Commit 7a3b49e5 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into contraction

parents e07b3d8e d3051d75
......@@ -78,10 +78,6 @@ rocm_create_package(
LDCONFIG
)
## half
set(HALF_INCLUDE_DIR "${PROJECT_SOURCE_DIR}/external/include/half")
message("HALF_INCLUDE_DIR: ${HALF_INCLUDE_DIR}")
## tidy
include(EnableCompilerWarnings)
set(CK_TIDY_ERRORS ERRORS * -readability-inconsistent-declaration-parameter-name)
......@@ -229,7 +225,6 @@ set(CMAKE_RUNTIME_OUTPUT_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/bin)
include_directories(BEFORE
${PROJECT_SOURCE_DIR}/include
${PROJECT_BINARY_DIR}/include
${PROJECT_SOURCE_DIR}/library/include
)
......
......@@ -7,7 +7,6 @@ def show_node_info() {
echo "NODE_NAME = \$NODE_NAME"
lsb_release -sd
uname -r
cat /sys/module/amdgpu/version
ls /opt/ -la
"""
}
......@@ -100,9 +99,10 @@ def buildHipClangJob(Map conf=[:]){
def variant = env.STAGE_NAME
def retimage
gitStatusWrapper(credentialsId: '7126e5fe-eb51-4576-b52b-9aaf1de8f0fd', gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
if (params.USE_DOCKERFILE){
try {
retimage = docker.build("${image}", dockerArgs + '.')
withDockerContainer(image: image, args: dockerOpts) {
......@@ -125,10 +125,19 @@ def buildHipClangJob(Map conf=[:]){
}
}
}
}
else{
timeout(time: 3, unit: 'HOURS'){
retimage = docker.image('compute-artifactory.amd.com:5000/rocm-plus-docker/framework/compute-rocm-dkms-no-npi-hipclang:9110_ubuntu18.04_py3.6_pytorch_rocm5.0_internal_testing_7ff5b54').pull()
image="b56f8ac0d6ea"
sh "docker images"
}
}
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
timeout(time: 5, unit: 'HOURS')
{
sh 'PATH="/opt/rocm/opencl/bin:/opt/rocm/opencl/bin/x86_64:$PATH" clinfo'
cmake_build(conf)
}
}
......@@ -181,9 +190,10 @@ def runCKProfiler(Map conf=[:]){
def variant = env.STAGE_NAME
def retimage
gitStatusWrapper(credentialsId: '7126e5fe-eb51-4576-b52b-9aaf1de8f0fd', gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
gitStatusWrapper(credentialsId: "${status_wrapper_creds}", gitHubContext: "Jenkins - ${variant}", account: 'ROCmSoftwarePlatform', repo: 'composable_kernel') {
if (params.USE_DOCKERFILE){
try {
retimage = docker.build("${image}", dockerArgs + '.')
withDockerContainer(image: image, args: dockerOpts) {
......@@ -206,36 +216,66 @@ def runCKProfiler(Map conf=[:]){
}
}
}
}
else{
timeout(time: 3, unit: 'HOURS'){
retimage = docker.image('compute-artifactory.amd.com:5000/rocm-plus-docker/framework/compute-rocm-dkms-no-npi-hipclang:9110_ubuntu18.04_py3.6_pytorch_rocm5.0_internal_testing_7ff5b54').pull()
image="b56f8ac0d6ea"
sh "docker images"
}
}
withDockerContainer(image: image, args: dockerOpts + ' -v=/var/jenkins/:/var/jenkins') {
timeout(time: 5, unit: 'HOURS')
{
cmake_build(conf)
dir("script"){
def perf_log = "perf_gemm_${gpu_arch}.log"
sh "rm -f ${perf_log}"
sh "echo Branch name: ${env.BRANCH_NAME} > ${perf_log}"
sh "./profile_gemm.sh gemm 0 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 0 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 1 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 2 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 0 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 1 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 2 3 0 1 0 5 | tee -a ${perf_log}"
sh "./profile_gemm.sh gemm 3 3 0 1 0 5 | tee -a ${perf_log}"
//run gemm performance tests
def gemm_log = "perf_gemm_${gpu_arch}.log"
sh "rm -f ${gemm_log}"
sh "echo Branch name: ${env.BRANCH_NAME} > ${gemm_log}"
sh "echo Node name: ${NODE_NAME} >> ${gemm_log}"
sh "echo GPU_arch name: ${gpu_arch} >> ${gemm_log}"
sh "rocminfo | grep 'Compute Unit:' >> ${gemm_log} "
sh "hipcc --version | grep -e 'HIP version' >> ${gemm_log}"
sh "/opt/rocm/bin/amdclang++ --version | grep -e 'InstalledDir' >> ${gemm_log}"
sh "./profile_gemm.sh gemm 0 0 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 1 0 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 2 0 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 3 0 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 0 1 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 1 1 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 2 1 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 3 1 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 0 2 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 1 2 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 2 2 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 3 2 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 0 3 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 1 3 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 2 3 0 1 0 5 | tee -a ${gemm_log}"
sh "./profile_gemm.sh gemm 3 3 0 1 0 5 | tee -a ${gemm_log}"
//results will be parsed, stored, and analyzed within the python script
//the script will return 0 if the performance criteria are met
//or return 1 if the criteria are not met
archiveArtifacts "${perf_log}"
sh "python3 parse_perf_data.py ${perf_log} "
archiveArtifacts "${gemm_log}"
sh "python3 parse_perf_data.py ${gemm_log} "
//run resnet50 test
def resnet_log = "perf_resnet50_${gpu_arch}.log"
sh "rm -f ${resnet_log}"
sh "echo Branch name: ${env.BRANCH_NAME} > ${resnet_log}"
sh "echo Node name: ${NODE_NAME} >> ${resnet_log}"
sh "echo GPU_arch name: ${gpu_arch} >> ${resnet_log}"
sh "rocminfo | grep 'Compute Unit:' >> ${resnet_log} "
sh "hipcc --version | grep -e 'HIP version' >> ${resnet_log}"
sh "/opt/rocm/bin/amdclang++ --version | grep -e 'InstalledDir' >> ${resnet_log}"
//first run tests with N=256
sh "./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 256 | tee -a ${resnet_log}"
//then run with N=4
sh "./profile_conv.sh conv_fwd_bias_relu 1 1 1 1 0 2 0 1 4 | tee -a ${resnet_log}"
archiveArtifacts "${resnet_log}"
//the script will put the results from N=256 and N=4 runs into separate tables
sh "python3 parse_perf_data.py ${resnet_log} "
}
}
}
......@@ -265,9 +305,21 @@ pipeline {
options {
parallelsAlwaysFailFast()
}
// environment{
// variable = value
// }
parameters {
booleanParam(
name: "USE_DOCKERFILE",
defaultValue: true,
description: "")
}
environment{
dbuser = "${dbuser}"
dbpassword = "${dbpassword}"
dbsship = "${dbsship}"
dbsshport = "${dbsshport}"
dbsshuser = "${dbsshuser}"
dbsshpassword = "${dbsshpassword}"
status_wrapper_creds = "${status_wrapper_creds}"
}
stages{
stage("Static checks") {
parallel{
......@@ -282,30 +334,6 @@ pipeline {
// buildHipClangJobAndReboot(build_cmd: build_cmd, no_reboot:true, prefixpath: '/opt/rocm', build_type: 'debug')
// }
// }
// we will build and run ckProfiler release version later, during the performance test stage
//stage('Build Profiler: Release, gfx908')
//{
// agent { label rocmnode("nogpu")}
// environment{
// setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
// }
// steps{
// buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
// }
//}
//stage('Build Profiler: Debug, gfx908')
//{
// agent { label rocmnode("nogpu")}
// environment{
// setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
// }
// steps{
// // until we stabilize debug build due to compiler crashes
// catchError(buildResult: 'SUCCESS', stageResult: 'FAILURE') {
// buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Debug')
// }
// }
//}
stage('Clang Format') {
agent{ label rocmnode("nogpu") }
environment{
......@@ -333,12 +361,11 @@ pipeline {
{
agent{ label rocmnode("gfx908")}
environment{
setup_args = """ -D CMAKE_CXX_FLAGS=" --offload-arch=gfx900 --offload-arch=gfx906 --offload-arch=gfx908 --offload-arch=gfx90a -O3 " -DBUILD_DEV=On """
setup_args = """ -D CMAKE_CXX_FLAGS=" --offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release')
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release', gpu_arch: "gfx908")
}
}
stage("Run Tests: gfx90a")
{
......@@ -347,66 +374,68 @@ pipeline {
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx90a -O3 " -DBUILD_DEV=On """
}
steps{
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release')
buildHipClangJobAndReboot(setup_args:setup_args, config_targets: "check", no_reboot:true, build_type: 'Release', gpu_arch: "gfx90a")
}
}
}
}
stage("Client App")
//stage("Client App")
//{
// parallel
// {
// stage("Run Client App")
// {
// agent{ label rocmnode("gfx908")}
// environment{
// setup_args = """ -D -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """
// execute_args = """ cd ../test/client_app && rm -rf build && mkdir build && cd build && cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" .. && make """
// }
// steps{
// buildHipClangJobAndReboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
// }
// }
// }
//}
stage("Performance Tests")
{
parallel
{
stage("Run Client App")
stage("Run ckProfiler: gfx908")
{
agent{ label rocmnode("gfx908")}
environment{
setup_args = """ -D -DBUILD_DEV=Off -DCMAKE_INSTALL_PREFIX=../install CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " """
execute_args = """ cd ../test/client_app && rm -rf build && mkdir build && cd build && cmake -DCMAKE_PREFIX_PATH="${env.WORKSPACE}/install;/opt/rocm" .. && make """
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
}
steps{
buildHipClangJobAndReboot(setup_args: setup_args, config_targets: "install", no_reboot:true, build_type: 'Release', execute_cmd: execute_args, prefixpath: '/usr/local')
}
}
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release', gpu_arch: "gfx908")
}
}
stage("Performance Tests")
{
parallel
{
stage("Run ckProfiler: gfx908")
stage("Run ckProfiler: gfx90a")
{
agent{ label rocmnode("gfx908")}
agent{ label rocmnode("gfx90a")}
environment{
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx908 -O3 " -DBUILD_DEV=On """
dbuser = "${dbuser}"
dbpassword = "${dbpassword}"
dbsship = "${dbsship}"
dbsshport = "${dbsshport}"
dbsshuser = "${dbsshuser}"
dbsshpassword = "${dbsshpassword}"
setup_args = """ -D CMAKE_CXX_FLAGS="--offload-arch=gfx90a -O3 " -DBUILD_DEV=On """
}
steps{
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release')
runPerfTest(setup_args:setup_args, config_targets: "ckProfiler", no_reboot:true, build_type: 'Release', gpu_arch: "gfx90a")
}
}
}
}
// enable after the cmake file supports packaging
// stage("Packages") {
// when {
// expression { params.BUILD_PACKAGES && params.TARGET_NOGPU && params.DATATYPE_NA }
// }
// parallel {
// stage("Package /opt/rocm") {
// agent{ label rocmnode("nogpu") }
// steps{
// buildHipClangJobAndReboot( package_build: "true", prefixpath: '/opt/rocm', gpu_arch: "gfx906;gfx908;gfx90a")
// }
// }
// }
// }
/* enable after the cmake file supports packaging
stage("Packages") {
when {
expression { params.BUILD_PACKAGES && params.TARGET_NOGPU && params.DATATYPE_NA }
}
parallel {
stage("Package /opt/rocm") {
agent{ label rocmnode("nogpu") }
steps{
buildHipClangJobAndReboot( package_build: "true", prefixpath: '/opt/rocm', gpu_arch: "gfx906;gfx908;gfx90a")
}
}
}
}
*/
}
}
Copyright (c) 2018- , Advanced Micro Devices, Inc. (Chao Liu, Jing Zhang)
Copyright (c) 2019- , Advanced Micro Devices, Inc. (Letao Qin, Qianfeng Zhang, Liang Huang, Shaojie Wang)
Copyright (c) 2022- , Advanced Micro Devices, Inc. (Anthony Chang, Chunyu Lai, Illia Silin, Adam Osewski, Poyen Chen, Jehandad Khan)
Copyright (c) 2019-2021, Advanced Micro Devices, Inc. (Hanwen Chang)
Copyright (c) 2019-2020, Advanced Micro Devices, Inc. (Tejash Shah)
Copyright (c) 2020 , Advanced Micro Devices, Inc. (Xiaoyan Zhou)
Copyright (c) 2021-2022, Advanced Micro Devices, Inc. (Jianfeng Yan)
SPDX-License-Identifier: MIT
Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
......@@ -6,7 +6,7 @@ docker run \
--group-add sudo \
-w /root/workspace \
-v ${PATH_TO_LOCAL_WORKSPACE}:/root/workspace \
rocm/tensorflow:rocm4.3.1-tf2.6-dev \
rocm/tensorflow:rocm5.1-tf2.6-dev \
/bin/bash
```
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_dl.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_dl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......@@ -27,18 +28,19 @@ using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using CDataType = F16;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using ALayout = Row;
using BLayout = Col;
using CLayout = Row;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::PassThrough;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CElementOp = PassThrough;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
......@@ -48,7 +50,7 @@ using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemm_Xdl_CShuffle
//######| | | | Type| Type| Type| Type| DataType| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< Row, Col, Row, F16, F16, F16, F32, F32, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
< ALayout, BLayout, CLayout, ADataType, BDataType, CDataType, AccDataType, CShuffleDataType, AElementOp, BElementOp, CElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::
......@@ -69,7 +71,11 @@ int main(int argc, char* argv[])
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
if(argc == 4)
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
......@@ -93,7 +99,7 @@ int main(int argc, char* argv[])
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
exit(0);
}
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "device_tensor.hpp"
#include "device_gemm_xdl_cshuffle.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm.hpp"
#include "gemm_specialization.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "device_base.hpp"
#include "device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "element_wise_operation.hpp"
#include "reference_gemm_bias_2d.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_xdl_c_shuffle_bias_2d.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm_bias_2d.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation.hpp"
#include "reference_gemm_bias_activation.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AddRelu;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle_Bias_Activation<
ADataType, // ADataType
BDataType, // BDataType
CDataType, // CDataType
AccDataType, // AccDataType
ALayout, // ALayout
BLayout, // BLayout
CLayout, // CLayout
AElementOp, // AElementwiseOperation
BElementOp, // BElementwiseOperation
CElementOp, // CElementwiseOperation
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemmBiasActivation<ADataType,
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
// C = A * B
// E = Relu(C + D);
struct AddRelu
{
__host__ __device__ void
operator()(ck::half_t& e, const ck::half_t& c, const ck::half_t& d) const
{
const ck::half_t x = c + d;
e = x > 0 ? x : 0;
}
};
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F16;
using DDataType = F16;
using DsDataType = ck::Tuple<DDataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddRelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
using DeviceOpInstance =
ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle<ALayout,
BLayout,
ELayout,
ADataType,
BDataType,
CDataType,
AccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementOp,
BElementOp,
CElementOp>;
CDEElementOp,
GemmDefault,
1,
256,
256,
128,
32,
8,
8,
32,
32,
4,
2,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
S<4, 64, 1>,
S<1, 0, 2>,
S<1, 0, 2>,
2,
8,
8,
1,
1,
1,
S<1, 32, 1, 8>,
8>;
int main(int argc, char* argv[])
{
......@@ -94,9 +117,13 @@ int main(int argc, char* argv[])
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
ck::index_t StrideE = 4096;
if(argc == 4)
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
......@@ -114,14 +141,14 @@ int main(int argc, char* argv[])
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
StrideE = std::stoi(argv[9]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideE\n");
exit(0);
}
......@@ -141,17 +168,14 @@ int main(int argc, char* argv[])
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
// c0_n[n]
Tensor<CDataType> c0_n(HostTensorDescriptor(
std::vector<std::size_t>({static_cast<std::size_t>(N)}), std::vector<std::size_t>({1})));
Tensor<DDataType> d_m_n(f_host_tensor_descriptor(M, N, 0, ELayout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n: " << c0_n.mDesc << std::endl;
std::cout << "d_m_n: " << d_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
......@@ -159,59 +183,59 @@ int main(int argc, char* argv[])
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
c0_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
d_m_n.GenerateTensorValue(GeneratorTensor_2<DDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
c0_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
d_m_n.GenerateTensorValue(GeneratorTensor_3<DDataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_n_device_buf(sizeof(CDataType) * c0_n.mDesc.GetElementSpace());
DeviceMem d_m_n_device_buf(sizeof(DDataType) * d_m_n.mDesc.GetElementSpace());
DeviceMem e_m_n_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());
c0_n_device_buf.ToDevice(c0_n.mData.data());
d_m_n_device_buf.ToDevice(d_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto device_op = DeviceOpInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c0_n_device_buf.GetDeviceBuffer()),
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_m_k_device_buf.GetDeviceBuffer(),
b_k_n_device_buf.GetDeviceBuffer(),
std::array<const void*, 1>{d_m_n_device_buf.GetDeviceBuffer()},
e_m_n_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
StrideC,
std::array<ck::index_t, 1>{0},
StrideE,
a_element_op,
b_element_op,
c_element_op);
cde_element_op);
if(!gemm.IsSupportedArgument(argument))
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
sizeof(CDataType) * M * N + sizeof(CDataType) * N;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(EDataType) * M * N + sizeof(EDataType) * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
......@@ -220,19 +244,37 @@ int main(int argc, char* argv[])
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(do_verification)
{
e_m_n_device_buf.FromDevice(e_m_n_device_result.mData.data());
Tensor<AccDataType> c_m_n(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(
a_m_k, b_k_n, c_m_n_host_result, c0_n, a_element_op, b_element_op, c_element_op);
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d_m_n(m, n));
}
}
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData) ? 0 : 1;
}
return 0;
......
add_example_executable(example_gemm_add_add_fastgelu_xdl_fp16 gemm_add_add_fastgelu_xdl_fp16.cpp)
# Instructions for ```example_gemm_xdl_bias_relu_add```
# Instructions for ```example_gemm_add_add_fastgelu_xdl_fp16```
## Run ```example_gemm_xdl_bias_relu_add```
## Run ```example_gemm_add_add_fastgelu_xdl_fp16```
```bash
#arg1: verification (0=no, 1=yes)
#arg2: initialization (0=no init, 1=integer value, 2=decimal value)
#arg3: run kernel # of times (>1)
#arg4 to 9: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC
./bin/example_gemm_xdl_bias_relu_add 0 1 5 3840 4096 4096 4096 4096 4096
#arg3: time kernel (0=no, 1=yes)
#arg4 to 11: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, StrideE"
./bin/example_gemm_add_add_fastgelu_xdl_fp16 1 1 1
```
Result (MI100 @ 1087Mhz, 133.5TFlops peak FP16)
```
a_m_k: dim 2, lengths {3840, 4096}, strides {4096, 1}
b_k_n: dim 2, lengths {4096, 4096}, strides {1, 4096}
c_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c0_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
c1_m_n: dim 2, lengths {3840, 4096}, strides {1, 0}
arg.a_grid_desc_k0_m_k1_{512, 3840, 8}
arg.b_grid_desc_k0_n_k1_{512, 4096, 8}
arg.c_grid_desc_m_n_{ 3840, 4096}
arg.c0_grid_desc_m_n_{ 3840, 4096}
arg.c1_grid_desc_m_n_{ 3840, 4096}
d0_m_n: dim 2, lengths {3840, 4096}, strides {0, 1}
d1_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
e_m_n: dim 2, lengths {3840, 4096}, strides {4096, 1}
launch_and_time_kernel: grid_dim {480, 1, 1}, block_dim {256, 1, 1}
Warm up
Start running 5 times...
Perf: 1.27583 ms, 100.992 TFlops, 73.9688 GB/s
Warm up 1 time
Start running 10 times...
Perf: 1.26914 ms, 101.525 TFlops, 100.804 GB/s, DeviceGemmMultipleD_Xdl_CShuffle<256, 256, 128, 32, 8, 8>
```
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_gemm.hpp"
#include "ck/library/utility/check_err.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using F16 = ck::half_t;
using F32 = float;
using Row = ck::tensor_layout::gemm::RowMajor;
using Col = ck::tensor_layout::gemm::ColumnMajor;
using PassThrough = ck::tensor_operation::element_wise::PassThrough;
using AddAddFastGelu = ck::tensor_operation::element_wise::AddAddFastGelu;
using ADataType = F16;
using BDataType = F16;
using AccDataType = F32;
using CShuffleDataType = F32;
using D0DataType = F16;
using D1DataType = F16;
using DsDataType = ck::Tuple<D0DataType, D1DataType>;
using EDataType = F16;
using ALayout = Row;
using BLayout = Col;
using D0Layout = Row;
using D1Layout = Row;
using ELayout = Row;
using AElementOp = PassThrough;
using BElementOp = PassThrough;
using CDEElementOp = AddAddFastGelu;
static constexpr auto GemmDefault = ck::tensor_operation::device::GemmSpecialization::Default;
// clang-format off
using DeviceOpInstance = ck::tensor_operation::device::DeviceGemmMultipleD_Xdl_CShuffle
//######| ALayout| BLayout| ELayout| AData| BData| AccData| CShuffle| DsData| EData| A| B| CDE| GEMM| NumGemmK| Block| MPer| NPer| KPer| AK1| BK1| MPer| NPer| MXdl| NXdl| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockTransfer| ABlockLds| BBlockTransfer| BBlockTransfer| BBlockTransfer| BlockTransfer| BBlockTransfer| BBlockTransfer| BBlockLds| CShuffle| CShuffle| CBlockTransferClusterLengths| CBlockTransfer|
//######| | | | Type| Type| Type| DataType| Type| Type| Elementwise| Elementwise| Elementwise| Spacialization| Prefetch| Size| Block| Block| Block| | | XDL| XDL| Per| Per| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraM| ThreadCluster| ThreadCluster| SrcAccessOrder| SrcVectorDim| SrcScalar| DstScalar| AddExtraN| MXdlPerWave| NXdlPerWave| _MBlock_MWaveMPerXdl| ScalarPerVector|
//######| | | | | | | | | | Operation| Operation| Operation| | Stage| | | | | | | | | Wave| Wave| Lengths_K0_M_K1| ArrangeOrder| | | PerVector| PerVector_K1| | Lengths_K0_N_K1| ArrangeOrder| | | PerVector| PerVector_K1| | PerShuffle| PerShuffle| _NBlock_NWaveNPerXdl| _NWaveNPerXdl|
//######| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
< ALayout, BLayout, ELayout, ADataType, BDataType, AccDataType, CShuffleDataType, DsDataType, EDataType, AElementOp, BElementOp, CDEElementOp, GemmDefault, 1, 256, 256, 128, 32, 8, 8, 32, 32, 4, 2, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, S<4, 64, 1>, S<1, 0, 2>, S<1, 0, 2>, 2, 8, 8, 1, 1, 1, S<1, 32, 1, 8>, 8>;
// clang-format on
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideD0 = 0;
ck::index_t StrideD1 = 4096;
ck::index_t StrideE = 4096;
if(argc == 1)
{
// use default case
}
else if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 12)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideD0 = std::stoi(argv[9]);
StrideD1 = std::stoi(argv[10]);
StrideE = std::stoi(argv[11]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=no, 1=yes)\n");
printf("arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideD0, StrideD1, "
"StrideE\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<D0DataType> d0_m_n(f_host_tensor_descriptor(M, N, StrideD0, D0Layout{}));
Tensor<D1DataType> d1_m_n(f_host_tensor_descriptor(M, N, StrideD1, D1Layout{}));
Tensor<EDataType> e_m_n_host_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
Tensor<EDataType> e_m_n_device_result(f_host_tensor_descriptor(M, N, StrideE, ELayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "d0_m_n: " << d0_m_n.mDesc << std::endl;
std::cout << "d1_m_n: " << d1_m_n.mDesc << std::endl;
std::cout << "e_m_n: " << e_m_n_host_result.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
d0_m_n.GenerateTensorValue(GeneratorTensor_2<D0DataType>{-5, 5});
d1_m_n.GenerateTensorValue(GeneratorTensor_2<D1DataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
d0_m_n.GenerateTensorValue(GeneratorTensor_3<D0DataType>{0.0, 1.0});
d1_m_n.GenerateTensorValue(GeneratorTensor_3<D1DataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem d0_m_n_device_buf(sizeof(D0DataType) * d0_m_n.mDesc.GetElementSpace());
DeviceMem d1_m_n_device_buf(sizeof(D1DataType) * d1_m_n.mDesc.GetElementSpace());
DeviceMem e_m_n_device_buf(sizeof(EDataType) * e_m_n_device_result.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
d0_m_n_device_buf.ToDevice(d0_m_n.mData.data());
d1_m_n_device_buf.ToDevice(d1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto cde_element_op = CDEElementOp{};
// do GEMM
auto device_op = DeviceOpInstance{};
auto invoker = device_op.MakeInvoker();
auto argument =
device_op.MakeArgument(a_m_k_device_buf.GetDeviceBuffer(),
b_k_n_device_buf.GetDeviceBuffer(),
std::array<const void*, 2>{d0_m_n_device_buf.GetDeviceBuffer(),
d1_m_n_device_buf.GetDeviceBuffer()},
e_m_n_device_buf.GetDeviceBuffer(),
M,
N,
K,
StrideA,
StrideB,
std::array<ck::index_t, 2>{StrideD0, StrideD1},
StrideE,
a_element_op,
b_element_op,
cde_element_op);
if(!device_op.IsSupportedArgument(argument))
{
throw std::runtime_error("wrong! this device_op instance does not support this problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * N +
sizeof(D0DataType) * N + sizeof(D1DataType) * M * N +
sizeof(EDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s, "
<< device_op.GetTypeString() << std::endl;
if(do_verification)
{
Tensor<AccDataType> c_m_n(HostTensorDescriptor(
std::vector<std::size_t>{static_cast<std::size_t>(M), static_cast<std::size_t>(N)}));
using ReferenceGemmInstance = ck::tensor_operation::host::ReferenceGemm<ADataType,
BDataType,
AccDataType,
AccDataType,
AElementOp,
BElementOp,
PassThrough>;
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument =
ref_gemm.MakeArgument(a_m_k, b_k_n, c_m_n, a_element_op, b_element_op, PassThrough{});
ref_invoker.Run(ref_argument);
for(int m = 0; m < M; ++m)
{
for(int n = 0; n < N; ++n)
{
cde_element_op(e_m_n_host_result(m, n), c_m_n(m, n), d0_m_n(m, n), d1_m_n(m, n));
}
}
e_m_n_device_buf.FromDevice(e_m_n_device_result.mData.data());
return ck::utils::check_err(e_m_n_device_result.mData, e_m_n_host_result.mData) ? 0 : 1;
}
return 0;
}
add_example_executable(example_gemm_xdl_bias_relu_add gemm_xdl_bias_relu_add.cpp)
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "print.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_gemm.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm_xdl_c_shuffle_bias_activation_add.hpp"
#include "reference_gemm_bias_activation_add.hpp"
template <ck::index_t... Is>
using S = ck::Sequence<Is...>;
using ADataType = ck::half_t;
using BDataType = ck::half_t;
using CDataType = ck::half_t;
using AccDataType = float;
using ALayout = ck::tensor_layout::gemm::RowMajor;
using BLayout = ck::tensor_layout::gemm::ColumnMajor;
using CLayout = ck::tensor_layout::gemm::RowMajor;
using AElementOp = ck::tensor_operation::element_wise::PassThrough;
using BElementOp = ck::tensor_operation::element_wise::PassThrough;
using CElementOp = ck::tensor_operation::element_wise::AddReluAdd;
// clang-format off
using DeviceGemmInstance = ck::tensor_operation::device::DeviceGemmXdl_C_Shuffle_Bias_Activation_Add<
ADataType, // ADataType
BDataType, // BDataType
CDataType, // CDataType
AccDataType, // AccDataType
ALayout, // ALayout
BLayout, // BLayout
CLayout, // CLayout
AElementOp, // AElementwiseOperation
BElementOp, // BElementwiseOperation
CElementOp, // CElementwiseOperation
256, // BlockSize
256, // MPerBlock
128, // NPerBlock
4, // K0PerBlock
8, // K1
32, // MPerXDL
32, // NPerXDL
4, // MXdlPerWave
2, // NXdlPerWave
S<4, 64, 1>, // ABlockTransferThreadClusterLengths_K0_M_K1
S<1, 0, 2>, // ABlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // ABlockTransferSrcAccessOrder
2, // ABlockTransferSrcVectorDim
8, // ABlockTransferSrcScalarPerVector
8, // ABlockTransferDstScalarPerVector_K1
true, // ABlockLdsAddExtraM
S<4, 64, 1>, // BBlockTransferThreadClusterLengths_K0_N_K1
S<1, 0, 2>, // BBlockTransferThreadClusterArrangeOrder
S<1, 0, 2>, // BBlockTransferSrcAccessOrder
2, // BBlockTransferSrcVectorDim
8, // BBlockTransferSrcScalarPerVector
8, // BBlockTransferDstScalarPerVector_K1
true, // BBlockLdsAddExtraN
1, // CShuffleMXdlPerWavePerShuffle
1, // CShuffleNXdlPerWavePerShuffle
S<1, 1, 32, 1, 1, 8>, // CBlockTransferClusterLengths_MBlock_MXdlPerWave_MWaveMPerXdl_NBlock_NXdlPerWave_NWaveNPerXdl
8>; // CBlockTransferScalarPerVector_NWaveNPerXdl
// clang-format on
using ReferenceGemmInstance =
ck::tensor_operation::host::ReferenceGemmBiasActivationAdd<ADataType,
BDataType,
CDataType,
AElementOp,
BElementOp,
CElementOp>;
int main(int argc, char* argv[])
{
bool do_verification = true;
int init_method = 1;
bool time_kernel = false;
// GEMM shape
ck::index_t M = 3840;
ck::index_t N = 4096;
ck::index_t K = 4096;
ck::index_t StrideA = 4096;
ck::index_t StrideB = 4096;
ck::index_t StrideC = 4096;
ck::index_t StrideC1 = 4096;
if(argc == 4)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
}
else if(argc == 11)
{
do_verification = std::stoi(argv[1]);
init_method = std::stoi(argv[2]);
time_kernel = std::stoi(argv[3]);
M = std::stoi(argv[4]);
N = std::stoi(argv[5]);
K = std::stoi(argv[6]);
StrideA = std::stoi(argv[7]);
StrideB = std::stoi(argv[8]);
StrideC = std::stoi(argv[9]);
StrideC1 = std::stoi(argv[10]);
}
else
{
printf("arg1: verification (0=no, 1=yes)\n");
printf("arg2: initialization (0=no init, 1=integer value, 2=decimal value)\n");
printf("arg3: time kernel (0=n0, 1=yes)\n");
printf("arg4 to 10: M (256x), N(128x), K(32x), StrideA, StrideB, StrideC, StrideC1\n");
exit(0);
}
auto f_host_tensor_descriptor =
[](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
if(std::is_same<decltype(layout), ck::tensor_layout::gemm::RowMajor>::value)
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({stride, 1}));
}
else
{
return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
std::vector<std::size_t>({1, stride}));
}
};
Tensor<ADataType> a_m_k(f_host_tensor_descriptor(M, K, StrideA, ALayout{}));
Tensor<BDataType> b_k_n(f_host_tensor_descriptor(K, N, StrideB, BLayout{}));
Tensor<CDataType> c_m_n_host_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
Tensor<CDataType> c_m_n_device_result(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
// c0_n[n]
Tensor<CDataType> c0_n(HostTensorDescriptor(
std::vector<std::size_t>({static_cast<std::size_t>(N)}), std::vector<std::size_t>({1})));
// c1_m_n[m ,n]
Tensor<CDataType> c1_m_n(f_host_tensor_descriptor(M, N, StrideC, CLayout{}));
std::cout << "a_m_k: " << a_m_k.mDesc << std::endl;
std::cout << "b_k_n: " << b_k_n.mDesc << std::endl;
std::cout << "c_m_n: " << c_m_n_host_result.mDesc << std::endl;
std::cout << "c0_n: " << c0_n.mDesc << std::endl;
std::cout << "c1_m_n: " << c1_m_n.mDesc << std::endl;
switch(init_method)
{
case 0: break;
case 1:
a_m_k.GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5});
b_k_n.GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5});
c0_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
c1_m_n.GenerateTensorValue(GeneratorTensor_2<CDataType>{-5, 5});
break;
default:
a_m_k.GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0});
b_k_n.GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5});
c0_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
c1_m_n.GenerateTensorValue(GeneratorTensor_3<CDataType>{0.0, 1.0});
}
DeviceMem a_m_k_device_buf(sizeof(ADataType) * a_m_k.mDesc.GetElementSpace());
DeviceMem b_k_n_device_buf(sizeof(BDataType) * b_k_n.mDesc.GetElementSpace());
DeviceMem c_m_n_device_buf(sizeof(CDataType) * c_m_n_device_result.mDesc.GetElementSpace());
DeviceMem c0_n_device_buf(sizeof(CDataType) * c0_n.mDesc.GetElementSpace());
DeviceMem c1_m_n_device_buf(sizeof(CDataType) * c1_m_n.mDesc.GetElementSpace());
a_m_k_device_buf.ToDevice(a_m_k.mData.data());
b_k_n_device_buf.ToDevice(b_k_n.mData.data());
c_m_n_device_buf.ToDevice(c_m_n_device_result.mData.data());
c0_n_device_buf.ToDevice(c0_n.mData.data());
c1_m_n_device_buf.ToDevice(c1_m_n.mData.data());
auto a_element_op = AElementOp{};
auto b_element_op = BElementOp{};
auto c_element_op = CElementOp{};
// do GEMM
auto gemm = DeviceGemmInstance{};
auto invoker = gemm.MakeInvoker();
auto argument = gemm.MakeArgument(static_cast<ADataType*>(a_m_k_device_buf.GetDeviceBuffer()),
static_cast<BDataType*>(b_k_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c_m_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c0_n_device_buf.GetDeviceBuffer()),
static_cast<CDataType*>(c1_m_n_device_buf.GetDeviceBuffer()),
M,
N,
K,
StrideA,
StrideB,
StrideC,
StrideC1,
a_element_op,
b_element_op,
c_element_op);
if(!gemm.IsSupportedArgument(argument))
{
throw std::runtime_error(
"wrong! device_gemm with the specified compilation parameters does "
"not support this GEMM problem");
}
float ave_time = invoker.Run(argument, StreamConfig{nullptr, time_kernel});
std::size_t flop = std::size_t(2) * M * N * K;
std::size_t num_btype = sizeof(ADataType) * M * K + sizeof(BDataType) * K * M +
sizeof(CDataType) * M * N + sizeof(CDataType) * N +
sizeof(CDataType) * M * N;
float tflops = static_cast<float>(flop) / 1.E9 / ave_time;
float gb_per_sec = num_btype / 1.E6 / ave_time;
std::cout << "Perf: " << ave_time << " ms, " << tflops << " TFlops, " << gb_per_sec << " GB/s"
<< std::endl;
c_m_n_device_buf.FromDevice(c_m_n_device_result.mData.data());
if(do_verification)
{
auto ref_gemm = ReferenceGemmInstance{};
auto ref_invoker = ref_gemm.MakeInvoker();
auto ref_argument = ref_gemm.MakeArgument(a_m_k,
b_k_n,
c_m_n_host_result,
c0_n,
c1_m_n,
a_element_op,
b_element_op,
c_element_op);
ref_invoker.Run(ref_argument);
return ck::utils::check_err(c_m_n_device_result.mData, c_m_n_host_result.mData) ? 0 : 1;
}
return 0;
}
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_util.hpp"
#include "device.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd_bias_activation.hpp"
#include "tensor_layout.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation.hpp"
namespace {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#include <iostream>
#include <numeric>
#include <initializer_list>
#include <cstdlib>
#include <stdlib.h>
#include <half.hpp>
#include "check_err.hpp"
#include "config.hpp"
#include "conv_util.hpp"
#include "device.hpp"
#include "device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "reference_conv_fwd_bias_activation_add.hpp"
#include "tensor_layout.hpp"
#include "ck/ck.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv2d_fwd_xdl_c_shuffle_bias_activation_add_nhwc_kyxc_nhwk.hpp"
#include "ck/tensor_operation/gpu/element/element_wise_operation.hpp"
#include "ck/library/utility/check_err.hpp"
#include "ck/library/utility/conv_util.hpp"
#include "ck/library/host_tensor/device_memory.hpp"
#include "ck/library/host_tensor/host_tensor.hpp"
#include "ck/library/host_tensor/host_tensor_generator.hpp"
#include "ck/library/reference_tensor_operation/cpu/reference_conv_fwd_bias_activation_add.hpp"
namespace {
......@@ -224,10 +225,10 @@ int main(int argc, char* argv[])
{
case 0: break;
case 1:
input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-5, 5});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-5, 5});
bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
residual.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-5, 5});
input.GenerateTensorValue(GeneratorTensor_2<InDataType>{-2, 2});
weights.GenerateTensorValue(GeneratorTensor_2<WeiDataType>{-2, 2});
bias.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
residual.GenerateTensorValue(GeneratorTensor_2<OutDataType>{-2, 2});
break;
default:
input.GenerateTensorValue(GeneratorTensor_3<InDataType>{0.0, 1.0});
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment