".github/workflows/vscode:/vscode.git/clone" did not exist on "e8ef4c0820ff6457f32c17e1470fe47976b35e21"
Commit 7a3b49e5 authored by Chao Liu's avatar Chao Liu
Browse files

Merge remote-tracking branch 'origin/develop' into contraction

parents e07b3d8e d3051d75
#ifndef DEVICE_CONV_FWD_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_CONV_FWD_BIAS_ACTIVATION_ADD_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <vector>
#include <iostream>
#include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
......@@ -47,4 +51,3 @@ using DeviceConvFwdBiasActivationAddPtr =
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_backward_weight.hpp"
#include "convolution_backward_weight_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_backward_weight.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_weight_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_bwd_weight.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_unary_elementwise_1d.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -432,7 +437,7 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
using namespace ck;
const index_t Di = input_spatial_lengths[0];
const index_t Hi = input_spatial_lengths[2];
const index_t Hi = input_spatial_lengths[1];
const index_t Wi = input_spatial_lengths[2];
const index_t Do = output_spatial_lengths[0];
......@@ -628,6 +633,57 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
1);
}
// type convert descs
template <typename Desc_M0>
static auto PadDescriptor_M0_1d(Desc_M0 desc_m0, index_t gridSize, index_t blockSize)
{
const auto m0 = desc_m0.GetLength(I0);
const index_t loop_step = gridSize * blockSize * 4;
const auto pad = math::integer_least_multiple(m0, loop_step) - m0;
const auto desc_m0_pad =
transform_tensor_descriptor(desc_m0,
make_tuple(make_right_pad_transform(m0, pad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
return desc_m0_pad;
}
template <index_t Dim>
static auto MakeDescriptor_M0(const std::vector<index_t>& shape,
const std::vector<index_t>& stride,
index_t gridSize,
index_t blockSize)
{
auto tupleOfShape = generate_tuple([&](auto I) { return shape[I]; }, Number<Dim>{});
auto tupleOfStride = generate_tuple([&](auto I) { return stride[I]; }, Number<Dim>{});
// nd desc - [s0, s1, s2, ...]
const auto desc = make_naive_tensor_descriptor(tupleOfShape, tupleOfStride);
// merge nd to 1d desc - [s0 * s1 * ...]
if constexpr(Dim > 1)
{
const auto desc_m0 = transform_tensor_descriptor(
desc,
make_tuple(make_merge_transform(tupleOfShape)),
make_tuple(generate_sequence_v2([&](auto I) { return I; }, Number<Dim>{})),
make_tuple(Sequence<0>{}));
return PadDescriptor_M0_1d(desc_m0, gridSize, blockSize);
}
else
return PadDescriptor_M0_1d(desc, gridSize, blockSize);
}
using TypeConvertFp32ToBf16Functor =
ck::tensor_operation::element_wise::UnaryTypeConvert<ck::bhalf_t, float>;
using GridDesc_M0 = decltype(MakeDescriptor_M0<1>({1}, {1}, 1, 1));
using GridwiseUEltwise = GridwiseUnaryElementwise_1D<AccDataType,
InDataType,
GridDesc_M0,
TypeConvertFp32ToBf16Functor,
4>;
using ABCGridDescs = decltype(GetABCGridDesc<NumDimSpatial>());
using AGridDesc_K0_M_K1 = remove_cvref_t<decltype(ABCGridDescs{}[I0])>;
......@@ -733,6 +789,55 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
true,
true>;
using GridwiseGemmAtomicAddFloatBf16Splitk = GridwiseGemm_bk0mk1_bk0nk1_mn_xdlops_bwd_weight<
BlockSize,
ADataType, // TODO: distinguish A/B datatype
AccDataType,
AccDataType,
InMemoryDataOperationEnum::AtomicAdd,
AGridDesc_K0_M_K1,
BGridDesc_K0_N_K1,
CGridDesc_M_N,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
MPerBlock,
NPerBlock,
K0PerBlock,
MPerXdl,
NPerXdl,
K1,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_K0_M_K1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_K1,
false, // AThreadTransferSrcResetCoordinateAfterRun,
ABlockLdsAddExtraM,
ABlockLdsM1PerBlock,
ABlockLdsM0PerBlock,
ABlockLdsM1Padding,
BBlockTransferThreadClusterLengths_K0_N_K1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_K1,
false, // BThreadTransferSrcResetCoordinateAfterRun,
BBlockLdsAddExtraN,
BBlockLdsN1PerBlock,
BBlockLdsN0PerBlock,
BBlockLdsN1Padding,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CBlockTransferScalarPerVector_NWaveNPerXdl,
CBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
true,
true>;
// Argument
using CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock =
decltype(GridwiseGemm::MakeCGridDesc_MBlock_MPerBlock_NBlock_NPerBlock(CGridDesc_M_N{}));
......@@ -881,76 +986,104 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
const auto K0 = arg.a_grid_desc_kbatch_k0_m_k1_.GetLength(I1);
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
float ave_time = 0;
const auto Run = [&](const auto& kernel) {
const bool has_main_k0_block_loop = GridwiseGemm::CalculateHasMainK0BlockLoop(K0);
const auto run_conv = [&](const auto& kernel) {
hipGetErrorString(hipMemset(
arg.p_c_grid_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(CDataType)));
ave_time =
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
};
// run kernel for bf16 with splitk
const auto run_bf16_splitk = [&](const auto& kernel) {
hipGetErrorString(hipMemset(
arg.p_workspace_,
0,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_.GetElementSpaceSize() *
sizeof(AccDataType)));
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
static_cast<AccDataType*>(arg.p_workspace_),
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
};
// kernel for type conversion
std::vector<std::size_t> filter_dims{static_cast<std::size_t>(arg.Conv_K_),
static_cast<std::size_t>(arg.Conv_C_)};
filter_dims.insert(std::end(filter_dims),
std::begin(arg.filter_spatial_lengths_),
std::end(arg.filter_spatial_lengths_));
int tensor_size =
std::accumulate(filter_dims.begin(), filter_dims.end(), 1, std::multiplies<int>{});
const index_t type_convert_grid_size = GridwiseUEltwise::CalculateGridSize(tensor_size);
GridDesc_M0 a_grid_desc_m0_ =
MakeDescriptor_M0<1>({tensor_size}, {1}, type_convert_grid_size, 256);
GridDesc_M0 b_grid_desc_m0_ =
MakeDescriptor_M0<1>({tensor_size}, {1}, type_convert_grid_size, 256);
if(!GridwiseUEltwise::CheckValidity(a_grid_desc_m0_, b_grid_desc_m0_))
{
throw std::runtime_error("wrong! GridwiseUnaryElementwise_1D has invalid setting");
}
// run kernel for type conversion
void* p_c_grid_tmp_ = static_cast<void*>(arg.p_c_grid_);
InDataType* p_c_grid_tmp_bf16_ = static_cast<InDataType*>(p_c_grid_tmp_);
const auto run_type_convert = [&](const auto& kernel) {
float elapsed_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
dim3(type_convert_grid_size),
dim3(256),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.a_grid_desc_kbatch_k0_m_k1_,
arg.b_grid_desc_kbatch_k0_n_k1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.block_2_ctile_map_);
static_cast<AccDataType*>(arg.p_workspace_),
p_c_grid_tmp_bf16_,
a_grid_desc_m0_,
b_grid_desc_m0_,
TypeConvertFp32ToBf16Functor{});
return elapsed_time;
};
if constexpr(std::is_same<InDataType, ck::bhalf_t>::value)
{
if(has_main_k0_block_loop)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
Run(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<DeviceOp::CGridDesc_MBlock_MPerBlock_NBlock_NPerBlock>,
OutElementwiseOperation,
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
Run(kernel);
}
}
else
{
if(has_main_k0_block_loop)
{
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
......@@ -965,16 +1098,23 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
has_main_loop>;
Run(kernel);
return run_conv(kernel);
}
else
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAdd,
const auto kernel_type_convert =
kernel_unary_elementwise_1d<GridwiseUEltwise,
AccDataType,
InDataType,
GridDesc_M0,
TypeConvertFp32ToBf16Functor>;
const auto kernel_conv = kernel_gemm_xdlops_bwd_weight<
GridwiseGemmAtomicAddFloatBf16Splitk,
ADataType, // TODO: distiguish A/B datatype
CDataType,
AccDataType,
remove_reference_t<DeviceOp::AGridDesc_K0_M_K1>,
remove_reference_t<DeviceOp::BGridDesc_K0_N_K1>,
remove_reference_t<
......@@ -983,13 +1123,28 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
true>;
has_main_loop>;
Run(kernel);
float elapsed_time = 0;
elapsed_time += run_bf16_splitk(kernel_conv);
elapsed_time += run_type_convert(kernel_type_convert);
return elapsed_time;
}
};
if(has_main_k0_block_loop)
{
ave_time = launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
}
}
else
{
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
if(kbatch == 1)
{
const auto kernel = kernel_gemm_xdlops_bwd_weight<
......@@ -1004,9 +1159,9 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
has_main_loop>;
Run(kernel);
return run_conv(kernel);
}
else
{
......@@ -1022,10 +1177,18 @@ struct DeviceConvndBwdWeightXdl_C_Shuffle_Input_N_Hi_Wi_C_Weight_K_Y_X_C_Output_
InElementwiseOperation,
WeiElementwiseOperation,
remove_reference_t<DeviceOp::Block2CTileMap>,
false>;
has_main_loop>;
Run(kernel);
return run_conv(kernel);
}
};
if(has_main_k0_block_loop)
{
ave_time = launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
}
}
......
#ifndef DEVICE_CONVND_BWD_DATA_XDL_NDHWC_KZYXC_NDHWK_HPP
#define DEVICE_CONVND_BWD_DATA_XDL_NDHWC_KZYXC_NDHWK_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_conv_bwd_data.hpp"
#include "convolution_backward_data_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_bwd_data.hpp"
#include "ck/tensor_operation/gpu/device/convolution_backward_data_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -1546,4 +1549,3 @@ struct DeviceConvndBwdDataXdl_Input_N_Di_Hi_Wi_C_Weight_K_Z_Y_X_C_Output_N_Do_Ho
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <functional>
......@@ -6,16 +9,15 @@
#include <numeric>
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_conv_fwd.hpp"
#include "convolution_forward_specialization.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_conv_fwd.hpp"
#include "ck/tensor_operation/gpu/device/convolution_forward_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <vector>
#include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
......
#ifndef DEVICE_GEMM_BIAS_ACTIVATION_HPP
#define DEVICE_GEMM_BIAS_ACTIVATION_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "device_base.hpp"
#include "ck/tensor_operation/gpu/device/device_base.hpp"
namespace ck {
namespace tensor_operation {
......@@ -40,4 +43,3 @@ using DeviceGemmBiasActivationPtr = std::unique_ptr<
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#ifndef DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_GEMM_BIAS_ACTIVATION_ADD_HPP
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_bias_add_reduce_xdl_cshuffle_v1.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// Note: inter-wave loop scheduler is rolled out to c-shuffle version first. Becuase non c-shuffle
// version currently has compiler issues with register spill which further causes validation
// failures.
template <typename ALayout,
typename BLayout,
typename CLayout,
typename ADataType,
typename BDataType,
typename CDataType,
typename C0DataType,
typename C1DataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename ReduceAccDataType,
typename DPtrsGlobal,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CShuffleBlockTransferScalarPerVector_NPerBlock,
typename CReduceThreadClusterLengths_MPerBlock_NPerBlock,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmBiasAddReduce_Xdl_CShuffle
: public DeviceGemmBiasAddReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>
{
using DeviceOp = DeviceGemmBiasAddReduce_Xdl_CShuffle;
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideC)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideC, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideC));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
// assume D is packed tensor
static auto MakeDGridDescriptor_M(index_t MRaw)
{
const auto d_grid_desc_mraw = make_naive_tensor_descriptor_packed(make_tuple(MRaw));
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto MPad = M - MRaw;
if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M
return transform_tensor_descriptor(d_grid_desc_mraw,
make_tuple(make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<0>{}),
make_tuple(Sequence<0>{}));
}
else
{
// not pad M
return d_grid_desc_mraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using CGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using C0GridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 0));
using C1GridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
using DGridDesc_M = decltype(MakeDGridDescriptor_M(1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmBiasAddReduce_k0mk1_k0nk1_mn_xdl_cshuffle_v1<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
CDataType,
C0DataType,
C1DataType,
ReduceAccDataType,
DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
CGridDesc_M_N,
C0GridDesc_M_N,
C1GridDesc_M_N,
DGridDesc_M,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CShuffleBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CShuffleBlockTransferScalarPerVector_NPerBlock,
CReduceThreadClusterLengths_MPerBlock_NPerBlock,
CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopSched>;
// Argument
struct Argument : public BaseArgument
{
Argument(const ADataType* p_a_grid,
const BDataType* p_b_grid,
CDataType* p_c_grid,
const C0DataType* p_c0_grid,
const C1DataType* p_c1_grid,
DPtrsGlobal p_ds_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
p_c0_grid_{p_c0_grid},
p_c1_grid_{p_c1_grid},
p_ds_grid_{p_ds_grid},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
c_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC)},
c0_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, 0)},
c1_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideC1)},
d_grid_desc_m_{DeviceOp::MakeDGridDescriptor_M(MRaw)},
c_grid_desc_mblock_mperblock_nblock_nperblock_{},
c0_grid_desc_mblock_mperblock_nblock_nperblock_{},
c1_grid_desc_mblock_mperblock_nblock_nperblock_{},
d_grid_desc_mblock_mperblock_{},
block_2_ctile_map_{GridwiseGemm::MakeDefaultBlock2CTileMap(c_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
c_element_op_{c_element_op},
c1_element_op_{c1_element_op},
dxs_in_element_op_{dxs_in_element_op},
dxs_out_element_op_{dxs_out_element_op}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
c_grid_desc_m_n_,
block_2_ctile_map_))
{
c_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c_grid_desc_m_n_);
c0_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c0_grid_desc_m_n_);
c1_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeCGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
c1_grid_desc_m_n_);
d_grid_desc_mblock_mperblock_ =
GridwiseGemm::MakeDGridDescriptor_MBlock_MPerBlock(d_grid_desc_m_);
}
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
CDataType* p_c_grid_;
const C0DataType* p_c0_grid_;
const C1DataType* p_c1_grid_;
DPtrsGlobal p_ds_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
CGridDesc_M_N c_grid_desc_m_n_;
C0GridDesc_M_N c0_grid_desc_m_n_;
C1GridDesc_M_N c1_grid_desc_m_n_;
DGridDesc_M d_grid_desc_m_;
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c0_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
c1_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock d_grid_desc_mblock_mperblock_;
typename GridwiseGemm::DefaultBlock2CTileMap block_2_ctile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
C1ElementwiseOperation c1_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsReduceAccElementwiseOperation dxs_out_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_ctile_map_.CalculateGridSize(arg.c_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
float elapsed_time = 0.0f;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
const auto kernel = kernel_gemm_bias_add_reduce_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
C0DataType,
C1DataType,
DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
true>;
elapsed_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.p_ds_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.c1_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c0_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c1_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
else
{
const auto kernel = kernel_gemm_bias_add_reduce_xdl_cshuffle_v1<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
CDataType,
C0DataType,
C1DataType,
DPtrsGlobal,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C0GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::C1GridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DGridDescriptor_MBlock_MPerBlock,
typename GridwiseGemm::DefaultBlock2CTileMap,
false>;
elapsed_time =
launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_c_grid_,
arg.p_c0_grid_,
arg.p_c1_grid_,
arg.p_ds_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.c_element_op_,
arg.c1_element_op_,
arg.dxs_in_element_op_,
arg.dxs_out_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c0_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.c1_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.d_grid_desc_mblock_mperblock_,
arg.block_2_ctile_map_);
}
return elapsed_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static constexpr bool IsValidCompilationParameter()
{
// TODO: properly implement this check
return true;
}
static bool IsSupportedArgument(const Argument& arg)
{
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.c_grid_desc_m_n_,
arg.block_2_ctile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const ADataType* p_a,
const BDataType* p_b,
CDataType* p_c,
const C0DataType* p_c0,
const C1DataType* p_c1,
DPtrsGlobal p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op)
{
return Argument{p_a,
p_b,
p_c,
p_c0,
p_c1,
p_dxs,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
StrideC1,
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
dxs_in_element_op,
dxs_out_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
void* p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
{
DPtrsGlobal dxs_tuple = *(static_cast<DPtrsGlobal*>(p_dxs));
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
static_cast<const C0DataType*>(p_c0),
static_cast<const C1DataType*>(p_c1),
dxs_tuple,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideC,
StrideC1,
a_element_op,
b_element_op,
c_element_op,
c1_element_op,
dxs_in_element_op,
dxs_out_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmReduce_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gemm_specialization.hpp"
#include "element_wise_operation.hpp"
#include "gridwise_gemm_dl_v1r3.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_dl_v1r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <array>
#include "device_base.hpp"
namespace ck {
namespace tensor_operation {
namespace device {
// input : A[M, K], B[K, N],
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <ck::index_t NumDTensor,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation>
struct DeviceGemmMultipleD : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
ck::index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <ck::index_t NumDTensor,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation>
using DeviceGemmMultipleDPtr = std::unique_ptr<DeviceGemmMultipleD<NumDTensor,
AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_multiple_d.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_multiple_d_xdl_cshuffle.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
template <typename GridwiseGemm,
typename FloatAB,
typename FloatDsPointer,
typename FloatE,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
typename AGridDesc_AK0_M_AK1,
typename BGridDesc_BK0_N_BK1,
typename DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename Block2ETileMap,
bool HasMainKBlockLoop>
__global__ void
#if CK_USE_LAUNCH_BOUNDS
__launch_bounds__(CK_MAX_THREAD_PER_BLOCK, CK_MIN_BLOCK_PER_CU)
#endif
kernel_gemm_multiple_d_xdl_cshuffle(const FloatAB* __restrict__ p_a_grid,
const FloatAB* __restrict__ p_b_grid,
FloatDsPointer p_ds_grid,
FloatE* __restrict__ p_e_grid,
const AElementwiseOperation a_element_op,
const BElementwiseOperation b_element_op,
const CDEElementwiseOperation cde_element_op,
const AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1,
const BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1,
const DsGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
ds_grid_desc_mblock_mperblock_nblock_nperblock,
const EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock,
const Block2ETileMap block_2_etile_map)
{
#if(!defined(__HIP_DEVICE_COMPILE__) || defined(__gfx908__) || defined(__gfx90a__))
__shared__ char p_shared[GridwiseGemm::GetSharedMemoryNumberOfByte()];
GridwiseGemm::template Run<HasMainKBlockLoop>(p_a_grid,
p_b_grid,
p_ds_grid,
p_e_grid,
p_shared,
a_element_op,
b_element_op,
cde_element_op,
a_grid_desc_ak0_m_ak1,
b_grid_desc_bk0_n_bk1,
ds_grid_desc_mblock_mperblock_nblock_nperblock,
e_grid_desc_mblock_mperblock_nblock_nperblock,
block_2_etile_map);
#else
ignore = p_a_grid;
ignore = p_b_grid;
ignore = p_ds_grid;
ignore = p_e_grid;
ignore = a_element_op;
ignore = b_element_op;
ignore = cde_element_op;
ignore = a_grid_desc_ak0_m_ak1;
ignore = b_grid_desc_bk0_n_bk1;
ignore = ds_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = e_grid_desc_mblock_mperblock_nblock_nperblock;
ignore = block_2_etile_map;
#endif
}
} // namespace ck
namespace ck {
namespace tensor_operation {
namespace device {
// input : A[M, K], or A[K, N]
// input : B[K, N], or A[N, K]
// input : D0[M, N], D1[M, N], ...
// output : E[M, N]
// C = a_op(A) * b_op(B)
// E = cde_op(C, D0, D1, ...)
template <typename ALayout,
typename BLayout,
typename CDELayout,
typename ADataType,
typename BDataType,
typename GemmAccDataType,
typename CShuffleDataType,
typename DsDataType,
typename EDataType,
typename AElementwiseOperation,
typename BElementwiseOperation,
typename CDEElementwiseOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
index_t BlockSize,
index_t MPerBlock,
index_t NPerBlock,
index_t KPerBlock,
index_t AK1,
index_t BK1,
index_t MPerXDL,
index_t NPerXDL,
index_t MXdlPerWave,
index_t NXdlPerWave,
typename ABlockTransferThreadClusterLengths_AK0_M_AK1,
typename ABlockTransferThreadClusterArrangeOrder,
typename ABlockTransferSrcAccessOrder,
index_t ABlockTransferSrcVectorDim,
index_t ABlockTransferSrcScalarPerVector,
index_t ABlockTransferDstScalarPerVector_AK1,
bool ABlockLdsExtraM,
typename BBlockTransferThreadClusterLengths_BK0_N_BK1,
typename BBlockTransferThreadClusterArrangeOrder,
typename BBlockTransferSrcAccessOrder,
index_t BBlockTransferSrcVectorDim,
index_t BBlockTransferSrcScalarPerVector,
index_t BBlockTransferDstScalarPerVector_BK1,
bool BBlockLdsExtraN,
index_t CShuffleMXdlPerWavePerShuffle,
index_t CShuffleNXdlPerWavePerShuffle,
typename CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
index_t CDEBlockTransferScalarPerVector_NPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmMultipleD_Xdl_CShuffle : public DeviceGemmMultipleD<DsDataType::Size(),
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation>
{
using DeviceOp = DeviceGemmMultipleD_Xdl_CShuffle;
static constexpr index_t NumDTensor = DsDataType::Size();
static constexpr auto I0 = Number<0>{};
static constexpr auto I1 = Number<1>{};
static constexpr auto I2 = Number<2>{};
static constexpr auto I3 = Number<3>{};
static auto MakeAGridDescriptor_AK0_M_AK1(index_t MRaw, index_t KRaw, index_t StrideA)
{
const auto a_grid_desc_mraw_kraw = [&]() {
if constexpr(is_same_v<tensor_layout::gemm::RowMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(StrideA, I1));
}
else if constexpr(is_same_v<tensor_layout::gemm::ColumnMajor, ALayout>)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, KRaw),
make_tuple(I1, StrideA));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto MPad = M - MRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::MKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both M and K
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(M)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad M, but not K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_right_pad_transform(MRaw, MPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad K, but not M
assert(K % AK1 == 0);
const auto AK0 = K / AK1;
const auto a_grid_desc_m_k = transform_tensor_descriptor(
a_grid_desc_mraw_kraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_m_k,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
else
{
// not pad M or K
assert(KRaw % AK1 == 0);
const auto AK0 = KRaw / AK1;
const auto a_grid_desc_ak0_m_ak1 =
transform_tensor_descriptor(a_grid_desc_mraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(AK0, AK1)),
make_pass_through_transform(MRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return a_grid_desc_ak0_m_ak1;
}
}
static auto MakeBGridDescriptor_BK0_N_BK1(index_t KRaw, index_t NRaw, index_t StrideB)
{
const auto b_grid_desc_nraw_kraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(I1, StrideB));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, BLayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(NRaw, KRaw),
make_tuple(StrideB, I1));
}
}();
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto K = math::integer_divide_ceil(KRaw, KPerBlock) * KPerBlock;
const auto NPad = N - NRaw;
const auto KPad = K - KRaw;
if constexpr(GemmSpec == GemmSpecialization::NKPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad both N and K
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_right_pad_transform(NRaw, NPad),
make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(N)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::MNPadding)
{
// pad N, but not K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else if constexpr(GemmSpec == GemmSpecialization::KPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad K, but not N
assert(K % BK1 == 0);
const auto BK0 = K / BK1;
const auto b_grid_desc_n_k = transform_tensor_descriptor(
b_grid_desc_nraw_kraw,
make_tuple(make_pass_through_transform(NRaw), make_right_pad_transform(KRaw, KPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_n_k,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
else
{
// not pad N or K
assert(KRaw % BK1 == 0);
const auto BK0 = KRaw / BK1;
const auto b_grid_desc_bk0_n_bk1 =
transform_tensor_descriptor(b_grid_desc_nraw_kraw,
make_tuple(make_unmerge_transform(make_tuple(BK0, BK1)),
make_pass_through_transform(NRaw)),
make_tuple(Sequence<1>{}, Sequence<0>{}),
make_tuple(Sequence<0, 2>{}, Sequence<1>{}));
return b_grid_desc_bk0_n_bk1;
}
}
static auto MakeCGridDescriptor_M_N(index_t MRaw, index_t NRaw, index_t StrideE)
{
const auto c_grid_desc_mraw_nraw = [&]() {
if constexpr(is_same<tensor_layout::gemm::RowMajor, CDELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(StrideE, I1));
}
else if constexpr(is_same<tensor_layout::gemm::ColumnMajor, CDELayout>::value)
{
return make_naive_tensor_descriptor(make_tuple(MRaw, NRaw),
make_tuple(I1, StrideE));
}
}();
const auto M = math::integer_divide_ceil(MRaw, MPerBlock) * MPerBlock;
const auto N = math::integer_divide_ceil(NRaw, NPerBlock) * NPerBlock;
const auto MPad = M - MRaw;
const auto NPad = N - NRaw;
if constexpr(GemmSpec == GemmSpecialization::MNPadding ||
GemmSpec == GemmSpecialization::MNKPadding)
{
// pad M and N
return transform_tensor_descriptor(c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad),
make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::MPadding ||
GemmSpec == GemmSpecialization::MKPadding)
{
// pad M, but not N
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_right_pad_transform(MRaw, MPad), make_pass_through_transform(NRaw)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else if constexpr(GemmSpec == GemmSpecialization::NPadding ||
GemmSpec == GemmSpecialization::NKPadding)
{
// pad N, but not M
return transform_tensor_descriptor(
c_grid_desc_mraw_nraw,
make_tuple(make_pass_through_transform(MRaw), make_right_pad_transform(NRaw, NPad)),
make_tuple(Sequence<0>{}, Sequence<1>{}),
make_tuple(Sequence<0>{}, Sequence<1>{}));
}
else
{
// not pad M or N
return c_grid_desc_mraw_nraw;
}
}
using AGridDesc_AK0_M_AK1 = decltype(MakeAGridDescriptor_AK0_M_AK1(1, 1, 1));
using BGridDesc_BK0_N_BK1 = decltype(MakeBGridDescriptor_BK0_N_BK1(1, 1, 1));
using EGridDesc_M_N = decltype(MakeCGridDescriptor_M_N(1, 1, 1));
// GridwiseGemm
using GridwiseGemm = GridwiseGemmMultipleD_k0mk1_k0nk1_mn_xdl_cshuffle<
ADataType, // TODO: distinguish A/B datatype
GemmAccDataType,
CShuffleDataType,
DsDataType,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
InMemoryDataOperationEnum::Set,
AGridDesc_AK0_M_AK1,
BGridDesc_BK0_N_BK1,
EGridDesc_M_N,
NumGemmKPrefetchStage,
BlockSize,
MPerBlock,
NPerBlock,
KPerBlock,
AK1,
BK1,
MPerXDL,
NPerXDL,
MXdlPerWave,
NXdlPerWave,
ABlockTransferThreadClusterLengths_AK0_M_AK1,
ABlockTransferThreadClusterArrangeOrder,
ABlockTransferSrcAccessOrder,
ABlockTransferSrcVectorDim,
ABlockTransferSrcScalarPerVector,
ABlockTransferDstScalarPerVector_AK1,
false,
ABlockLdsExtraM,
BBlockTransferThreadClusterLengths_BK0_N_BK1,
BBlockTransferThreadClusterArrangeOrder,
BBlockTransferSrcAccessOrder,
BBlockTransferSrcVectorDim,
BBlockTransferSrcScalarPerVector,
BBlockTransferDstScalarPerVector_BK1,
false,
BBlockLdsExtraN,
CShuffleMXdlPerWavePerShuffle,
CShuffleNXdlPerWavePerShuffle,
CDEBlockTransferClusterLengths_MBlock_MPerBlock_NBlock_NPerBlock,
CDEBlockTransferScalarPerVector_NPerBlock,
LoopSched>;
// Argument
struct Argument : public BaseArgument
{
Argument(const void* p_a_grid,
const void* p_b_grid,
std::array<const void*, NumDTensor> p_ds_grid,
void* p_e_grid,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
: p_a_grid_{static_cast<const ADataType*>(p_a_grid)},
p_b_grid_{static_cast<const BDataType*>(p_b_grid)},
p_ds_grid_{}, // FIXME
p_e_grid_{static_cast<EDataType*>(p_e_grid)},
a_grid_desc_ak0_m_ak1_{DeviceOp::MakeAGridDescriptor_AK0_M_AK1(MRaw, KRaw, StrideA)},
b_grid_desc_bk0_n_bk1_{DeviceOp::MakeBGridDescriptor_BK0_N_BK1(KRaw, NRaw, StrideB)},
ds_grid_desc_mblock_mperblock_nblock_nperblock_{},
e_grid_desc_m_n_{DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideE)},
e_grid_desc_mblock_mperblock_nblock_nperblock_{},
block_2_etile_map_{GridwiseGemm::MakeDefaultBlock2ETileMap(e_grid_desc_m_n_)},
a_element_op_{a_element_op},
b_element_op_{b_element_op},
cde_element_op_{cde_element_op}
{
if(GridwiseGemm::CheckValidity(a_grid_desc_ak0_m_ak1_,
b_grid_desc_bk0_n_bk1_,
e_grid_desc_m_n_,
block_2_etile_map_))
{
e_grid_desc_mblock_mperblock_nblock_nperblock_ =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
e_grid_desc_m_n_);
static_for<0, NumDTensor, 1>{}([&](auto i) {
using DDataType = remove_cvref_t<tuple_element_t<i.value, DsDataType>>;
p_ds_grid_(i) = static_cast<const DDataType*>(p_ds_grid[i]);
const auto d_grid_desc_m_n =
DeviceOp::MakeCGridDescriptor_M_N(MRaw, NRaw, StrideDs[i]);
ds_grid_desc_mblock_mperblock_nblock_nperblock_(i) =
GridwiseGemm::MakeEGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock(
d_grid_desc_m_n);
});
}
}
// ck::Tuple<const DsDataType*...>
static constexpr auto MakeDsGridPointer()
{
return generate_tuple(
[&](auto i) {
using DDataType = remove_cv_t<decltype(DsDataType{}.At(i))>;
return static_cast<const DDataType*>(nullptr);
},
Number<NumDTensor>{});
}
// private:
const ADataType* p_a_grid_;
const BDataType* p_b_grid_;
typename GridwiseGemm::DsGridPointer p_ds_grid_;
EDataType* p_e_grid_;
AGridDesc_AK0_M_AK1 a_grid_desc_ak0_m_ak1_;
BGridDesc_BK0_N_BK1 b_grid_desc_bk0_n_bk1_;
StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>
ds_grid_desc_mblock_mperblock_nblock_nperblock_; // FIXME: Ds desc may be of different
// type from E
EGridDesc_M_N e_grid_desc_m_n_;
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock
e_grid_desc_mblock_mperblock_nblock_nperblock_;
typename GridwiseGemm::DefaultBlock2ETileMap block_2_etile_map_;
AElementwiseOperation a_element_op_;
BElementwiseOperation b_element_op_;
CDEElementwiseOperation cde_element_op_;
};
// Invoker
struct Invoker : public BaseInvoker
{
using Argument = DeviceOp::Argument;
float Run(const Argument& arg, const StreamConfig& stream_config = StreamConfig{})
{
if(!GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_))
{
throw std::runtime_error("wrong! GridwiseGemm has invalid setting");
}
const index_t grid_size =
arg.block_2_etile_map_.CalculateGridSize(arg.e_grid_desc_m_n_);
const auto K =
arg.a_grid_desc_ak0_m_ak1_.GetLength(I0) * arg.a_grid_desc_ak0_m_ak1_.GetLength(I2);
auto launch_kernel = [&](auto has_main_k_block_loop) {
constexpr bool has_main_loop = has_main_k_block_loop.value;
const auto kernel = kernel_gemm_multiple_d_xdl_cshuffle<
GridwiseGemm,
ADataType, // TODO: distiguish A/B datatype
typename GridwiseGemm::DsGridPointer,
EDataType,
AElementwiseOperation,
BElementwiseOperation,
CDEElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
ck::StaticallyIndexedArray<
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
NumDTensor>,
typename GridwiseGemm::EGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
typename GridwiseGemm::DefaultBlock2ETileMap,
has_main_loop>;
return launch_and_time_kernel(stream_config,
kernel,
dim3(grid_size),
dim3(BlockSize),
0,
arg.p_a_grid_,
arg.p_b_grid_,
arg.p_ds_grid_,
arg.p_e_grid_,
arg.a_element_op_,
arg.b_element_op_,
arg.cde_element_op_,
arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.ds_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.e_grid_desc_mblock_mperblock_nblock_nperblock_,
arg.block_2_etile_map_);
};
float ave_time = 0;
if(GridwiseGemm::CalculateHasMainKBlockLoop(K))
{
ave_time = launch_kernel(integral_constant<bool, true>{});
}
else
{
ave_time = launch_kernel(integral_constant<bool, false>{});
}
return ave_time;
}
// polymorphic
float Run(const BaseArgument* p_arg,
const StreamConfig& stream_config = StreamConfig{}) override
{
return Run(*dynamic_cast<const Argument*>(p_arg), stream_config);
}
};
static bool IsSupportedArgument(const Argument& arg)
{
if(!(ck::get_device_name() == "gfx908" || ck::get_device_name() == "gfx90a"))
{
return false;
}
return GridwiseGemm::CheckValidity(arg.a_grid_desc_ak0_m_ak1_,
arg.b_grid_desc_bk0_n_bk1_,
arg.e_grid_desc_m_n_,
arg.block_2_etile_map_);
}
// polymorphic
bool IsSupportedArgument(const BaseArgument* p_arg) override
{
return IsSupportedArgument(*dynamic_cast<const Argument*>(p_arg));
}
static auto MakeArgument(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op)
{
return Argument{p_a,
p_b,
p_ds,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideDs,
StrideE,
a_element_op,
b_element_op,
cde_element_op};
}
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
std::array<const void*, NumDTensor> p_ds,
void* p_e,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
std::array<ck::index_t, NumDTensor> StrideDs,
index_t StrideE,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CDEElementwiseOperation cde_element_op) override
{
return std::make_unique<Argument>(p_a,
p_b,
p_ds,
p_e,
MRaw,
NRaw,
KRaw,
StrideA,
StrideB,
StrideDs,
StrideE,
a_element_op,
b_element_op,
cde_element_op);
}
// polymorphic
std::unique_ptr<BaseInvoker> MakeInvokerPointer() override
{
return std::make_unique<Invoker>(Invoker{});
}
// polymorphic
std::string GetTypeString() const override
{
auto str = std::stringstream();
// clang-format off
str << "DeviceGemmMultipleD_Xdl_CShuffle"
<< "<"
<< BlockSize << ", "
<< MPerBlock << ", "
<< NPerBlock << ", "
<< KPerBlock << ", "
<< AK1 << ", "
<< BK1
<< ">";
// clang-format on
return str.str();
}
};
} // namespace device
} // namespace tensor_operation
} // namespace ck
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include "device_base.hpp"
......@@ -6,19 +9,18 @@ namespace ck {
namespace tensor_operation {
namespace device {
template <typename DPtrsGlobal,
typename AElementwiseOperation,
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsAccElementwiseOperation>
typename DxsReduceAccElementwiseOperation>
struct DeviceGemmReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
DPtrsGlobal p_dxs,
void* p_dxs,
ck::index_t M,
ck::index_t N,
ck::index_t K,
......@@ -29,24 +31,69 @@ struct DeviceGemmReduce : public BaseOperator
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename DPtrsGlobal,
typename AElementwiseOperation,
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsAccElementwiseOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
using DeviceGemmReducePtr = std::unique_ptr<DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation>>;
DxsReduceAccElementwiseOperation>>;
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
struct DeviceGemmBiasAddReduce : public BaseOperator
{
virtual std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
const void* p_c0,
const void* p_c1,
void* p_dxs,
ck::index_t M,
ck::index_t N,
ck::index_t K,
ck::index_t StrideA,
ck::index_t StrideB,
ck::index_t StrideC,
ck::index_t StrideC1,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
C1ElementwiseOperation c1_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
ck::index_t BatchCount = 1) = 0;
virtual std::unique_ptr<BaseInvoker> MakeInvokerPointer() = 0;
};
template <typename AElementwiseOperation,
typename BElementwiseOperation,
typename CElementwiseOperation,
typename C1ElementwiseOperation,
typename DxsInElementwiseOperation,
typename DxsReduceAccElementwiseOperation>
using DeviceGemmBiasAddReducePtr =
std::unique_ptr<DeviceGemmBiasAddReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
C1ElementwiseOperation,
DxsInElementwiseOperation,
DxsReduceAccElementwiseOperation>>;
} // namespace device
} // namespace tensor_operation
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_reduce.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_reduce_xdl_cshuffle_v1.hpp"
#include "gemm_specialization.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_reduce.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_reduce_xdl_cshuffle_v1.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -32,7 +38,7 @@ template <typename ALayout,
typename CElementwiseOperation,
typename DxsReduceOperation,
typename DxsInElementwiseOperation,
typename DxsAccElementwiseOperation,
typename DxsReduceAccElementwiseOperation,
typename DGlobalMemoryDataOperation,
GemmSpecialization GemmSpec,
index_t NumGemmKPrefetchStage,
......@@ -68,12 +74,11 @@ template <typename ALayout,
index_t CReduceThreadLds2VGprCopySrcDstScalarPerVector_NPerBlock,
index_t CReduceThreadVgpr2GlobalCopySrcDstScalarPerVector_MPerBlock,
LoopScheduler LoopSched = make_default_loop_scheduler()>
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
AElementwiseOperation,
struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<AElementwiseOperation,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation>
DxsReduceAccElementwiseOperation>
{
using DeviceOp = DeviceGemmReduce_Xdl_CShuffle;
......@@ -389,7 +394,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
CElementwiseOperation,
DxsReduceOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
InMemoryDataOperationEnum::Set,
DGlobalMemoryDataOperation,
AGridDesc_AK0_M_AK1,
......@@ -449,7 +454,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op)
DxsReduceAccElementwiseOperation dxs_out_element_op)
: p_a_grid_{p_a_grid},
p_b_grid_{p_b_grid},
p_c_grid_{p_c_grid},
......@@ -498,7 +503,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op_;
CElementwiseOperation c_element_op_;
DxsInElementwiseOperation dxs_in_element_op_;
DxsAccElementwiseOperation dxs_out_element_op_;
DxsReduceAccElementwiseOperation dxs_out_element_op_;
};
// Invoker
......@@ -554,7 +559,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -594,7 +599,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation,
CElementwiseOperation,
DxsInElementwiseOperation,
DxsAccElementwiseOperation,
DxsReduceAccElementwiseOperation,
DeviceOp::AGridDesc_AK0_M_AK1,
DeviceOp::BGridDesc_BK0_N_BK1,
typename GridwiseGemm::CGridDescriptor_MBlock_MPerBlock_NBlock_NPerBlock,
......@@ -669,7 +674,7 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op)
DxsReduceAccElementwiseOperation dxs_out_element_op)
{
return Argument{p_a,
p_b,
......@@ -691,27 +696,29 @@ struct DeviceGemmReduce_Xdl_CShuffle : public DeviceGemmReduce<DPtrsGlobal,
static auto MakeInvoker() { return Invoker{}; }
// polymorphic
std::unique_ptr<BaseArgument> MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
DPtrsGlobal p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
std::unique_ptr<BaseArgument>
MakeArgumentPointer(const void* p_a,
const void* p_b,
void* p_c,
void* p_dxs,
index_t MRaw,
index_t NRaw,
index_t KRaw,
index_t StrideA,
index_t StrideB,
index_t StrideC,
AElementwiseOperation a_element_op,
BElementwiseOperation b_element_op,
CElementwiseOperation c_element_op,
DxsInElementwiseOperation dxs_in_element_op,
DxsReduceAccElementwiseOperation dxs_out_element_op,
index_t /* KBatch */ = 1) override
{
DPtrsGlobal dxs_tuple = *(static_cast<DPtrsGlobal*>(p_dxs));
return std::make_unique<Argument>(static_cast<const ADataType*>(p_a),
static_cast<const BDataType*>(p_b),
static_cast<CDataType*>(p_c),
p_dxs,
dxs_tuple,
MRaw,
NRaw,
KRaw,
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_prop.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r3.hpp"
#include "gemm_specialization.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_bias.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r2.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r2.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......
#ifndef DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_HPP
#define DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_bias_activation.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r2.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r2.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -513,4 +518,3 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
#ifndef DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_ADD_HPP
#define DEVICE_GEMM_XDL_C_SHUFFLE_BIAS_ACTIVATION_ADD_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm_bias_activation_add.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v3r3.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm_bias_activation_add.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v3r3.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -573,4 +578,3 @@ struct DeviceGemmXdl_C_Shuffle_Bias_Activation_Add
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "tensor_operation/gpu/device/gemm_specialization.hpp"
#include "device_prop.hpp"
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdl_cshuffle_v1.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......
#ifndef DEVICE_GEMM_SPLITK_XDL_HPP
#define DEVICE_GEMM_SPLITK_XDL_HPP
// SPDX-License-Identifier: MIT
// Copyright (c) 2018-2022, Advanced Micro Devices, Inc. All rights reserved.
#pragma once
#include <iostream>
#include <sstream>
#include "device.hpp"
#include "device_base.hpp"
#include "device_gemm.hpp"
#include "common_header.hpp"
#include "tensor_layout.hpp"
#include "tensor_descriptor.hpp"
#include "tensor_descriptor_helper.hpp"
#include "gridwise_gemm_xdlops_v2r4.hpp"
#include "gemm_specialization.hpp"
#include "device_prop.hpp"
#ifndef CK_RUN_KERNEL_AND_TIME
#define CK_RUN_KERNEL_AND_TIME 1
#endif
#include "ck/utility/common_header.hpp"
#include "ck/tensor_description/tensor_descriptor.hpp"
#include "ck/tensor_description/tensor_descriptor_helper.hpp"
#include "ck/tensor_operation/gpu/device/tensor_layout.hpp"
#include "ck/tensor_operation/gpu/device/device_gemm.hpp"
#include "ck/tensor_operation/gpu/device/gemm_specialization.hpp"
#include "ck/tensor_operation/gpu/grid/gridwise_gemm_xdlops_v2r4.hpp"
#include "ck/device_utility/device_prop.hpp"
#include "ck/device_utility/kernel_launch.hpp"
namespace ck {
namespace tensor_operation {
......@@ -639,4 +637,3 @@ struct DeviceGemmXdlSplitK
} // namespace device
} // namespace tensor_operation
} // namespace ck
#endif
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment