<BlockSize>;
using GridwiseGemmPipe = remove_cvref_t<decltype(
GridwiseGemmPipeline_Selector<PipelineVer, NumGemmKPrefetchStage>())>;
// C desc for source in gridwise copy
__host__ __device__ static constexpr auto MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(
__host__ __device__ static constexpr auto
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6(
const ZGridDesc_M_N& z_grid_desc_m_n) ////=> for z use
{
const auto M = z_grid_desc_m_n.GetLength(I0);
const auto N = z_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
const auto M0 = M / MPerBlock;
const auto N0 = N / (DropoutNRepeat * NPerXdl);
constexpr auto M1 = MXdlPerWave;
constexpr auto N1 = DropoutNRepeat;
constexpr auto M2 = Gemm0MWaves;
constexpr auto N2 = Gemm0NWaves;
constexpr auto M3 = DropoutTilePerXdl;
constexpr auto N3 = DropoutStepPerXdl;
constexpr auto M4 = DropoutTile;
constexpr auto N4 = DropoutGroupPerTile;
constexpr auto N5 = mfma.num_input_blks;
constexpr auto N6 = mfma.group_size;
return transform_tensor_descriptor(
z_grid_desc_m_n,
make_tuple(make_unmerge_transform(
make_tuple(M / MPerBlock, MXdlPerWave, Gemm0MWaves, MPerXdl)),
make_unmerge_transform(
make_tuple(N / NPerBlock, NXdlPerWave, Gemm0NWaves, N3, N4, N5))),
make_tuple(make_unmerge_transform(make_tuple(M0, M1, M2, M3, M4)),
make_unmerge_transform(make_tuple(N0, N1, N2, N3, N4, N5, N6))),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0, 2, 4, 6>{}, Sequence<1, 3, 5, 7, 8, 9>{}));
make_tuple(Sequence<0, 2, 4, 6, 8>{}, Sequence<1, 3, 5, 7, 9, 10, 11>{}));
}
__host__ __device__ static constexpr auto GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4()
__host__ __device__ static constexpr auto
GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5()
{
constexpr auto mfma = MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto M0 = MXdlPerWave;
constexpr auto M1 = Gemm0MWaves;
constexpr auto N1 = Gemm0NWaves;
constexpr auto M2 = MPerXdl;
constexpr auto N2 = mfma.num_groups_per_blk;
constexpr auto N3 = mfma.num_input_blks;
constexpr auto N4 = mfma.group_size;
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
make_naive_tensor_descriptor_packed(make_tuple(M0, I1, M1, N1, M2, N2, N3, N4));
return z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4;
constexpr auto M0 = MXdlPerWave;
constexpr auto N0 = DropoutNRepeat;
constexpr auto M1 = Gemm0MWaves;
constexpr auto N1 = Gemm0NWaves;
constexpr auto M2 = DropoutTilePerXdl;
constexpr auto N2 = DropoutStepPerXdl;
constexpr auto M3 = DropoutTile;
constexpr auto N3 = DropoutGroupPerTile;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
make_naive_tensor_descriptor_packed(make_tuple(M0, N0, M1, N1, M2, N2, M3, N3, N4, N5));
return z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5;
}
__host__ __device__ static constexpr auto GetPaddedSize(const index_t size)
{
constexpr auto mfma = MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto group_size = mfma.group_size;
return math::integer_divide_ceil(size, group_size) * group_size;
return math::integer_divide_ceil(size, DropoutTile) * DropoutTile;
}
__device__ static auto GetGemm0WaveIdx()
......@@ -434,10 +459,9 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const auto M = d0_grid_desc_m_n.GetLength(I0);
const auto N = d0_grid_desc_m_n.GetLength(I1);
constexpr auto mfma = MfmaSelector<FloatAB, MPerXdl, NPerXdl>::selected_mfma;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
constexpr auto N3 = mfma.num_groups_per_blk;
constexpr auto N4 = mfma.num_input_blks;
constexpr auto N5 = mfma.group_size;
return transform_tensor_descriptor(
d0_grid_desc_m_n,
make_tuple(make_unmerge_transform(
......@@ -468,8 +492,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
using DefaultBlock2CTileMap =
remove_cvref_t<decltype(MakeDefaultBlock2CTileMap(CGridDesc_M_N{}))>;
using ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5 = remove_cvref_t<decltype(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5(ZGridDesc_M_N{}))>;
using ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6 = remove_cvref_t<decltype(
MakeCGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6(ZGridDesc_M_N{}))>;
struct SharedMemTrait
{
......@@ -507,10 +531,10 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
c_shuffle_block_desc_mblock_mperblock_nblock_nperblock.GetElementSpaceSize();
// LDS allocation for Z shuffle in LDS
static constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
static constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5();
static constexpr auto z_shuffle_block_space_size =
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetElementSpaceSize();
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize();
};
template <bool HasMainKBlockLoop,
......@@ -538,8 +562,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
const B1GridDesc_BK0_N_BK1& b1_grid_desc_bk0_n_bk1,
const CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock&
c_grid_desc_mblock_mperblock_nblock_nperblock,
const ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5&
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
const ZGridDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_M4_N4_N5_N6&
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
const LSEGridDesc_M& lse_grid_desc_m,
const Block2CTileMap& block_2_ctile_map,
const C0MatrixMask& c0_matrix_mask,
......@@ -661,9 +685,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// acc1[m][o] += acc[m][n] * B1[n][o]
// sanity check
constexpr index_t KPack =
math::max(math::lcm(AK1, BK1),
MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma.k_per_blk);
constexpr index_t KPack = math::max(math::lcm(AK1, BK1), mfma.k_per_blk);
auto blockwise_gemm = BlockwiseGemmXdlops_v2<
BlockSize,
......@@ -823,8 +845,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
// with 'group_size' amount of contiguous elements. Having Gemm1KPack greater than A1K1 will
// cause mismatch in summation index for example c[0:7] = a1[[0:3, 8:11]] * b1[0:7].
// therefore we may just as well assign Gemm1KPack = group_size
constexpr index_t Gemm1KPack =
MfmaSelector<FloatGemm, MPerXdl, NPerXdl>::selected_mfma.group_size;
constexpr index_t Gemm1KPack = mfma.group_size;
auto gemm1_blockwise_gemm = BlockwiseGemmXdlops_v2<
BlockSize,
......@@ -1008,67 +1029,75 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
},
Number<NumD0Tensor>{});
constexpr auto z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 = // for blockwise copy
make_naive_tensor_descriptor_packed(make_tuple(m0, // MRepeat
DropoutNRepeat, // NRepeat
m1, // MWaveId
n1, // NWaveId
I1,
DropoutStepPerXdl,
m2,
DropoutGroupPerTile,
n3,
n4)); // RegisterNum
constexpr auto z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3 = // for blockwise copy
make_naive_tensor_descriptor_packed(make_tuple(m0, // MRepeat
DropoutNRepeat, // NRepeat
m1, // MWaveId
n1, // NWaveId
I1,
DropoutStepPerXdl,
DropoutGroupPerTile,
n3,
n4, // RegisterNum
m2));
// z is random number matrix for dropout verify
//
// z vgpr copy to global
//
// z matrix threadwise desc
constexpr auto z_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4 = // for blockwise copy
make_naive_tensor_descriptor_packed(make_tuple(m0, // MRepeat
I1, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4)); // RegisterNum
constexpr auto z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4 = // for blockwise copy
make_naive_tensor_descriptor_packed(make_tuple(m0, // MRepeat
I1, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
n4, // RegisterNum
I1)); // I1
constexpr auto z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
make_naive_tensor_descriptor_packed(make_tuple(I1, // MBlockId
I1, // NBlockId
m0, // MRepeat
I1, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
constexpr auto z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6 =
make_naive_tensor_descriptor_packed(make_tuple(I1, // MBlockId
I1, // NBlockId
m0, // MRepeat
DropoutNRepeat, // NRepeat
m1, // MWaveId
n1, // NWaveId
I1,
DropoutStepPerXdl,
m2,
DropoutGroupPerTile,
n3,
n4)); // RegisterNum
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4 =
GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_N3_N4();
constexpr auto ZM0 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I0);
constexpr auto ZN0 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I1);
constexpr auto ZM1 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I2);
constexpr auto ZN1 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I3);
constexpr auto ZM2 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I4);
constexpr auto ZN2 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I5);
constexpr auto ZN3 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I6);
constexpr auto ZN4 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetLength(I7);
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4 =
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5 =
GetZShuffleBlockDescriptor_M0_N0_M1_N1_M2_N2_M3_N3_N4_N5();
constexpr auto ZM0 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I0); // 1
constexpr auto ZN0 =
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I1); // 1 1 2
constexpr auto ZM1 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I2); // 4
constexpr auto ZN1 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I3); // 1
constexpr auto ZM2 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I4); // 2
constexpr auto ZN2 =
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I5); // 1 2 2
constexpr auto ZM3 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I6); // 16
constexpr auto ZN3 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I7); // 2
constexpr auto ZN4 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I8); // 2
constexpr auto ZN5 = z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetLength(I9); // 4
constexpr auto z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3 =
transform_tensor_descriptor(
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4,
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(make_pass_through_transform(ZM0),
make_pass_through_transform(ZN0),
make_pass_through_transform(ZM1),
make_pass_through_transform(ZN1),
make_unmerge_transform(make_tuple(ZM2 / ZN4, ZN4)),
make_pass_through_transform(ZM2),
make_pass_through_transform(ZN2),
make_pass_through_transform(ZN3),
make_pass_through_transform(ZN4)),
make_unmerge_transform(make_tuple(ZM3 / ZN4 / ZN5, ZN4, ZN5)),
make_merge_transform_v3_division_mod(make_tuple(ZN3, ZN4, ZN5))),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
......@@ -1076,112 +1105,130 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<7>{}),
Sequence<7, 8, 9>{}),
make_tuple(Sequence<0>{},
Sequence<1>{},
Sequence<2>{},
Sequence<3>{},
Sequence<4, 7>{},
Sequence<4>{},
Sequence<5>{},
Sequence<6>{},
Sequence<8>{}));
Sequence<6, 7, 8>{},
Sequence<9>{}));
StaticBuffer<AddressSpaceEnum::Vgpr,
ushort,
z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4.GetElementSpaceSize(),
z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3.GetElementSpaceSize(),
true>
z_tensor_buffer;
z_tensor_buffer.Clear();
auto z_grid_buf = make_dynamic_buffer<AddressSpaceEnum::Global>(
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize());
p_z_grid, z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6.GetElementSpaceSize());
auto z_block_buf = make_dynamic_buffer<AddressSpaceEnum::Lds>(
static_cast<ushort*>(p_shared),
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4.GetElementSpaceSize());
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5.GetElementSpaceSize());
auto z_tmp_thread_copy_vgpr_to_lds = ThreadwiseTensorSliceTransfer_v1r3<
ushort,
ushort,
decltype(z_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4),
decltype(z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4),
decltype(z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
decltype(z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
tensor_operation::element_wise::PassThrough,
Sequence<m0, // MRepeat
I1, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
Sequence<m0, // MRepeat
DropoutNRepeat, // NRepeat
m1, // MWaveId
n1, // NWaveId
I1,
DropoutStepPerXdl,
m2,
DropoutGroupPerTile,
n3,
n4>, // RegisterNum
Sequence<0, 1, 2, 3, 4, 5, 6, 7>,
7, // DstVectorDim
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9, // DstVectorDim
1, // DstScalarPerVector
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
true>{z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4,
make_multi_index(0, // MRepeat
0, // NRepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1], // MPerXdl
0, // NGroupIndex
wave_m_n_id[I0], // NInputIndex
true>{z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(0, // MRepeat
0, // NRepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1] / DropoutMThread,
0,
wave_m_n_id[I1] % DropoutMThread,
0,
wave_m_n_id[I0],
0),
tensor_operation::element_wise::PassThrough{}};
auto z_shuffle_thread_copy_lds_to_vgpr = ThreadwiseTensorSliceTransfer_v2<
ushort,
ushort,
decltype(z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4),
decltype(z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4),
Sequence<m0, I1, m1, n1, m2, n2, n3, n4, I1>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8>,
8,
decltype(z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3),
decltype(z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3),
Sequence<m0,
DropoutNRepeat,
m1,
n1,
I1,
DropoutStepPerXdl,
DropoutGroupPerTile,
n3,
n4,
m2>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9,
1,
1,
true>{z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4,
true>{z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_multi_index(0, // MRepeat
0, // NRepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1] / ZN4,
wave_m_n_id[I1] / DropoutMThread,
0,
0,
wave_m_n_id[I0],
0,
wave_m_n_id[I1] % ZN4)};
wave_m_n_id[I1] % DropoutMThread)};
auto z_thread_copy_vgpr_to_global = ThreadwiseTensorSliceTransfer_v1r3<
ushort,
ZDataType,
decltype(z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
decltype(z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5),
decltype(z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6),
decltype(z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6),
tensor_operation::element_wise::PassThrough,
Sequence<I1, // MBlockId
I1, // NBlockID
m0, // MRepeat
I1, // NRepeat
m1, // MWaveId
n1, // NWaveId
m2, // MPerXdl
n2, // NGroupNum
n3, // NInputNum
Sequence<I1, // MBlockId
I1, // NBlockID
m0, // MRepeat
DropoutNRepeat, // NRepeat
m1, // MWaveId
n1, // NWaveId
I1,
DropoutStepPerXdl,
m2,
DropoutGroupPerTile,
n3,
n4>,
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9>,
9, // DstVectorDim
1, // DstScalarPerVector
Sequence<0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11>,
11, // DstVectorDim
1, // DstScalarPerVector
InMemoryDataOperationEnum::Set,
1, // DstScalarStrideInVector
true>{z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
true>{z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
make_multi_index(block_work_idx_m, // MBlockId
0, // NBlockId
0, // mrepeat
0, // nrepeat
wave_id[I0], // MWaveId
wave_id[I1], // NWaveId
wave_m_n_id[I1], // MPerXdl
0, // group
wave_m_n_id[I0], // NInputIndex
wave_m_n_id[I1] / DropoutMThread,
0,
wave_m_n_id[I1] % DropoutMThread,
0,
wave_m_n_id[I0],
0),
tensor_operation::element_wise::PassThrough{}};
......@@ -1308,8 +1355,8 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
blockwise_softmax.Run(acc_thread_buf, workspace_buf);
constexpr auto position_offset = N3 * N4;
constexpr auto iterator_offset = n2 * n3 * n4;
constexpr auto iterator_offset = Number<8 * DropoutStep>{};
constexpr auto iterator_step = Number<n0 * n1 * n2 * n3 * n4 / 8 / DropoutStep>{};
if constexpr(IsDropout) // dropout
{
......@@ -1326,49 +1373,44 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
n_global; // unique element global 1d id
blockwise_dropout.template GenerateZMatrixAttnFwd<decltype(z_tensor_buffer),
decltype(n0),
decltype(position_offset)>(
decltype(iterator_step),
decltype(DropoutTile)>(
ph, global_elem_id, z_tensor_buffer);
z_tmp_thread_copy_vgpr_to_lds.Run(z_thread_desc_m0_n0_m1_n1_m2_n2_n3_n4,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0),
z_tensor_buffer,
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_n4,
z_block_buf);
z_tmp_thread_copy_vgpr_to_lds.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tensor_buffer,
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_block_buf);
z_shuffle_thread_copy_lds_to_vgpr.Run(
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4,
z_shuffle_block_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
z_block_buf,
z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_n3_m3_n4,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_shuffle_thread_desc_m0_n0_m1_n1_m2_n2_m3_m4_m5_n3,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tensor_buffer);
blockwise_dropout.template ApplyDropoutWithZ<decltype(acc_thread_buf),
decltype(z_tensor_buffer),
decltype(n0),
decltype(iterator_step),
decltype(i)>(acc_thread_buf,
z_tensor_buffer);
// save z to global
if(p_z_grid)
if(p_z_grid && (gemm1_n_block_data_idx_on_grid == 0))
{
z_thread_copy_vgpr_to_global.Run(
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_thread_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
make_tuple(I0, I0, I0, I0, I0, I0, I0, I0, I0, I0, I0, I0),
z_tensor_buffer,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
z_grid_buf);
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(0, 0, 0, 1, 0, 0, 0, 0, 0, 0));
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_m4_n4_n5_n6,
make_multi_index(0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0));
}
});
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(0, 0, 0, -(n0.value), 0, 0, 0, 0, 0, 0));
z_thread_copy_vgpr_to_global.MoveDstSliceWindow(
z_grid_desc_m0_n0_m1_n1_m2_n2_m3_n3_n4_n5,
make_multi_index(0, 1, 0, 0, 0, 0, 0, 0, 0, 0));
}
// TODO: may convert to log domain
......@@ -1489,7 +1531,7 @@ struct GridwiseBatchedMultiheadAttentionForward_Xdl_CShuffle_V2
static_for<0, MXdlPerWave, 1>{}(
[&](auto I) { lse_thread_buf(I) = running_max(I) + math::log(running_sum(I)); });
if(get_lane_local_1d_id() < AccM2)
if((get_lane_local_1d_id() < AccM2) && (gemm1_n_block_data_idx_on_grid == 0))
{
static_for<0, MXdlPerWave, 1>{}([&](auto I) {
// copy from VGPR to Global
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment